Calculus 2 MATH 2423 Section 010, Fall 2013 Review for Exam 2 Monday, October 14, 2013 This is only a sample. Try all the home work problems. 1. A spherical tank of radius 2 ft is half full of water. Find the work required to pump the water out of the outlet which is 3 ft above the top of the tank. Water weighs 62.5 lb/ft3 . 2. Find a formula for the inverse of the function y = x2 −2 5 , x≤0 3. Write the definitions for the following functions. (There are some more that you should know. E.g. ax , exp(x), ln(x)...). (1) y = loga x (2) y = cos−1 x (3) y = sinh x (4) y = sinh−1 x 4. Write the definition of y = cos−1 x. (The domain for x must be clearly written). Then d 1 [Explain the choice of sign (why it is derive the derivative formula: dx [cos−1 x] = − √1−x 2 “−”) clearly]. 5. Find dy dx . (x2 + 1)5 = ln √ 1√− x = (5x + 1) 2 = e5−7x 2 2 = cosh s (3x − 2) − sinh (3x − 2) (1) y (2) y (3) y (4) y (x + 1)5 (x + 2)20 −1 = sin (7x) 2 = e−x = (x + 1)x√ = cosh−1 ( x) = cosh3 (3x − 2) (5) y = ln (6) (7) (8) (9) (10) y y y y y 6. Evaluate the integrals. Z (1) coth x dx Z ln x 2 (2) dx Z x dx (3) 2+4 9x Z dx √ (4) 9 − 4x2 Z dx √ (5) 4x2 − 9 Z sinh x (6) dx Z 1 + cosh x dx √ (7) 16x2 + 1 7. Memorize the derivative formulas for sin−1 x, cos−1 x, tan−1 x, sinh x, cosh x, tanh x, sinh−1 x, cosh−1 x, tanh−1 x. [Necessary for #5 and #6]. See the last page 92 3 · 62.5π (ft-lb). √ 2. y = − 5x + 2. 1. 3. (1) (2) (3) (4) y y y y = loga x ⇐⇒ x = ay = cos−1 x ⇐⇒ x = cos y and 0 ≤ y ≤ π x −x = sinh x = e −e 2 = sinh−1 x ⇐⇒ x = sinh y 4. Let y = cos−1 x. Then (1) x = cos y, Take 0 ≤ y ≤ π. d dx . 1 = − sin y · dy dx so that dy 1 =− . dx sin y Now we need to write sin y in terms of x. We have p p sin y = ± 1 − cos2 y = ± 1 − x2 (from (1)). However, the angle condition 0 ≤ y ≤ π as shown in (1) forces sin y ≥ 0 so that sin y = √ + 1 − x2 . Thus, d 1 1 [sin−1 x] = − = −√ . dx sin y 1 − x2 5. (1) (2) (3) (4) (5) (6) 10x + 1+x 2 √ √ 5 2(5x + 1) 2−1 −7e5−7x 0 5(2+3x) − 2(2+3x+x 2) 1 2−2x 7 1−49x2 2 −2xe−x √ (7) x (8) (x + 1)x x+1 + ln(x + 1) 1 (9) √√ √ √ √ 2 x−1 x+1 x (10) 9 cosh2 (3x − 2) · sinh(3x − 2). 6. (1) ln | sinh(x)| + C ln(x) (2) 2ln(2) + C (3) 16 tan−1 3x 2 + C (4) 12 sin−1 2x +C 3 (5) 12 cosh−1 2x 3 +C (6) ln(1 + cosh x) + C (7) 14 sinh−1 (4x) + C 1. We introduce a coordinate system so that 3 ft above the top of the tank as 0. Therefore, the top of the tank is 3, and the bottom is 7. Water is in between 5 ≤ x ≤ 7. Consider a thin slice at stage x with thickness ∆x. radius = p 22 − (x − 5)2 volume = π · 22 − (x − 5)2 · ∆x force = π · 22 − (x − 5)2 · ∆x · 62.5 work = π · 22 − (x − 5)2 · ∆x · 62.5 · x Therefore, Work = lim X n→∞ π · 22 − (x − 5)2 · ∆x · 62.5 · x 7 Z 22 − (x − 5)2 x dx = 62.5π 5 92 · 62.5π(ft-lb). = 3 2. Inverse function is x= Solving this for y, we get y2 − 2 , y ≤ 0. 5 √ y = ± 5x + 2 But, since y ≤ 0, we take the negative one. So the inverse function is, √ y = − 5x + 2. 5. Find (1) dy dx . y = ln (x2 + 1)5 √ 1−x = 5 ln(x2 + 1) − 1 ln(1 − x). 2 Therefore, dy 1 1 1 =5· 2 · 2x − · · (−1) dx x +1 2 1−x 1 10x = 2 + x + 1 2(1 − x) (4) y = cosh2 (3x − 2) − sinh2 (3x − 2) = 1. Therefore dy dx = 0. (Another way) One can really differentiate to get y 0 = 2 cosh(3x − 2) · sinh(3x − 2) · 3 − 2 sinh(3x − 2) cosh(3x − 2) · 3 = 6 cosh(3x − 2) · sinh(3x − 2) − 6 sinh(3x − 2) cosh(3x − 2) = 0. (5) s y = ln = (x + 1)5 (x + 2)20 5 20 ln(x + 1) − ln(x + 2) 2 2 Therefore, 5 1 1 dy = · − 10 · dx 2 x+1 x+2 5 1 4 = − 2 x+1 x+2 5(2 + 3x) =− . 2(2 + 3x + x2 ) d 1 du sin−1 u = √ · . 2 dx 1 − u dx d (7) Use the general fact: dx (eu ) = eu · du dx . x (8) y = (x + 1) d (9) Use the general fact: dx cosh−1 u = √u12 −1 · du dx . (6) Use the general fact: (10) y = cosh3 (3x − 2) h i0 dy = 3 cosh2 (3x − 2) · cosh(3x − 2) dx = 3 cosh2 (3x − 2) · sinh(3x − 2) · 3 = 9 cosh2 (3x − 2) · sinh(3x − 2). 6. Evaluate the integrals. Z (1) coth x dx h Let u = sinh x. Then du = cosh xdx Z i Z cosh x dx sinh x Z 1 = du u = ln |u| + C coth x dx = = ln | sinh x| + C 2ln x (2) dx x h i Let u = ln x. Then du = x1 dx Z Z 2ln x dx = x Z 2u du 2u +C ln 2 2ln x = + C. ln 2 = Z dx (3) 9x2 + 4 i h 3 . Then du = dx Let u = 3x 2 2 Z 1 dx = 2 9x + 4 Z 1 2 · du +4 3 Z 1 1 = · du 2 6 u +1 Z 1 1 · du = 2 6 u +1 = tan−1 u + C −1 3x = tan + C. 2 4u2 Z (4) √ h dx Let u = 9 − 4x2 2x 3 . Z Z (5) √ h dx Let u = 4x2 − 9 Z (6) 1 √ dx = 9 − 4x2 i Z 1 3 √ · du 2 9 − 9u 2 Z 1 1 √ = du 2 1 − u2 1 = sin−1 u + C 2 2x 1 = sin−1 +C 2 3 2x 3 . Z Then du = 23 dx Then du = 23 dx dx √ = 4x2 − 9 i Z 1 3 √ · du 9u2 − 9 2 Z 1 1 √ du = 2 2 u −1 1 = cosh−1 u + C 2 1 −1 2x +C = cosh 2 3 h i sinh x dx Let u = 1 + cosh x. Then du = sinh xdx 1 + cosh x Z Z sinh x 1 dx = du 1 + cosh x 1+u = ln |1 + u| + C = ln (1 + cosh x) + C. Z (7) √ dx 16x2 + 1 h Let u = 4x. Then du = 4dx Z i dx √ = 16x2 + 1 Z √ 1 1 du u2 + 1 4 · 1 sinh−1 u + C 4 1 = sinh−1 (4x) + C 4 = Formulas to memorize: d 1 [sin−1 x] = √ dx 1 − x2 1 d [cos−1 x] = − √ dx 1 − x2 1 d [tan−1 x] = dx 1 + x2 d 1 [sinh−1 x] = √ dx 1 + x2 d 1 [cosh−1 x] = √ 2 dx x −1 d 1 1 [tanh−1 x] = is wrong 2 2 dx 1−x x −1
© Copyright 2026 Paperzz