bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Using a structural root system model for an in-depth assessment of root image analysis pipeline Guillaume Lobet 1,2,*, Iko Koevoets 3, Pierre Tocquin1, Loïc Pagès4 and Claire Périlleux1 1 InBioS-PhytoSYSTEMS, University of Liège, 4000 Liège, Belgium 2 Institut fur Bio-und Geowissenschaften: Agrosphare, Forschungszentrum Jülich, D52425 Jülich, Germany 3 Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands 4 INRA, Centre d’ Avignon, UR 1115 PSH, Site Agroparc, 84914 Avignon cedex 9, France * Corresponding author: [email protected] bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 1 Abstract 2 Rootsystemanalysisisacomplextask,oftenperformedusingfullyautomatedimageanalysis 3 pipelines.However,thesepipelinesareusuallyevaluatedwithalimitednumberofground-truthed 4 rootimages,mostlikelyoflimitedsizeandcomplexity. 5 6 Wehaveusedarootmodel,ArchiSimpletocreatealargeanddiverselibraryofground-truthed 7 rootsystemimages(10.000).Thislibrarywasusedtoevaluatetheaccuracyandusefulnessof 8 severalimagedescriptorsclassicalyusedinrootimageanalysispipelines. 9 10 Ouranalysishighlightedthattheaccuracyofthedifferentmetricsisstronglylinkedtothetypeof 11 rootsystemanalysed(e.g.dicotormonocot)aswellastheirsizeandcomplexity.Metricsthathave 12 beenshowntobeaccurateforsmalldicotrootsystemsmightfailforlargedicotsrootsystemsor 13 smallmonocotrootsystems.Ourstudyalsodemonstratedthattheusefulnessofthedifferent 14 metricswhentryingtodiscriminategenotypesorexperimentalconditionsmayvary. 15 16 Overall,ouranalysisisacalltocautionwhenautomaticallyanalysingrootimages.Ifathorough 17 calibrationisnotperformedonthedatasetofinterest,unexpectederrorsmightarise,especiallyfor 18 largeandcomplexrootimages.Tofacilitatesuchcalibration,boththeimagelibraryandthe 19 differentcodesusedinthestudyhavebeenmadeavailabletothecommunity. 20 2 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 21 Introduction 22 Rootsareofoutmostimportanceinthelifeofplantsandhenceselectiononrootsystems 23 representsgreatpromiseforimprovingcroptolerance(asreviewedin(Koevoetsetal.,2016)).As 24 such,theirquantificationisachallengeinamultitudeofresearchprojects.Thisquantificationis 25 usuallytwofold.Thefirststepconsistsinacquiringanimageoftherootsystem,eitherusingclassic 26 imagetechniques(CCDcameras)ormorespecializedones(microCT,X-Ray,fluorescence,...).The 27 nextstepistoanalysethepictureinordertoextractmeaningfuldescriptorsoftherootsystem. 28 29 Toparaphrasethefamousbelgiansurrealistpainter,RenéMagritte,figure1Aisnotarootsystem. 30 Figure1Aisanimageofarootsystemandthatdistinctionisimportant.Suchanimageisindeeda 31 twodimensionalrepresentationofarootsystem,whichisusuallyathreedimensionalobject.Until 32 now,measurementsaregenerallynotperformedontherootsystemsthemselves,butontheimages 33 andthisraisessomeissues. 34 35 Imageanalysisis,bydefinition,theobtentionofmetrics(ordescriptors)describingtheobjects 36 containedinaparticularimage.Inaperfectsituation,thesedescriptorswouldaccuratelyrepresent 37 thebiologicalobjectoftheimagewithnegligibledeviationfromthebiologicaltruth(ordata). 38 However,inmanycases,artefactsmightbepresentintheimagessothattherepresentationofthe 39 biologicalobjectisnotaccurateanymore.Theseartefactsmightbeduetotheconditionsinwhich 40 theimagesweretakenortotheobjectitself.Maturerootsystems,forinstance,arecomplex 41 branchedstructure,composedofthousandsofoverlapping(fig.1B)andcrossinglinearsegments 42 (fig.1C).Thesefeaturesarelikelytoimpedeimageanalysisandcreateagapbetweenthe 43 descriptorsandthedata. 44 3 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 45 46 47 Rootimagedescriptorscanbeseparatedintotwomaincategories:morphologicalandgeometrical 48 descriptors.Morphologicaldescriptorsrefertotheshapeofthedifferentrootsegmentsformingthe 49 rootsystem(table1).Theyinclude,amongothers,thelengthanddiameterofthedifferentroots. 50 Forcomplexrootsystemimages,morphologicaldescriptorsaredifficulttoobtainandareproneto 51 errorasmentionedabove. 52 53 Geometricaldescriptorsgivethepositionofthedifferentrootsegmentsinspace.Theysummarize 54 theshapeoftherootsystemasawhole.Thesimplestgeometricaldescriptorsarethewidthand 55 depthoftherootsystem.Sincethesedescriptorsaremostlydefinedbytheoutsideenvelopeofthe 4 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 56 rootsystem,crossingandoverlappingrootshavelittleimpactontheirestimationandtheycanbe 57 consideredasrelativelyerrorless.Geometricaldescriptorsareexpectedtobelooselylinkedtothe 58 actualrootsystemtopology,asidenticalshapescouldbereachedbydifferentrootsystems(the 59 oppositeistrueaswell).Theyareusuallyusedingeneticstudies,toidentifygeneticbasesofroot 60 systemshapeandsoilexploration. 61 62 Severalautomatedanalysistoolsweredesignedinthelastfewyearstoextractbothtypeof 63 descriptorsfromrootimages(Armengaudetal.,2009;Buckschetal.,2014;Galkovskyietal.,2012; 64 Pierretetal.,2013).However,thevalidationofsuchtoolsisoftenincompleteand/orerrorprone. 65 Indeed,fortechnicalreasons,thevalidationisusuallyperformedonasmallnumberofground- 66 truthedimagesofyoungrootsystemsforwhichmostanalysistoolswereactuallydesigned.Inthe 67 fewcaseswherevalidationisperformedonlargeandcomplexrootsystems,itisusuallynoton 68 ground-truthedimages,butincomparisonwithpreviouslypublishedtools(measurementofXwith 69 toolAcomparedwiththesamemeasurementwithtoolB).Thismightseemreasonableapproach 70 regardingthescarcityofground-truthedimagesoflargerootsystems.However,theinherent 71 limitationsofthesetools,suchasscaleorplanttype(monocot,dicot)areoftennotknown.Users 72 mightnotevenbeawarethatsuchlimitationsexistandapplytheprovidedalgorithmwithout 73 furthervalidationontheirownimages.Thiscanleadtounsuspectederrorsinthefinal 74 measurements. 75 76 Onestrategytoaddressthelackofin-depthvalidationofimageanalysispipelinewouldbetouse 77 syntheticimagesgeneratedbystructuralrootmodels(modelsdesignedtorecreatethephysical 78 structureandshapeofrootsystems).Manystructuralrootmodelshavebeendeveloped,eitherto 79 modelspecificplantspecies(Pagèsetal.,1989),ortobegeneric(Pagèsetal.,2004;2013).These 80 modelshavebeenrepeatedlyshowntofaithfullyrepresenttherootsystemstructure(Pagèsand 5 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 81 Pellerin,1996).Inaddition,theycanprovidetheground-truthdataforeachsyntheticrootsystem 82 generated,independentlyofitscomplexity.However,exceptonerecenttooldesignedforyoung 83 seedlingswithnolateralroots(Benoitetal.,2014).theyhavealmostneverbeenusedforvalidation 84 ofimageanalysistools(Rellán-Álvarezetal.,2015).A 85 86 Herewe(i)illustratetheuseofastructuralrootmodel,Archisimple,tosystematicallyanalyseand 87 evaluateanimageanalysispipelineand(ii)evaluatetheusefulnessofdifferentrootmetrics 88 commonlyusedinplantrootresearch. 89 6 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 90 Material and methods 91 Nomenclature used in the paper 92 93 Ground-truthdata:Thereal(geometricandmorphometric)propertiesoftherootsystemasa 94 biologicalobject.Determinedbyeithermanualtracingofrootsorbyusingtheoutputofmodelled 95 rootsystems. 96 (Image)Descriptor:Propertyoftherootimage.Doesnotnecessarilyhaveabiologicalmeaning. 97 Synthetype:Foreachsimulation,aparametersetisdefinedrandomly.Then,10rootsystemsare 98 created.Sincethemodelhasanintrinsicvariability,eachoftheserootsystemisslightlydifferent 99 fromtheothers,althoughsimilar,formingwhatwecalledasyntheticgenotype,orsynthetype. 100 Rootaxes:firstorderroots,directlyattachedtotheshoot 101 Lateralroot:second(orlower)orderroots,attachedtoanotherroot 102 Creation of a root system library 103 WeusedthemodelArchiSimple,whichwasshowntoallowgeneratingalargediversityofroot 104 systemswithaminimalamountofparameters(Pagèsetal.,2013).Inordertoproducealarge 105 libraryofrootsystems,weranthemodel10.000times,eachtimewitharandomsetofparameters. 106 107 Thesimulationsweredividedintwomaingroups:monocotsanddicots.Forthemonocot 108 simulations,themodelgeneratedarandomnumberoffirst-orderaxesandsecondary(radial) 109 growthwasdisabled.Fordicotsimulations,onlyoneprimaryaxiswasproducedandsecondary 7 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 110 growthwasenabled(theextendofwhichwasdeterminedbyarandomparameter).Forall 111 simulation,onlyfirstorderlateralswerecreated,tolimitcomplexity. 112 113 TherootsystemcreatedfromeachsimulationwasstoredinanRSMLfile.EachRSMLfilewasthen 114 readbytheRSMLReaderpluginfromImageJtoextractmetricsandgenerateground-truthdatafor 115 thelibrary(Lobetetal.,2015).Theseground-truthdataincludedgeometrical,morphologicaland 116 topologicalparameters(table1).ForeachRSMLdatafile,theRSMLReaderpluginalsocreateda 117 PNGimage(ataresolutionof300DPI)oftherootsystem. 118 119 Table1:Rootsystemparametersusedasground-truthdata Name Description Unit tot_root_length Thecumulativelengthofallroots mm tot_prim_length Thecumulativelengthofallrootaxes mm tot_lat_length Thecumulativelengthofalllateralroots mm mean_prim_length Themeanfirst-orderrootslength mm mean_lat_length Themeanlateralrootlength mm n_primary Thetotalnumberoffirstorderroots - n_laterals Thetotalnumberoflateralroots - Themeanlateralrootdensity:foreachfirst-orderoot, thenumberoflateralrootsdividedbytheaxislength 120 mean_lat_density (totallength). mm-1 mean_prim_diam Themeandiameterofthefirst-orderroots mm mean_lat_diam Themeandiameterofthelateralroots mm mean_lat_angle Themeaninsertionangleofthelateralroots ° 8 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 121 Root image analysis 122 Eachgeneratedimagewasanalysedusingacustom-madeImageJplugin,RootImageAnalysis-J(or 123 RIA-J).ThesourcecodeofRIA-J,aswellasacompiledversionisavailableattheaddress: 124 https://zenodo.org/record/61509. 125 126 Foreachimage,weextractedasetofclassicalrootimagedescriptors,suchasthetotalrootlength, 127 theprojectedareaorthenumberofvisibleroottips.Inaddition,weincludedshapedescriptors, 128 suchaspseudo-landmarks,ora-dimensionalmetricssuchastheexplorationratio,ofthewidth 129 proportionat50%depth(seeSupplementalfile1fordetailsabouttheshapedescriptors).Thelist 130 ofmetricsandalgorithmsusedbyourpipelineislistedinthetable2. 131 Data analysis 132 DataanalysiswasperformedinR(RCoreTeam).Morphometricanalyseswereperformedusingthe 133 momocs(Bonhommeetal.,2014)andshapes(Dryden,2015)packages.Plotswerecreatedusing 134 ggplot2(Wickham,2009)andlattice(Sarkar,2008). 135 TheRelativeRootSquareMeanErrors(RRSME)wereestimatedusingtheequation: ! 𝑅𝑅𝑀𝑆𝐸 = (𝑦𝚤 − 𝑦𝑖) 𝑦𝚤 𝑛 136 where𝑛isthenumberofobservations,𝑦𝚤isthemeanand 𝑦𝑖 istheestimatedmean. 137 TheLinearDiscriminantAnalysis(LDA)wasperformedusingtheldafunctionfromtheMASS 138 package(MandD,2002).Foreachanalysis,weusedthesynthetypeinformationasgroupingfactor. 139 Weusedhalfofthesamples(5)ofeachsynthetypetobuildthemodelandtheotherhalftoassess 140 thediscriminantpoweroftheeachclassofmetrics(morphologyandshape). 9 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 141 Data availability 142 Alldatausedinthispaper(includingtheimageandRSMLlibraries)areavailableattheaddress 143 https://zenodo.org/record/61739 144 Anarchivedversionofthecodesusedinthispaperisavailableattheaddress 145 https://zenodo.org/record/152083 146 10 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 147 Results and discussions 148 Production of a large library of ground-truthed root system images 149 Wecombinedexistingtoolsintoasinglepipelinetoproducealargelibraryofground-truthedroot 150 systemimages.Thepipelinecombinesarootmodel(ArchiSimple(Pagèsetal.,2013)),theRoot 151 SystemMarkupLanguage(RSML)andtheRSMLReaderpluginfromImageJ(Lobetetal.,2015).In 152 short,ArchiSimplewasusedtocreatealargenumberofrootsystems,basedonrandominput 153 parametersets.EachoutputwasstoredasanRSMLfile(fig.2A),whichwasthenusedbytheRSML 154 Readerplugintocreateagraphicalrepresentationoftherootsystem(asa.jpegfile)andaground- 155 truthdataset(fig.2B).DetailsaboutthedifferentstepsarepresentedintheMaterialsandMethods 156 section. 157 158 11 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 159 Weusedthepipelinetocreatealibraryof10,000rootsystemimages,separatedintomonocots 160 (multiplefirstorderrootsandnosecondarygrowth)anddicots(onefirstorderrootandsecondary 161 growth).Foreachinputparameter-setusedforArchiSimple(1.000differentones),10repetitions 162 wereperformedtocreatesyntheticgenotypes,orsynthetypes(fig.2A).Thesynthetyperepetitions 163 weredonesuchasthestructureofthefinaldatasetwouldmimicthestructureofadataset 164 containingphenotypicdataofdifferentgenotypes.Therangesofthedifferentground-truthdataare 165 shownintable2andtheirdistributionisshownintheSupplementalFigure1.Thepipeline 166 producedperfectlythresholdedblackandwhiteimagesandhencethefollowinganalyseswere 167 focusedonthecharacterisationoftherootobjectsthemselves. 168 169 Westartedbyevaluatingwhethermonocotsanddicotsshouldbeseparatedduringtheanalysis.We 170 performedaPrincipalComponentAnalysisontheground-trutheddatasettoassessifthespecies 171 groupinghadaneffectontheoveralldatasetstructure(fig.3A).Monocotsanddicotsformed 172 distinctgroups(MANOVAp-value<0.001),withonlyminimaloverlap.Thefirstprincipal 173 component,thatrepresented33.2%ofthevariationwithinthedataset,wasmostlyinfluencedby 174 thenumberofprimaryaxes.Thesecondprincipalcomponent(19.6%ofthevariation)was 175 influenced,inpart,bytherootdiameters.Thesetwoeffectswereconsistentwiththecleargrouping 176 ofmonocotsanddicots,sincetheyexpressedthemaindifferencebetweenthetwospecies. 177 Therefore,sincethespeciesgroupinghadsuchastrongeffectontheoverallstructure,wedecided 178 toanalysethemseparatelyratherthantogetherforthefollowinganalyses. 179 12 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 180 Table3:Rangesofthedifferentground-truthdatafromtherootsystemsgeneratedusing 181 ArchiSimple variable minimumvalue maximumvalue unit MONOCOTS tot_root_length 8.36 2455.03 cm width 0.25 33.21 cm depth 5.49 37.5 cm n_primary 1 20 - tot_prim_length 6 327 cm mean_prim_length 3.22 38 cm mean_prim_diameter 0.02 0.04 cm mean_lat_density 0 100.88 cm n_laterals 0 1378 - tot_lat_length 0 1630 cm mean_lat_length 0 4.44 cm mean_lat_diameter 0 0.03 cm mean_lat_angle 0 97.74 ° DICOTS 182 tot_root_length 6.91 585.05 cm width 0.01 15.05 cm depth 3.89 36.99 cm n_primary 1 1 - tot_prim_length 4 37 cm mean_prim_length 4.4 37.5 cm mean_prim_diameter 0.02 1.13 cm mean_lat_density 0 494.54 cm n_laterals 0 277 - tot_lat_length 0 437 cm mean_lat_length 0 5.48 cm mean_lat_diameter 0 0.23 cm mean_lat_angle 0 87.63 ° 13 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 183 14 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 184 Systematic evaluation of root image descriptors 185 Inordertodemonstratetheutilityofasyntheticlibraryofground-truthedrootsystems,we 186 analysedeveryimageofthelibraryusingacustom-builtrootimageanalysistool,RIA-J.Wedecided 187 todosobecauseourpurposewastotesttheusefulnessofthesyntheticanalysisandnottoassess 188 theaccuracyofexistingtools.Nonetheless,RIA-Jwasdesignedusingknownandpublished 189 algorithms,oftenusedinrootsystemquantification.AdetaileddescriptionofRIA-Jcanbefoundin 190 theMaterialsandMethodssection. 191 192 Table 3: Root image descriptors extracted by RIA-J Name Description Unit Reference area Projectedareaoftherootsystem mm2 (Galkovskyietal.,2012) length Lengthoftheskeletonoftherootsystemimage mm (Galkovskyietal.,2012) tip_count Numberofendbranchesintherootsystemskeleton - diam_mean Meandiameteroftherootobjectintheimage mm width Themaximalwidthoftherootsystem mm - depth Themaximaldepthoftherootsystem mm - width_depth Ratiobetweenthewidthandthedepthoftherootsystem - (Galkovskyietal.,2012) com_x-com_y Relativecoordinatesofthecenterofmassoftherootsystem - (Galkovskyietal.,2012) convexhull Areaofthesmallestconvexshapearoundtherootsystem mm2 (Galkovskyietal.,2012) exploration Ratiobetweentheconvexhullareaandtheprojectedarea - (Galkovskyietal.,2012) (ChitwoodandOtoni, FirstthreePrincipalComponentsofthemorphometricanalysis PL.PC1-3 usingpseudo-landmarks(seeSupplementalfile1fordetails) 2016;Rellán-Álvarezetal., - 2015;Ristovaetal.,2013) - (Buckschetal.,2014) - (Buckschetal.,2014) Relativedepthatwhich50%ofthecumulativewidthofthe width50 rootsystemisreached(seeSupplementalfile1fordetails) Relativedepthatwhich50%ofthetotalnumberofrootsis count50 193 reached 15 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 194 Weextracted16descriptorsfromeachrootsystemimage(Table3)andcomparedthemwiththeir 195 ownground-truthdata.Foreachpairofdescriptor/data,weperformedalinearregressionand 196 computeditsr-squaredvalue.Figure4showstheresultsfromthedifferentcombinationsforboth 197 monocotsanddicots.Wecanobservethat,asageneralrule,goodcorrelationswererare,withonly 198 3%ofthecombinationshavinganr-squaredabove0.8.Inaddition,evenagoodcorrelationisnot 199 necessarilydirectlyusefulastherelationshipbetweenthetwovariablesmightnotfollowa1:1rule 200 (fig.4B-C).Insuchcase,anadditionalvalidationmightbeneededtodefinetherelationbetween 201 bothvariables. 202 203 Italsohastobenotedthatthecorrelationsweredifferentbetweenspecies.Asanexample,within 204 thedicotdataset,nogoodcorrelationwasfoundbetweenthetip_countanddiam_meanestimators 205 whilebettercorrelationwasfoundforthemonocots.Asaconsequence,validationofthedifferent 206 imageanalysisalgorithmsshouldbeperformed,atleast,foreachgroupofspecies.Analgorithm 207 givinggoodresultsforamonocotmightfailwhenappliedondicotrootsystemanalysis. 16 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 208 17 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 209 Errors from image descriptors are likely to be non linear 210 Inadditiontobeingrelatedtothespeciesofstudy,estimationerrorsarelikelytoincreasewiththe 211 rootsystemsize.Astherootsystemgrowsanddevelops,thecrossingandoverlappingsegments 212 increase,makingthesubsequentimageanalysispotentiallymoredifficultandpronetoerror. 213 However,asystematicanalysisofsucherrorisseldomperformed. 214 215 Figure5showstherelationshipbetweentheground-truthanddescriptorvaluesforthree 216 parameters:thetotalrootlength(fig.5A),thenumberofroots(fig.5B)andtherootsystemdepth 217 (fig.5C).Foreachofthesevariables,wequantifiedtheRelativeRootMeanSquareError(see 218 MaterialsandMethodsfordetails)asafunctionofthetotalrootlength.Wecanobservethatforthe 219 estimationofboththetotalrootlengthandthenumberoflateralroots,theRelativeRootSquare 220 MeanErrorincreasedwiththesizeoftherootsystem(fig.5A-B).Asstatedabove,suchincreaseof 221 theerrorwassomehowexpectedwithincreasingcomplexity.Forothermetrics,suchastheroot 222 systemdepth,noerrorswereexpected(depthissupposedlyanerror-lessvariable)andtheRelative 223 RootMeanSquareErrorwascloseto0whateverthesizeoftherootsystem. 224 225 Suchresultsareacalltocautionwhenanalysingrootimagesasunexpectederrorsindescriptors 226 estimationcanarise.Thisisprobablyevenmoretruewithrealimages,thataresusceptibleto 227 containnon-rootobjects(e.g.dirt)andlowerorderlateralsroots(asstatedabove,simulationsused 228 herewerelimitedtofirstorderlaterals). 18 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 229 230 231 19 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 232 Differentiation power differs between metrics 233 Finally,wewantedtoevaluatewhichmetricswerethemostusefultodiscriminatebetweenroot 234 systemsofdifferentgenotypesorexperimentalseries(controlvstreatment).Asexplainedabove, 235 foreachparametersetusedintheArchiSimplerunforlibraryconstruction,wegenerated10root 236 systems.Giventheintrinsicvariabilityexistinginthemodel,eachofthese10rootsystemswere 237 similaralthoughdifferent,ascouldbeexpectedfromplantsofthesamegenotype.Theseso-called 238 synthetypes,werethenusedtoevaluatehowefficientwerethedifferentmetricstodiscriminate 239 them. 240 241 Toestimatethedifferentiationoftheimagemetrics,weusedaLinearDiscriminantAnalysis(LDA) 242 predictionmodel.Foreachsynthetype,halfoftheplantswereusedtocreatetheLDAmodel.The 243 modelwasthenusedtopredictasynthetypefortheremaininghalfoftheplants.Thisapproach 244 allowedustoevaluatethepredictionaccuracy,ordifferentiationpower,ofthedifferentmetrics.A 245 predictionaccuracyof100%meansthatallplantswerecorrectlyassignedtotheirsynthetype.To 246 evaluatethedifferentiationpowerofsinglemetrics,weusedanapproachinwhicheachmetricwas 247 iterativelyaddedtothemodel,basedonthemodelglobalpredictionpower(seeSupplemental 248 Figure3fordetailsabouttheprocedure).Weperformedtheanalysiseitheronafulldataset(fig. 249 6D-E),oronadatarestrictedtothesmallestplants(fig.6A),inordertotesttheinfluenceofthe 250 underlyingdatastructure. 251 252 Twomainobservationscanbemadeonthefigure6.First,forthreeoutoffourscenarios,only5(or 253 less)descriptorswereneededtoachieveadifferentiationaccuracyof90%.Depth,areaandlength 254 werethemostimportantdescriptorsinalmostallscenarios.Theremainingdescriptorsdidnot 255 increasesignificantlytheaccuracy(somemightevendecreaseit).Thismightbeinterpretedasa 20 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 256 handfulofvariablesweresufficienttodistinguishsynthetypes,andbyextensiongenotypesor 257 treatedplants.However,wecanalsoobservethatthemostimportantparameterschanged 258 dependingontheunderlyingdatastructure(eitherduetospeciesorthesizeofthedataset).This 259 indicatesthatitisdifficulttohaveanapriorievaluationoftheimportantvariables.Keepingas 260 manyvariableapossiblemightalwaysbethemostefficientsolution. 261 21 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 262 22 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 263 Conclusions 264 Theautomatedanalysisofrootsystemimagesisroutinelyperformedinmanyresearchprojects. 265 Hereweusedalibraryof10.000modelledimagestoestimatetheaccuracyandusefulnessof 266 differentimagedescriptorsextractedwithanhome-maderootimageanalysispipeline.Theanalysis 267 highlightedsomeimportantlimitationsduringtheimageanalysisprocess. 268 269 Firstly,generalstructureoftherootsystem(e.gmonocotvsdicots)canhaveastronginfluenceon 270 thedescriptorsaccuracy.Descriptorsthathavebeenshowntobegoodpredictorsforonetypeof 271 rootsystemsmightfailforanothertype.Insomecases,thecalibrationandthecombinationof 272 differentdescriptorsmightimprovetheaccuracyofthepredictions,butthisneedstobeassessed 273 foreachanalysis. 274 275 Asecondfactorinfluencingstronglytheaccuracyoftheanalysisistherootsystemsizeand 276 complexity.Asageneralrule,formorphologicaldescriptors,thelargertherootsystem,thelarger 277 theerroris.Sofar,alargeproportionoftherootresearchhasbeenfocusedonseedlingswithsmall 278 rootsystemsandhavedefactoavoidedsucherrors.However,astheresearchquestionsarelikely 279 tofocusmoreonmaturerootsysteminthefuture,theselimitationswillbecomecritical. 280 281 Finallywehaveshownthatnotallmetricshavethesamebenefitwhencomparinggenotypeor 282 treatments.Again,dependingontherootsystemtypeorsize,differentmetricswillhavedifferent 283 differentiationpowers. 284 285 Itisimportanttohighlightthattheimagesusedinouranalysiswereperfectlythresholded,without 286 anydegradationintheimagequality.Therefore,theerrorscomputedinouranalysisarelikely 23 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 287 under-estimatedcomparedtorealimages(withadditionalbackgroundnoiseandlesserquality). 288 Sincethequalityoftheimagesisdependentontheunderlyingexperimentalsetup,artificialnoise 289 couldbeaddedtothegeneratedimagesinordertomimicanyexperimentallyinducedartifactand 290 toimprovetheanalysispipelineevaluation,asproposedby(Benoitetal.,2014). 291 292 Toconclude,ourstudyisareminderthatthoroughcalibrationsareneededforrootimageanalysis 293 pipelines.Herewehaveusedalargelibraryofsimulatedrootimages,thatwehopewillbehelpful 294 fortherootresearchcommunitytoevaluatecurrentandfutureimageanalysispipelines. 295 296 24 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 297 Conflict of Interest 298 Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancial 299 relationshipsthatcouldbeconstruedasapotentialconflictofinterest. 300 Author Contributions 301 GL,LP,PTandCPdesignedthestudy.IKdevelopedtheimageanalysispipelineRIA-J.GLgenerated 302 theimagelibrary,didtheimageanalysisanddataanalysis.LPdevelopedtheArchiSimplemodel.All 303 authorshaveparticipatedinthewritingofthemanuscript. 304 Funding 305 ThisresearchwasfundedbytheInteruniversityAttractionPolesProgrammeinitiatedbythe 306 BelgianSciencePolicyOffice,P7/29.GLisgratefultotheF.R.S.-FNRSforapostdoctoralresearch 307 grant(1.B.237.15F). 308 Supplementary Material 309 -Supplementalfigure1:Distributionofthepropertiesofthemodelledrootimages 310 -Supplementalfigure2:Distributionofthedescriptorsofthemodelledrootimages 311 -Supplementalfigure3:Workflowusedfortheaccuracyanalysis 312 -Supplementalfile1:Defintionsoftheshapedescriptors 313 25 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 314 References 315 Armengaud,P.,Zambaux,P.,Hills,A.,Sulpice,R.,Pattison,R.J.,Blatt,M.R.,etal.(2009).EZ-Rhizo:integrated 316 317 softwareforthefastandaccuratemeasurementofrootsystemarchitecture.PlantJ57,945–956. Benoit,L.,Rousseau,D.,Belin,É.,Demilly,D.,andChapeau-Blondeau,F.(2014).Simulationofimage 318 acquisitioninmachinevisiondedicatedtoseedlingelongationtovalidateimageprocessingroot 319 segmentationalgorithms.ComputersandElectronicsinAgriculture104,84–92. 320 doi:10.1016/j.compag.2014.04.001. 321 Bonhomme,V.,Picq,S.,andGaucherel,C.(2014).Momocs:outlineanalysisusingR.JournalofStatistical…. 322 Bucksch,A.,Burridge,J.,York,L.M.,Das,A.,Nord,E.,Weitz,J.S.,etal.(2014).Image-basedhigh-throughput 323 324 fieldphenotypingofcroproots.doi:10.1104/pp.114.243519. Chitwood,D.H.,andOtoni,W.C.(2016).MorphometricanalysisofPassifloraleavesI:therelationship 325 betweenlandmarksofthevasculatureandellipticalFourierdescriptorsoftheblade. 326 doi:10.1101/067512. 327 Dryden,I.L.(2015).shapespackage.Vienna,Austria. 328 Galkovskyi,T.,Mileyko,Y.,Bucksch,A.,Moore,B.,Symonova,O.,Price,C.A.,etal.(2012).GiARoots:software 329 forthehighthroughputanalysisofplantrootsystemarchitecture.BMCPlantBiol12,116. 330 doi:10.1186/1471-2229-12-116. 331 Koevoets,I.T.,Venema,J.H.,Elzenga,J.T.M.,andTesterink,C.(2016).RootsWithstandingtheir 332 Environment:ExploitingRootSystemArchitectureResponsestoAbioticStresstoImproveCrop 333 Tolerance.FrontPlantSci07,91–19.doi:10.3389/fpls.2016.01335. 334 Lobet,G.,Pound,M.P.,Diener,J.,Pradal,C.,Draye,X.,Godin,C.,etal.(2015).RootSystemMarkupLanguage: 335 TowardaUnifiedRootArchitectureDescriptionLanguage.PlantPhysiol167,617–627. 336 doi:10.1104/pp.114.253625. 337 M,V.W.,andD,R.B.(2002).ModernAppliedStatisticswithS 338 .New-York:Springer. 339 Pagès,L.,andPellerin,S.(1996).Studyofdifferencesbetweenverticalrootmapsobservedinamaizecrop 340 andsimulatedmapsobtainedusingamodelforthethree-dimensionalarchitectureoftherootsystem. 341 PlantandSoil182,329–337. 26 bioRxiv preprint first posted online Sep. 14, 2016; doi: http://dx.doi.org/10.1101/074922. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Lobetetal.2016-Usingmodelstoevaluaterootimageanalysistools 342 Pagès,L.,Bécel,C.,Boukcim,H.,Moreau,D.,Nguyen,C.,andVoisin,A.-S.(2013).Calibrationandevaluationof 343 ArchiSimple,asimplemodelofrootsystemarchitecture.EcologicalModelling290,76–84. 344 doi:10.1016/j.ecolmodel.2013.11.014. 345 Pagès,L.,Jordan,M.O.,andPicard,D.(1989).Asimulationmodelofthethree-dimensionalarchitectureofthe 346 347 maizerootsystem.PlantandSoil119,147–154.doi:10.1007/BF02370279. Pagès,L.,Vercambre,G.,Drouet,J.-L.,Lecompte,F.,Collet,C.,andLeBot,J.(2004).RootTyp:agenericmodel 348 349 todepictandanalysetherootsystemarchitecture.PlantandSoil258,103–119. Pierret,A.,Gonkhamdee,S.,Jourdan,C.,andMaeght,J.-L.(2013).IJ-Rhizo:anopen-sourcesoftwareto 350 measurescannedimagesofrootsamples.PlantandSoil,1–9.doi:10.1007/s11104-013-1795-9. 351 RCoreTeamR:ALanguageandEnvironmentforStatisticalComputing. 352 Rellán-Álvarez,R.,Lobet,G.,Lindner,H.,Pradier,P.-L.,Sebastian,J.,Yee,M.-C.,etal.(2015).GLO-Roots:an 353 imagingplatformenablingmultidimensionalcharacterizationofsoil-grownrootsystems.eLife4, 354 e07597.doi:10.7554/eLife.07597. 355 Ristova,D.,Rosas,U.,Krouk,G.,Ruffel,S.,Birnbaum,K.D.,andCoruzzi,G.M.(2013).RootScape:Alandmark- 356 basedsystemforrapidscreeningofrootarchitectureinArabidopsisthaliana. 357 doi:10.1104/pp.112.210872. 358 Sarkar,D.(2008).Lattice:MultivariateDataVisualizationwithR.NewYork:Springer. 359 Wickham,H.(2009).ggplot2.NewYork,NY:SpringerNewYorkdoi:10.1007/978-0-387-98141-3. 360 27
© Copyright 2026 Paperzz