Center for Exploitation of Solar Energy & Department of Chemistry, University of Copenhagen Solar Energy Storage in Photochromic Molecules Mogens Brøndsted Nielsen Compact long term heat storage workshop, DTU, Jan. 28, 2016 Energy Storage using Photochromic Molecules – Closed Energy Cycle with No CO2 Emissions or Other Pollutants Light absorption – Storage – Energy release on demand Energy barrier for back-reaction Photoinduced isomerization Energy stored light low-energy molecule "trigger" high-energy molecule determines storage time … Material with energy density of 1 MJ / kg • Heat release of 1 MJ can be used to bring 3 L of water from room temperature to the boiling point • Harvesting light during the day and releasing heat during the night: - maintaining 1 m3 at 19 oC with outside temperature of -6 oC requires ca. 3 kg of solar battery (when using foam insulation) T. R. Kucharski, Y. Tian, S. Akbulatov, R. Boulatov, Energy Environ. Sci. 2011, 4, 4449-4472. Challenges • How do we design photochromic molecules with sufficiently high energy densities? • How is the energy-releasing back-reaction put on stand-by? … energy storage • How do we reach high quantum yields • How do we avoid photodegradation of molecules over many cycles? … Norbornadiene – Quadricyclane Couple light heat Energy storage: 1 MJ/kg ✔ Quantum yield: 9% ÷ Only absorbs UV light ÷ Prone to polymerization ÷ Z.-I. Yoshida, J. Photochem. 1985, 29, 27-40. trans-Azobenzene – cis-Azobenzene Couple light N N heat Energy storage: ca. 0.3 MJ/kg Photostationary states, usually with <75% cis N N Dihydroazulene (DHA) / Vinylheptafulvene (VHF) Couple Quantum yield = 55% Dihydroazulene (DHA) / Vinylheptafulvene (VHF) Couple DHA lmax 353 nm VHF lmax 470 nm DHA Synthesis … Easy to do S. L. Broman, S. L. Brand, C. R. Parker, M. Å. Petersen, C. G. Tortzen, A. Kadziola, K.Kilså, M. B. Nielsen, ARKIVOC 2011, ix, 51-67. Energy storage: 0.11 MJ / kg … We need to modify the molecule to increase this value! S.T. Olsen, J. Elm, F.E. Storm, A.N. Gejl, A.S. Hansen, M.H. Hansen, J.R. Nikolajsen, M.B. Nielsen, H.G. Kjaergaard, K.V. Mikkelsen, J. Phys. Chem. A 2015, 119, 896-904. Energy Storage NC CN Substitute one CN for a H NC Ph Ph 0.11 MJ / kg NC 0.25 MJ / kg CN NC Ph Ph 0.15 MJ / kg H H stored energy Ph Ph 0.23 MJ / kg By minor structural variations we can make a doubling of the energy storage capacity! S.T. Olsen, J. Elm, F.E. Storm, A.N. Gejl, A.S. Hansen, M.H. Hansen, J.R. Nikolajsen, M.B. Nielsen, H.G. Kjaergaard, K.V. Mikkelsen, J. Phys. Chem. A 2015, 119, 896-904. M. Cacciarini, A.B. Skov, M. Jevric, A.S. Hansen, J. Elm, H.G. Kjaergaard, K.V. Mikkelsen, M.B. Nielsen, Chem. Eur. J. 2015, 21, 7454-7461. Synthesis of New Targets by Reductive Decyanations NC CN Ph NC CN Ph Ph VHF of this DHA: Half-life of 14 s DIBAL-H H CN THF 16% H Ph THF 23% DIBAL-H hn H CN Ph hn H Ph Ph CN very slowly CN Ph Ph TS calculations: DG‡ = 125.7 kJ/mol Half-life >10 years at rt M. Cacciarini, A.B. Skov, M. Jevric, A.S. Hansen, J. Elm, H.G. Kjaergaard, K.V. Mikkelsen, M.B. Nielsen, Chem. Eur. J. 2015, 21, 7454-7461. Triggering the Ring-Closure NC CN Ag+ NC CN Ph Ph Effect of Ag+ on the thermal ring-closure reaction of VHF: min Solvent: 1,2-dichloroethane C. R. Parker, C. G. Tortzen, S. L. Broman, M. Schau-Magnussen, K. Kilså, M. B. Nielsen, Chem. Commun. 2011, 47, 6102-6104. Ring-Closure Reactions in MeCN at Room Temperature Me 2N Me 2N NC CN fast NC CN Half-life = 50 min VHF DHA O2N O2N NC CN slow NC CN Half-life = 490 min VHF S. L. Broman, M. Jevric, M. B. Nielsen, Chem. Eur. J. 2013, 19, 9542-9548. DHA Hammett Substituent Constants - Measure of electron-withdrawing / donating effect O OH O + H 2O X O + H 3O X KX s X = log = pKa,H - pKa,X KH Electron-withdrawing groups have positive s-values (e.g. NO2) Electron-donating groups have negative s-values (e.g. NMe2) KX VHF Ring-Closure – Hammett Correlation - Effect of changing the aryl group at the vinylic position NC fast CN NC CN X -8.8 X p-CN p-CN p-NO 2 p-NO p-CO2Me -9.0 2 p-CHO -9.2 m-CN p-CCH ln(k) -9.4 p-I -9.6 p-F -9.8 slow m-SAc p-Br m-I m-CCH p-OMe p-OMe H -10.0 p-NHAc p-Me -10.2 -0.4 -0.2 0.0 sm/p 0.2 sm / por (meta 0.4 0.6 0.8 para) Electron-withdrawing group at vinylic position ring enhances the ring-closure S. L. Broman, M. Jevric, M. B. Nielsen, Chem. Eur. J. 2013, 19, 9542-9548. VHF Ring-Closure – Hammett Correlation - Effect of changing the aryl group at the seven-membered ring X fast X p-NMe2 NC CN NC CN Ph Ph through-conjugation values p-OMe p-NO2 slow ☐ sp or sp+ Electron-donating group at the seven-membered ring enhances the ring-closure S. L. Broman, M. Jevric, M. B. Nielsen, Chem. Eur. J. 2013, 19, 9542-9548. Ultrafast Ring-closure of VHF in Locked s-cis Conformation NC 1.0 CN NC CN DHA Abs 0.8 Half-life: < 2 s (cyclohexane) 0.6 0.4 VHF 0.2 0.0 300 400 500 600 Wavelength (nm) 700 800 S. L. Broman, O. Kushnir, M. Rosenberg, A. Kadziola, J. Daub, M. B. Nielsen, Eur. J. Org. Chem. 2015, 4119-4130. Dihydroazulene / Vinylheptafulvene Switch Low energy High energy Halting the back-reaction: <1 s Infinitely long… Half-life for VHF to DHA back-reaction Another Approach – Building in Strain … Macrocyclic Structures N N N N Calculations predict increased energy storage and step-wise back-reactions N N E. Durgun, J. C. Grossman, J. Phys. Chem. Lett. 2013, 4, 854-860. Current Status Energy storage capacities of 0.5 MJ/kg may soon be within reach Storage times of days have been reached – longer storage times have been reached for various molecules Up to years for the DHA-VHF couple, but triggering the energy release is still a challenge Center for Exploitation of Solar Energy & Department of Chemistry, University of Copenhagen Acknowledgements Dr. Søren L. Broman Dr. Martina Cacciarini Dr. Martyn Jevric Anders B. Skov Alexandru Vlasceanu Prof. Kurt V. Mikkelsen Prof. Henrik G. Kjaergaard Dr. Jonas Elm Stine T. Olsen Anders Gertsen Anne Schou University of Copenhagen & the Carlsberg Foundation
© Copyright 2025 Paperzz