The Klein Paradox Finn Ravndal, Dept of Physics, UiO • Short history • Scattering from potential step • Bosons and fermions • Resolution with pair production • In- and out-states • Conclusion Gausdal, 4/1 - 2011 Short history: 1926: Klein-Gordon equation 1928: Dirac equation 1929: Klein-Nishina formula 1929: Potential step paradox 1932: F. Sauter realistic potential 1940: F. Hund second quantization Oskar Klein, 1894 - 1977 1970: A. Nikishov 1981: Hansen-Ravndal 1998: B. Holstein Scattering on potential step e e !ipx e ipx iqx eV x Schrödinger equation: ! 2 1 d − + eV 2m dx2 " ψ(x) = Eψ(x) Solutions x < 0: ψ(x) = ! 1 ipx e +R p incident with x > 0: p= √ ! 1 −ipx e p reflected 2mE ψ(x) = T ! 1 iqx e q transmitted where ! q = 2m(E − eV ) When eV > E, then q imaginary and we have total reflection Reflection probability: ! !2 !1 − κ! 2 ! |R| = !! 1 + κ! Transmission probability: 4κ |T | = |1 + κ|2 satisfying unitarity with κ = q/p 2 2 2 |R| + |T | = 1 For strong potential eV > E, then κ becomes imaginary and 2 |R| = 1 total reflection. 2 with |T | = 0 which describes 2 d Klein-Gordon equation: (E − eV ) − 2 + m2 φ(x) = 0 dx ! Again plane-wave solutions with p = E 2 − m2 ! and q = (E − eV )2 − m2 ! 2 Reflection probability: ! !2 !1 − κ! 2 ! |R| = !! 1 + κ! Transmission probability: 4κ |T | = |1 + κ|2 again satisfying unitarity |R|2 + |T |2 = 1 2 Notice that q real for eV > E + m > 2m " with κ = q/p Classical motion from Lagrangian m L = gµν ẋµ ẋν + eAµ ẋµ 2 which here becomes " m! 2 2 L= ṫ − ẋ + eV ṫ 2 Conserved energy ∂L = mṫ + eV E= ∂ ṫ or for motion from A to B: eV ṫA = ṫB + m t t B B A A x x E > eV + m transmission eV + m > E > eV - m total reflection Pair production eV + m E eV t eV ! m e ! e + x A B E < eV - m x dψ + mψ = γ0 (E − eV )ψ iγx Dirac equation: dx ! Again plane-wave solutions with p = E 2 − m2 ! and q = (E − eV )2 − m2 Reflection probability: Transmission probability: But now ! !2 ! ! 1 + κ ! |R|2 = !! 1 − κ! 4κ |T | = |1 − κ|2 2 q E+m κ=− >0 p E − eV + m satisfying ‘unitarity’ |R|2 − |T |2 = 1 Klein’s Paradox: When eV > E + m > 2m 1) Transmission into classically forbidden region ! 2 |R| > 1 i.e. more particles reflected than incident !! 2) Underlying physics the same for Klein-Gordon equation, but paradox not so visible. Both the Klein-Gordon and the Dirac equation are no 1-particle wave-equations, but relativistic field equations. Rel. prob. for production of one pair: 2 ω = |T | 2 σ = |R| Rel. prob. for reflection of one particle: Prob. for no pair production: C0 Prob. for producing one pair: C0 ω etc. Prob. for producing two pairs: C0 ω 2 C0 Bosonic unitarity: 1 = C0 [1 + ω + ω + · · ·] = 1−ω 2 2 i.e. C0 = 1 − ω = 1 − |T | = |R| 2 Fermionic unitarity: 1 = C0 (1 + ω) i.e. 1 1 1 = = C0 = 2 1+ω 1 + |T | |R|2 Average number produced bosonic pairs: C0 ω n̄ = C0 [ω + 2ω + 3ω + · · ·] = 2 (1 − ω) ! !2 ! T (q) ! ! = |T (−q)|2 = !! R(q) ! 2 3 F. Hund, 1940 Average number produced fermionic pairs: ! !2 ! T (q) ! ω ! = |T (−q)|2 n̄ = C0 ω = = !! 1+ω R(q) ! Probability for elastic scattering of fermions: 1 2 |R| =1 Sel = C0 σ = 2 |R| Consistent with Pauli principle In- and out-states ipx Particle in-state: p1 (x) ! e Particle out-state: p2 (x) ! e Antiparticle in-state: for x < 0 −ipx n1 (x) ! eiqx Antiparticle out-state: n2 (x) ! e for x > 0 −iqx Forming complete sets of states so that !" # † ψ(x) = a1k p1k (x) + b1k n1k (x) k ! # " † = a2k p2k (x) + b2k n2k (x) k Orthonormality (p1k , p1k! ) = (p2k , p2k! ) = δkk! (p1k , n1k! ) = (p2k , n2k! ) = 0 and with Thus (n1k , n1k! ) = (n2k , n2k! ) = !δkk! ! = ±1 a1 = a2 = for fermions/bosons Aa2 + Bb†2 A∗ a1 + B̃ ∗ b†1 and where Bogoliubov coefficients A = (p1 , p2 ) B = (p1 , n2 ) Ã = (n1 , n2 ) B̃ = (n1 , p2 ) † !b1 † !b2 † = B̃a2 + Ãb2 ∗ ∗ † = B a1 + Ã b1 Quantization which gives † [a1 , a1 ]! † [b1 , b1 ]! = = † [a2 , a2 ]! † [b2 , b2 ]! =1 =1 |A|2 + !|B|2 = 1 2 2 |R| − !|T | =1 Since R = -1/A and T = B/A then In-vacuum |01! is empty: a1 |01! = b1 |01! = 0 Same for out-vacuum: a2 |02! = b2 |02! = 0 General in- and out-states related by S-matrix operator: |Ψ1! = S|Ψ2! Incoming 1-particle state |p1! = = i.e. a1 = Sa2 S † a1p |01! = † Sa2p |02! † S-matrix elements: Sf i = !f |i" Example 1: Pair production |i! = |01 ! =⇒ |f ! = † † a2 b2 |02 ! Spair = !02 |b2 a2 |01 " S|p2! Now i.e. Thus a1 |01! = 0 = (Aa2 + † Bb2 )|01! B † a2 |01 ! = − b2 |01! A B B iW † Spair = − "02 |b2 b2 |01 # = − e A A iW where vacuum-to-vacuum amplitude e = !01 |02 " Prob. to create one pair: Ppair = |Spair |2 = C0 ω ! !2 !B ! where ω = !! !! A and C0 = |eiW |2 = e−2ImW remains a vacuum. is prob. that vacuum Unitarity S†S = 1 † 2 2 !0 |S S|0 " = 1 = |!0 |0 "| + |!0 |p n "| + ··· i.e. 1 1 1 2 1 2 2 after inserting complete set of in-states. Thus for bosons C0 1 = C0 [1 + ω + ω + · · ·] = 1−ω 2 as before. Example 2: Scattering |i! = |p1 ! = =⇒ where † a1 a†1 |01 ! Sscatt = = ∗ † A a2 |f ! = |p2 ! = † !02 |a2 a1 |01 " + B ∗ b2 † a2 |02 ! Sscatt = A∗ !02 |01 " + B ∗ !02 |a2 b2 |01 " ∗ iW =A e + !B ∗ !B " A 1 iW = e A Probability for elastic scattering: For fermions ! 1 !2 ! ! 2 Pscatt = |Sscatt | = C0 ! ! A ! 1 !2 ! ! C0 = ! ! = |A|2 R Thus Pscatt = 1 and therefore only elastic scattering. But for bosons incident particle can induce pair production in same mode. Scattering amp. including production of n pairs (n) Sscatt = = and probability: Unitarity: ! 1 !02 |(a2 b2 )n a2 a†1 |01 " n!(n + 1)! n + 1eiW ! " B #$ " B #n − A∗ + B ∗ − A A (n) 2 |Sscatt | = C0 σ(n + 1)ω n √ ∞ ! n=0 (n) 2 |Sscatt | C0 σ =1 = 2 (1 − ω) Sauter potential: eV e! V ax V (x) = tanh 2 2 e+ x Klein step potential when a → ∞. cosh(2π/a)(p + q) − cosh(2π/a)(p − q) |T | = cosh(2π/a)eV − cosh(2π/a)(p + q) 2 In limit a → 0 and V → ∞ with aV → 4E obtain linear potential corresponding to constant electric field E. =⇒ Pair production prob. ω = |T |2 = n̄ 1 − n̄ with −πm2 /eE n̄ = e Tunneling: with mT = −2 n̄ = e (kT2 ! x2 2 1/2 +m ) x1 dxk(x,mT ) and k = ! m2T Vacuum-to-vacuum persistence prob: ! 4 C0 = e−2ImW = e−2 d xImLef f WKB " 2 1/2 − (ε − eEx) Now for fermions ! [1 − n̄(kT )] C0 = kT =⇒ ! " 2 d4 xImLef f = − log[1 − n̄(kT )] kT or ImLef f 1 = 8π ! eE π "2 # ∞ 1 −nπm2 /eE e 2 n n=1 Schwinger, 1951 Conclusion 1) Hawking radiation, 1974 2) Geim graphene, 2010 Literature O. Klein, Z. Phys. 53, 157 (1929) F. Sauter, Z. Phys. 73, 547 (1931) F. Hund, Z. Phys. 117, 1 (1940) J. Schwinger, Phys. Rev. 82, 664 (1951) J.D. Bjorken and S.D. Drell, Rel. Quant. Mech. (1964) A. I. Nikishov, Nucl. Phys. B21, 346 (1970) A. Hansen and F. Ravndal, Phys. Scr. 23, 1030 (1981) B. Holstein, Am. J. Phys. 66, 507 (1998) N. Dombey and A. Calogeracos, Phys. Rep. 315, 41 (1999)
© Copyright 2026 Paperzz