G3: Genes|Genomes|Genetics Early Online, published on November 5, 2013 as doi:10.1534/g3.113.008714 1 A high-density gene map of loblolly pine (Pinus taeda L.) based on 2 exome sequence capture genotyping 3 4 Leandro Gomide Neves1, John M. Davis1,2,3, William B. Barbazuk1,3,4§, Matias Kirst1,2,4§ 5 6 1 Graduate Program in Plant Molecular and Cellular Biology; 2School of Forest Resources 7 and Conservation; 3University of Florida Genetics Institute; 4Department of Biology, 8 University of Florida, Gainesville, Florida, 32611. 9 10 § 11 E-mail addresses: Corresponding author 12 LGN: [email protected] 13 JMD: [email protected] 14 WBB: [email protected] 15 MK: [email protected] 16 1 © The Author(s) 2013. Published by the Genetics Society of America. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Running title: Loblolly pine gene mapping Keywords: Loblolly pine Exome sequencing High-throughput genotyping High-density genetic map Copy number variation Corresponding authors: William B. Barbazuk: 2033 Mowry Road, room 407 Gainesville, FL, 32610 +1 (352) 273-8624 [email protected] Matias Kirst 2033 Mowry Road, room 320 Gainesville, FL, 32610 +1 (352) 846-0900 [email protected] 2 1 ABSTRACT 2 3 Loblolly pine (Pinus taeda L.) is an important conifer for which a suite of genomic 4 resources is being generated for comparative studies. Despite recent attempts to sequence 5 the large genome conifers, their assembly and the positioning of genes remains largely 6 incomplete. The inter-specific synteny in pines suggests that a gene-based map would be 7 useful to support genome assemblies and analysis of conifers. To establish a reference 8 gene-based genetic map we performed exome sequencing of 14,729 genes on a mapping 9 population of 72 haploid samples generating a resource of 7,434 sequence variants 10 segregating for 3,787 genes. Most markers are single nucleotide polymorphisms, 11 although short insertions/deletions and multiple nucleotide polymorphisms were also 12 utilized. Marker segregation in the population was used to generate a high-density, gene- 13 based genetic map. 2,841 genes were mapped to pine’s 12 linkage groups with an average 14 of one marker every 0.58 cM. Capture data was utilized to detect gene presence/absence 15 variations and position 65 genes on the map. We compared the marker order of genes 16 previously mapped in loblolly pine and found high agreement. We estimated that 4,123 17 genes had enough sequencing depth for reliable detection of markers, suggesting a high 18 marker conversation rate of 92% (3,787 / 4,123). This is possible because a significant 19 portion of the gene is captured and sequenced, increasing the chances of identifying a 20 polymorphic site for characterization and mapping. This sub-centiMorgan genetic map 21 provides a valuable resource for gene positioning on chromosomes and guide for the 22 assembly of a reference pine genome. 3 INTRODUCTION 1 2 3 Loblolly pine (Pinus taeda L.) covers 11.7 million hectares of natural and planted forests 4 in the Southeastern United States and provides 58% of the U.S. and 16% of the world’s 5 timber (WEAR and GREIS 2002). Loblolly pine is also an important species for 6 comparative studies between gymnosperms and angiosperms, and genomic resources are 7 becoming increasingly available to enable these studies (MACKAY et al. 2012). For 8 instance, single-nucleotide polymorphisms (SNP) and microsatellites have been identified 9 and applied to generate genetic maps (ELSIK and WILLIAMS 2001; ECKERT et al. 2009; 10 ECHT et al. 2011), identify population genetic parameters and associations to phenotype 11 (GONZALEZ-MARTINEZ et al. 2007; ECKERT et al. 2010; STEWART et al. 2012), and 12 develop genomic selection prediction models (RESENDE et al. 2012). However, the 13 number of available genetic markers remains small, particularly considering the large size 14 of the loblolly pine genome. 15 Advances in high-throughput DNA sequencing and genomic tools are making it 16 possible to genotype large numbers of individuals by sequencing reduced representations 17 of the genome (DAVEY et al. 2011). For example, targeted resequencing after in solution 18 sequence capture (GNIRKE et al. 2009) has proven useful in variant detection. Using this 19 method, probes complementary to the target regions of the genome are designed and 20 hybridized to genomic DNA for sequence capture and subsequent sequencing. Sequence 21 capture is being optimized for an increasing number of plant species (SAINTENAC et al. 22 2011; BUNDOCK et al. 2012; ZHOU and HOLLIDAY 2012) including conifers (NEVES et al. 23 2013). To evaluate the potential of targeted resequencing for genotyping in loblolly pine, 4 1 we used sequence capture to detect polymorphisms based on the segregation of alleles in 2 a recombining population. 3 The analysis of a recombining population allows for the construction of genetic 4 maps where markers are grouped and ordered based on observed recombination 5 frequencies. When the markers are located within genic regions, the genetic map provides 6 the relative position of genes in chromosomes (DROST et al. 2009; NEVES et al. 2011), 7 which is particularly relevant for loblolly pine or other species without a reference 8 sequence. High-density, gene-rich genetic maps are useful to examine genome synteny 9 with other species (KRUTOVSKY et al. 2004); for detection of quantitative trait loci (QTL) 10 and identification of candidate regulatory genes (BERNARDO 2008); and to support 11 genome assembly (TUSKAN et al. 2006; SATO et al. 2012). Currently, the best resolved 12 loblolly pine genetic map was reported by Eckert et al. (2010), which positioned 1,635 13 genes, genotyped from a starting SNP panel of 7,535 markers. More recently, Echt et al. 14 (2011) reported the identification of large numbers of microsatellites and their use to 15 create a moderately dense map with 429 markers. A subset of 311 of these microsatellites 16 was derived from cDNA and, therefore, reflects the position of the corresponding genes. 17 The goal of this work was to genotype a loblolly pine mapping population using 18 sequence capture to analyze the efficiency of this method for polymorphism detection, 19 and to create a high-density, gene-rich genetic map with the markers obtained. The 20 mapping population consisted of 72 haploid megagametophytes extracted from seeds of a 21 single tree. In pine seeds, the haploid DNA from individual megagametophyte represents 22 the product of recombination of the maternal genomic DNA. Sequence capture was 23 performed in each haploid sample and 7,842 markers were detected that segregate in the 5 1 population, representing 4,195 genes. The best marker for each gene was selected and 2 2,843 genes were ordered in a genetic map, with an average of one marker every 0.58 cM. 3 Sequencing depth data was utilized to detect 408 genes segregating for presence/absence 4 variation of which 65 were ultimately mapped in the genetic map. The comparison of our 5 genetic map with the previous map of Eckert et al. (2010) via 397 common genes showed 6 high levels of agreement at the grouping and ordering level between the two maps. 7 RESULTS 8 Genotyping of a mapping population with sequence capture 9 We used a multiplexed sequence capture method (NEVES et al. 2013) to characterize 10 genetic variants in 14,729 genes. Seventy-two seeds were collected from a single female 11 tree and the maternally inherited, haploid megagametophyte tissue was used for library 12 preparation. The use of DNA from the seed megagametophyte provides an effective way 13 to assess recombination frequency between genetic markers, without the need for crosses 14 (ADAMS and JOLY 1980). The 72 haploid samples were captured in nine pools of eight 15 megagametophytes each, and sequenced with a median depth of 2.8× across 54,773 16 probes (average of 3.7 probes/genes). Of the 14,729 genes targeted, 6,283 (43%) were not 17 captured and/or sequenced in any sample. This occurred either because these probes 18 failed to hybridize to genomic DNA, or because the captured fragments were not sampled 19 in the sequencing process due to the shallow sequencing depth utilized. Probes were 20 designed primarily based on a transcriptome assembly, and in a previous analysis of 21 probe performance (NEVES et al. 2013) we discovered that a significant number of them 22 were complementary to the boundary of two exons, justifying the high failure rate and 6 1 illustrating a limitation of designing probes for species with uncharacterized genomes. 2 For the remainder 8,446 genes (57%), sequence capture was successful for at least one 3 probe, for at least one individual. Of these, 4,123 (28%) were sequenced in 50 or more 4 haploid samples of the population. If sequencing data complementary to a given probe 5 was available for fewer than 50 samples, the locus was excluded from further analysis. 6 Therefore, from the 14,729 genes initially considered for capture, 28% (4,123) were 7 actually captured in enough individuals, and sufficient sequencing depth was generated to 8 allow identification of segregating sequence variants. 9 The analysis of the sequence data identified 7,434 markers segregating 1:1 in at least 50 10 haploid samples of the population. These markers represented 3,787 genes (Table 1). The 11 majority of these markers were SNPs (6,857), while short deletions, short insertions and 12 multiple nucleotide polymorphisms accounted for 210, 208 and 159 markers, respectively. 13 The average sequencing depth for each gene was utilized to identify possible 14 presence/absence variants (PAVs) (SWANSON-WAGNER et al. 2010). The average 15 sequencing depth at the gene level was used to compensate for variations that exist at the 16 probe level and 408 putative PAVs segregating 1:1 in the mapping population were 17 considered for mapping (Table 1). Altogether, 7,842 segregating markers were identified 18 for 4,195 genes, with an average of 2 markers per gene and a range of 1 to 13 (Table 1). 19 A list of the markers and their allele representation within the population is described in 20 Table S2. Because the presence of multiple markers per gene provided redundant data for 21 mapping, the marker with the least missing data was selected for the gene, resulting in a 22 final set of 4,195 markers for mapping. 23 A P. taeda genetic map with 2,841 gene markers 7 1 The segregation of 4,195 markers in 72 haploid samples was used to construct a high- 2 density, gene-based genetic map (Figure 1, Table S3). The final map comprises 2,841 3 genes mapped to the expected 12 linkage groups of the species. The number of genes 4 mapped in each linkage group varied from 193 genes for LG 1, to 291 genes in LG 8, 5 with an average of 237 genes per linkage group. Out of the 2,841 markers mapped, 2,622 6 (92%) were SNPs, 63 (2%) were short deletions, 53 (2%) were short deletions, 38 (1%) 7 were multiple nucleotide polymorphisms and 65 (2%) were gene PAVs (Table 1). The 8 final map spans 1637.4 cM, which is comparable with previous estimations of map length 9 for the species (REMINGTON et al. 1999; ECKERT et al. 2010; ECHT et al. 2011). LG 11 10 spanned the longest genetic distance with 190 cM, while LG 5 spanned the shortest, with 11 105.1 cM. On average, linkage groups spanned 132.9 cM (Table 2). The average interval 12 between markers was 0.58 cM, across 12 linkage groups, with 95% of the intervals 13 smaller than 1.5 cM, and a maximum interval of 10.9 cM at the end of linkage group 2. 14 Following previous methods (REMINGTON et al. 1999; ECHT et al. 2011) we estimated the 15 genome length at 1651.5 cM, and the map coverage as 99%. For this marker density, the 16 estimated map coverage (c) predicts that any locus on the genome has 99% probability of 17 being within 3 cM of a marker and 82% probability of being within 1 cM of a marker. A 18 map with a more conservative marker order, obtained by stopping the mapping process at 19 Round 2 of mapping on JoinMap, was generated and is provided in Table S4. When 20 considering this map, there are still 1,371 genes mapped with an average of one marker 21 every 1.3 cM, providing an estimated map coverage (c) that predicts that any locus on the 22 genome has 98% probability of being within 5 cM of a marker. 23 Map validation 8 1 The high-density map developed provides an overview of the grouping and orientation of 2 2,841 genes in each loblolly pine chromosome. However, because the number of markers 3 far exceeds the number of meiotic recombinations sampled to generate the map, it can be 4 expected that their order might present incongruences with the physical position on the 5 genome, particularly between closely mapped markers. To analyze the consistency of our 6 map, we compared it with the genetic map built by Eckert et al. (2010), hereafter referred 7 to as “Eckert map”, since a large number of genes were shared between the two. Ideally, 8 this comparison should be done relative to the genome sequence of loblolly pine, but the 9 current assembly (version 0.8) is unordered and still largely fragmented. Thus, the 10 comparison relative to another gene-based genetic map remains the only viable option to 11 validate our results. The Eckert map was generated using SNPs detected using an 12 Illumina Infinium genotyping assay with markers selected from a unigene dataset that 13 overlapped with the one used in our sequence capture probe design. Although the SNPs 14 analyzed within the genes were not the same, a total of 397 genes had markers in 15 common between the two maps and could be used for a comparative analysis. The 16 analysis occurred in two steps: (1) First, we analyzed whether the common genes mapped 17 to the same linkage group. (2) Next, we evaluated if the order of the genes within the 18 linkage group were similar between the two maps. 19 In the first analysis, out of the 397 genes positioned in both maps, 392 (99%) mapped to 20 the same linkage group as that observed in the Eckert map. Thus, there is a nearly perfect 21 agreement between the two maps at the grouping level (Table 3). For the comparison of 22 the genetic position of genes within linkage groups, the data is illustrated by plotting the 23 normalized position of the common genes on our map (X) relative to the normalized 9 1 position on the Eckert map (Y) (for instance, LG 2 and LG 4 in Figure 2). In the 2 comparative analysis, the position of each gene was normalized to control for the 3 different length of the two maps. For example, a gene mapped to position 61.56 cM on 4 LG 2, which has a length of 123.12 on our map (Table 2), would have a normalized 5 position of 50%. The same approach was used for genes in the Eckert map. Assuming 6 gene synteny between the populations used for mapping, the expected results would be a 7 linear relationship between the markers. For LG 1, 3, 4, 8, 9, 10 and 11 all the common 8 genes were collinear across the entire extension of the group (Figure 2, Figures S1 and 9 S2). For LG 2, 6, 7 and 12, most of the genes were collinear, but a block defined by 10 several genes shows incongruences between the two maps (Figure 2, Figures S1 and S2). 11 Interestingly, in all cases, these blocks were previously mapped to the beginning or end 12 of the linkage group in the Eckert map and were mapped towards the middle of the 13 linkage group in our map. In only one linkage group, LG5, there is low agreement 14 between the two maps (Figures S1 and S2). Overall the results show a high agreement 15 between the genes mapped in the two maps, both at the grouping level and at the ordering 16 level. 17 10 1 DISCUSSION 2 The two main objectives of this study were to evaluate the potential of targeted 3 resequencing based on sequence capture for polymorphism detection in loblolly pine, and 4 to expand our knowledge about the position of genes in the pine genome. Loblolly pine is 5 one of the most economically and ecologically important species within the conifers, and 6 its genome is currently being sequenced (http://pinegenome.org/pinerefseq). The large 7 and complex pine genome, characterized by large retrotransposons expansions and high 8 nucleotide diversity (BROWN et al. 2004; BURLEIGH et al. 2012), offers challenges for 9 polymorphism genotyping using traditional platforms such as SNP chips, resulting in low 10 rates of SNP conversion and high rates of missing data (ECKERT et al. 2009). From 11 previous work (NEVES et al. 2013) we expected that probes utilized for sequence capture 12 could be capturing non-unique regions in the pine genome (e.g. paralogs and 13 pseudogenes), hampering the detection of site-specific polymorphisms. The use of a 14 mapping population provides a method to verify detected polymorphisms because 15 alternative alleles are expected to segregate in equal proportion (1:1) in a sample of 16 megagametophytes. Even adopting a shallow sequencing depth, a total of 7,434 sequence 17 variant markers for 3,787 genes (Table 1) were detected segregating in the population. 18 From the 14,729 genes initially considered for capture, we estimated that 4,123 (28%) 19 had sequence properties that allowed us to detect sequence variation markers, namely 20 having at least 50 individuals with one or more reads aligned to the gene in each 21 individual. Thus, given appropriate sequence capture efficiency and sequencing depth, 22 92% (3,787 / 4,123) of the genes contained at least one segregating marker that was used 23 for mapping in the population. This is a high SNP conversion rate considering that no 11 1 prior information was available for the population and a greater number of genes likely 2 could have been mapped if we had sequenced the population at higher sequencing depth 3 or increased the number of haploid samples sequenced to sample more meiotic events. 4 The megagametophyte used as source of DNA sequence capture is a haploid, 5 maternally inherited tissue that is commonly used in conifer mapping studies 6 (REMINGTON et al. 1999). Thus, a single haplotype was anticipated for any given locus. 7 The pipeline for detection of sequence polymorphism required that the most common 8 base detected in a given megagametophyte be present in at least 80% of the reads that 9 overlap the variant locus. In other words, for a particular position with sequencing depth 10 of 10×, eight or more reads need to have the same base to be considered. This step was 11 implemented to exclude possible errors added during library construction and sequencing, 12 and to avoid cases where unspecific paralogs and pseudogenes were also being captured, 13 which is likely considering their abundance in the pine genome (KOVACH et al. 2010). 14 Although we did not formally quantify instances where the latter happens, we observed it 15 while optimizing the bioinformatics pipeline. For example, only reads aligned to the 16 unigene reference with less than 5% mismatch were considered for polymorphism 17 detection and mapping. At this threshold, we detected the 7,434 sequence polymorphisms 18 reported. When up to 10% mismatch to the unigene reference were permitted for use of a 19 sequencing read, there was a significant reduction in the number of polymorphisms 20 detected that segregated in the expected ratio in the population. Accepting 10% of 21 mismatches lead to the detection of only 4,563 polymorphisms, represented within 2,210 22 genes, that segregate in a 1:1 ratio. This suggests that bona fide polymorphisms were 12 1 confounded by alleles from paralogs and pseudogenes mapped with less stringent 2 alignment criteria. 3 The large size of the pine genome of pine is attributed to retrotransposon activity, 4 rather than whole-genome duplications (MACKAY et al. 2012). Based on the dynamic 5 nature of retrotransposons, we hypothesized that a subset of the pine genes might be 6 present in multiple copies in the genome, as observed in maize and another genomes 7 characterized by retrotransposon genome expansions (BELO et al. 2010; SWANSON- 8 WAGNER et al. 2010). To test this hypothesis, we aimed to detect presence/absence 9 variants (PAV). In the specific case of a maternally-derived haploid segregating 10 population, these are hemizygous genes that segregate in the population with 50% of the 11 haploid samples containing the gene in their genome, and 50% with the gene absent in 12 their genome. We focused on PAVs, because these events are easier to detect than copy 13 number variations (TEO et al. 2012), particularly considering that samples were 14 sequenced at low depth. In our analysis, a gene was considered absent when no reads 15 aligned throughout the entire gene region, and present when at least one read was aligned 16 to the gene region. Using this simple analysis criteria allowed us to detect 408 putative 17 PAV. However, only 16% (65) of the PAVs could be mapped, suggesting that many of 18 PAVs were false positives or contained genotyping errors that excluded them from 19 mapping. These false positive or genotyping errors were expected as a consequence of 20 the low sequencing depth, and we anticipated that the genetic mapping process would be 21 able to filter those out, providing a more accurate subset of PAVs in P. taeda. 22 The final genetic map was obtained by analyzing the segregation of 4,195 markers, 23 each representing a unique gene of the P. taeda genome, in 72 haploid samples. 13 1 Ultimately, 2,841 (68%) genes were mapped in the expected 12 linkage groups. To the 2 best of our knowledge, this is the most dense genetic map for conifers or trees in general, 3 although other highly saturated maps are becoming available (MARTINEZ-GARCIA et al. 4 2013). Because this map was constructed using gene-based marker, it provides links with 5 other published maps for loblolly pine, allowing map cross-checking and eventual 6 consolidation. The genes mapped were not selected based on any specific criteria. Thus, 7 the map provides an unbiased representation of the loblolly pine gene set that can be used 8 for studies that benefit from a preliminary ordering of the genes until a reference genome 9 sequence of reasonable quality becomes available. This high-density map should also be 10 valuable when anchoring and orienting scaffolds in the assembly of the reference genome 11 (TUSKAN et al. 2006; SATO et al. 2012). 12 The comparison to a previous map of P. taeda (ECKERT et al. 2010) that shares 13 397 common genes with our new map revealed a high-level of agreement at the grouping 14 and ordering level (Table 3). These results provide strong evidence that markers were 15 correctly identified and genotyped in the mapping population, despite the complexity of 16 the genome of pine. For some linkage groups (2, 6, 7, 8 and 12; Figure 1 and Figures S1 17 and S2), blocks of adjacent markers that were previously assigned to the edge of the 18 linkage group in the map of Eckert et al. were mapped towards the center of the linkage 19 group in our map. Such discrepancies between blocks of genetic markers have been 20 observed in other studies in Pinaceae (KRUTOVSKY et al. 2004; ECKERT et al. 2009; 21 ECHT et al. 2011) and were usually attributed to genotyping errors. Although we cannot 22 test for genotyping errors, we did not observe higher rates of missing data in the markers 23 that are out of order compared to the collinear ones (data not shown). Also, from 14 1 simulated experiments, it is expected that genotyping errors would inflate the length of 2 the genetic map (HACKETT and BROADFOOT 2003), but this was not observed in our map. 3 Therefore, we are unable to conclusively identify the causes for non-collinear blocks of 4 markers. Attributing such discrepancies to real genome rearrangements will require 5 further experiments based on larger numbers of individuals or whole-genome 6 resequencing. 7 Genotyping samples of a large population using sequence capture presents some 8 advantages over conventional genotyping methods. For example, sequence capture does 9 not require one to previously characterize the polymorphisms to be detected. We show 10 that this is of greater importance for a segregating population because even if previously 11 characterized polymorphisms are available, it is not known which of those sites will 12 segregate in a single bi-parental segregating population and have the potential to be 13 mapped. In this study, the probes used for capture were designed to span the entire 14 unigene length, and we were able to detect an average of two polymorphic sites 15 segregating in the population for every gene. Thus, the chances of detecting a marker to 16 map the gene increased and we were able to map 68% of the genes containing a 17 segregating marker (2,841/4,195), even adopting an overall shallow depth of 2.8×. For 18 several genes we detected additional polymorphic sites within 60 bp of the position used 19 for mapping, without impairing the efficiency of the capture. This is an usual observation 20 in pine and other highly polymorphic species, and a common limitation for developing 21 traditional genotyping methods, such as SNP chips (ECKERT et al. 2009; GRATTAPAGLIA 22 et al. 2011). Finally, another advantage illustrated is the potential to detect other types of 23 genetic variants in addition to SNPs, such as the presence/absence markers that we were 15 1 able to detect and map for 65 genes. Although a small percentage of the mapped markers 2 were genotyped with PAV, sequencing at higher depth will likely increase this number 3 and enable more accurate detection of gene copy number variation (CNV), as achieved 4 by other studies in plants (SAINTENAC et al. 2011; VALDES-MAS et al. 2012). With an 5 ultimate goal to use genetic markers for phenotypic characterization, recent studies are 6 showing that CNVs might explain a portion of phenotypic variation not sampled by SNPs, 7 justifying its characterization (MARON et al. 2013). 8 CONCLUSIONS 9 We report the application of exome capture on loblolly pine for polymorphism detection 10 and gene mapping by analyzing a mapping population of 72 haploid samples. An 11 important advantage of this approach for polymorphism detection is that it allows for the 12 enrichment and sequencing of several segments of the gene being targeted, which 13 increases the chances of detecting a marker segregating in the population. As a result, we 14 were able to detect at least one segregating marker for 4,195 genes, despite the shallow 15 sequencing depth employed. The markers were used to generate a gene-rich genetic map 16 that ultimately positions 2,841 genes with an average intergenic distance of 0.6 cM. Also, 17 because exome capture is a genotyping by sequencing method, we show that other types 18 of segregating markers can be identified in the population, such as gene presence/absence 19 variation. This is particularly important, because it highlights the possibility to study gene 20 dosage using exome capture in plants, which traditionally has required additional 21 experimentation. To our knowledge, this is the most saturated map in conifers and trees 22 in general. Because this is a gene-based map, we expect that it will help in the 16 1 construction of the pine reference sequence that is currently being generated, while 2 facilitating other basic and applied research efforts that utilize a high-density, gene-rich 3 genetic maps. 17 1 MATERIALS AND METHODS 2 Mapping population, DNA extraction and sequence capture 3 Seventy-two seeds were collected from the reference loblolly pine genotype 17 4 (KAYIHAN et al. 2005). Each seed was manually dissected to extract the haploid, 5 maternally-inherited megagametophyte tissue. Megagametophytes were lyophilized and 6 DNA extracted using the DNeasy Plant Mini Kit (Qiagen) according to the 7 manufacturer’s protocol. DNA sample quality and integrity was analyzed by agarose gel 8 electrophoresis, and DNA samples were quantified using the Quant-it PicoGreen dsDNA 9 Assay Kit (Invitrogen). Libraries for each haploid sample were created as described 10 previously (NEVES et al. 2013). Briefly, DNA was sheared, end-repaired, adenylated, and 11 ligated to Illumina compatible adapters that contain 5’ barcode sequences. Fragments 12 with ligated adapters were size-selected (250-500bp) by agarose gel electrophoresis and 13 enriched by PCR using universal primers. Libraries from eight barcoded haploid samples 14 were combined in equimolar amounts and used as input for the sequence capture 15 hybridization reactions following the Agilent SureSelect protocol. The probe set used for 16 sequence capture contained 54,773 probes representing 14,729 Pinus taeda unigenes and 17 are available in a previous study (NEVES et al. 2013). Target enriched libraries were 18 sequenced using a variety of Illumina machines and outputs (Table S1). 19 20 Sequencing data filtering and alignment 21 Raw reads for each sequencing lane were separated based on their individual barcode 22 using the FASTX-Toolkit barcode splitter (http://hannonlab.cshl.edu/fastx_toolkit/), 23 resulting in one file for each sample. The 3’ ends of the reads were trimmed to remove 18 1 low quality bases using the FASTX-Toolkit fastq quality trimmer with parameters -t 20 -l 2 50 (remove 3’ end bases if phread quality score < 20 and discard read if resulting read is 3 shorter than 50bp) for reads sequenced for 100 bp or longer, and -t 20 -l 30 for reads 4 sequenced for 40 bp. For samples sequenced in paired-end mode, the order of the reads in 5 each mate file was re-synchronized using custom scripts, and reads without an 6 appropriate mate were treated as single-end. The filtered reads were aligned to the 7 unigene 8 (http://bioinformatics.bc.edu/marthlab/Mosaik) with parameters as follows: maximum 9 percentage of mismatches 0.05 (-mmp 0.05), unique alignment mode turned on (-m 10 unique), most accurate hashing strategy (-a all), and hash size 15 (-hs 15). Multiple 11 alignments for the same sample were combined using BamTools (BARNETT et al. 2011) 12 into a single alignment. reference used for probe design with Mosaik Aligner 13 14 Detection of SNP and PAV 15 Single nucleotide polymorphisms, short insertions and deletions (short indels) and multi- 16 nucleotide polymorphisms (MNPs) were detected in a combined population analysis that 17 use all individuals of the mapping population simultaneously with Freebayes v0.8.7 18 (http://bioinformatics.bc.edu/marthlab/FreeBayes) with parameters as follows: SNP 19 probability 0.75 (--pvar 0.75), pairwise nucleotide diversity 0.01 (--theta 0.01), haploid 20 mode (--ploidy 1), accepting indels (--indels) and multi-nucleotide polymorphisms (-- 21 mnps), minimum alternative allele frequency of 0.8 (--min-alternate-fraction 0.8), and 22 minimum alternative allele count of 1 (--min-alternate-count 1). For a polymorphism to 23 be considered for mapping, reference and alternative alleles had to be observed 19 1 cumulatively in 50 or more individuals of the population, and the alleles had to segregate 2 1:1 in the population (χ2-test p-value 0.05). If more than two alleles were observed at a 3 polymorphic position, a problem that might arise due to contamination with diploid tissue 4 (e.g. embryo), paralog capture, and sequencing error, the individuals with the two most 5 frequent alleles in the population were considered in further analysis and the remaining 6 were categorized as missing data. To detect presence/absence variants (PAV), a 7 sequencing depth matrix was calculated with genes as rows, haploid samples as columns, 8 and every observation being the average number of times each position of the gene was 9 sequenced. The observations were coded as 1, when at least one read aligned to the gene 10 region, or 0 when no read aligning to the gene region was detected. A test for 1:1 11 segregation for the presence of the allele was performed (χ2-test p-value 0.05) and PAV 12 markers passing these criteria were used for mapping. 13 14 Genetic map construction 15 The SNP, short indel, MNP and PAV markers that exhibited segregation in the 16 population were combined, and in case of gene redundancy, the marker with the least 17 amount of missing data was used as a representative of the gene. The genetic map was 18 constructed with JoinMap 3.0 (VAN OOIJEN and VOORRIPS 2001) with parameters as 19 follows: population type HAP, grouping LOD score ≥ 6, recombination fraction ≤ 0.4, 20 ripple value =1, using the Kosambi mapping function. JoinMap 3.0 builds a genetic map 21 adding markers in three successive steps. The first and second step removes markers that 22 reduce the map goodness-of-fit or creates negative distances. The third step then adds all 23 markers ignoring the thresholds of goodness-of-fit and negative distances. The complete 20 1 map was generated using all three rounds to order all linked markers to the map. For a 2 conservative map, we stopped the mapping process after round two to provide a better 3 estimation of gene order as this removes markers that contribute to unstable ordering. The 4 group number (1 to 12) and the relative orientation of the markers within the group were 5 defined following the genetic map published by Eckert et al. (2010) to facilitate 6 comparisons between studies. Genome length and coverage were estimated following 7 Echt et al. (2011). The genome length was estimated using method 4 of Charkravarti et al. 8 (1991) where the observed Kosambi genetic distance of each linkage group (LG) was 9 adjusted by multiplying it by (m+1)/(m-1), where m is the number of markers mapped to 10 the linkage group. Genome coverage (c), defined as the proportion of the genome 11 contained within a distance d (cM) from a marker was estimated by 𝑐 = 1 − 𝑒 −2𝑑𝑚/𝐿 , 12 where, L is the total estimated genome length (LANGE and BOEHNKE 1982; REMINGTON 13 et al. 1999; ECHT et al. 2011). 21 1 FIGURE LEGENDS 2 Figure 1 – High-density genetic map for loblolly pine. The final map is comprised of 3 2,841 genes distributed among the 12 linkage groups with an average distribution of a 4 gene every 0.6 cM and a total length of 1637.4 cM. For easy comparison, the linkage 5 group name and orientation of the map follow that published by Eckert et al. (2009), and 6 common genes between the two maps are shown in green. Genes for which 7 presence/absence variation was identified and used to map the gene is show in green and 8 have suffix PAV (e.g. 2_6131_PAV, for unigene 2_6131). The remaining markers were 9 coded as “unigene_marker position” (e.g. 0_2563_337, for unigene 0_2563 and a 10 polymorphic marker at position 337 of the unigene). The genetic map graphical 11 visualization was prepared using MapChart 2.2 (VOORRIPS 2002). 12 13 Figure 2 – Comparison of the normalized relative order of shared genes used in our study 14 (X-axis) and that of Eckert et al. (2009) (Y-axis). Due to space constraints, only plots for 15 linkage groups 2 (left panel) and 4 (right panel) are shown. Assuming genes syntheny 16 between the two populations, a straight line would illustrate perfect agreement at the gene 17 ordering level between the two maps. Graphs for all 12 linkage groups are provided in 18 Figures S1 and S2. 19 20 Figure S1 – Comparison of the normalized relative order of shared genes used in our 21 study (X-axis) and that of Eckert et al. (2009) (Y-axis) for linkage groups one to six. 22 Assuming genes syntheny between the two populations, a straight line would illustrate 23 perfect agreement at the gene ordering level between the two maps. 22 1 Figure S2 – Comparison of the normalized relative order of shared genes used in our 2 study (X-axis) and that of Eckert et al. (2009) (Y-axis) for linkage groups seven to twelve. 3 Assuming genes syntheny between the two populations, a straight line would illustrate 4 perfect agreement at the gene ordering level between the two maps. 5 23 ADDITIONAL FILES 1 2 File name: Neves_Data_S2_information_on_segregating_markers.csv 3 File format: comma separated values (csv) 4 Tile of data: Table S2 5 Description of data: Additional information about the 7,842 markers that segregated in 6 the population. The last column describes the status of the marker in the mapping process, 7 where “mapped_Rnd2” are markers that mapped at the second and third rounds of 8 mapping; “mapped_Rnd3” are markers that only mapped at the third round of mapping; 9 “not_tested_for_mapping” are markers for which another marker was selected to 10 represent its gene for mapping and were not tested in the mapping step, and “ungrouped” 11 are markers that did not pass the grouping step of JoinMap mapping. 12 13 File name: Neves_Data_S3_map_round3.csv 14 File format: comma separated values (csv) 15 Tile of data: Table S3 16 Description of data: Text representation of the full genetic map with 2,841 genes 17 mapped, containing the linkage group, the marker name and the position that marker 18 mapped in the linkage group. 19 20 File name: Neves_Data_S4_map_round2.csv 21 File format: comma separated values (csv) 22 Tile of data: Table S4 24 1 Description of data: Text representation of the genetic map of 1,371 genes mapped 2 using the more conservative marker ordering of JoinMap Round 2. It contains the linkage 3 group, the marker name and the position that marker mapped in the linkage group. 4 25 1 Table 1 – Description of markers segregating in the population and mapped. Markers 2 identified based on sequence variation were subdivided in single nucleotide 3 polymorphism (SNP), short insertions and deletions (Short Indels) and multiple 4 nucleotide polymorphism (MNP). # Markers represent the number of markers that 5 segregated 1:1 in the mapping population and # Genes is the number of unique 6 genes represented by these markers. Marker Class Sequence variation SNP Short deletions Short insertions MNP Presence/Absence variation Total Segregating 1:1 # Marker # Genes 7434 3787 6857 210 208 159 408 408 7842 4195 Genes Mapped 2776 2622 63 53 38 65 2841 7 8 26 1 Table 2 – Description of genetic map provided. A total of 2,841 genes were mapped 2 to the expected 12 linkage groups of loblolly pine based on recombination data from 3 72 haploid samples. Linkage group No. genes mapped Length (cM) 1 2 3 4 5 6 7 8 9 10 11 12 Average Total 193 260 205 195 263 230 242 291 223 228 271 240 236.75 2841 144.72 123.12 113.29 124.79 105.07 117.54 125.03 118.53 169.32 165.71 190 140.29 136.45 1637.41 Inter-marker distance (cM) Mean SD 0.75 0.65 0.48 0.39 0.56 0.44 0.64 0.54 0.4 0.62 0.51 0.83 0.52 0.71 0.41 0.41 0.76 0.91 0.73 0.58 0.7 0.62 0.59 0.59 0.58 0.61 - 4 5 27 1 Table 3 – Marker validation at the grouping level. Comparison of the maps from 2 Eckert et al. (2010) and the present map. The few genes mapped to different linkage 3 groups between the two studies are provided in the last column. Linkage group 1 2 3 4 5 6 7 8 9 10 11 12 Total No. genes at same group 23 40 35 24 33 32 31 45 30 35 30 34 392 No. genes at different group 0 0 0 1 1 0 1 0 1 1 0 0 5 Genes linked to different groups Gene=0_9680; Neves=LG 4, Eckert=LG 8 Gene=0_7496; Neves=LG 5, Eckert=LG 11 Gene=0_5740; Neves=LG 7, Eckert=LG 12 Gene=UMN_213; Neves=LG 9, Eckert=LG 7 Gene=0_6106; Neves=LG 10, Eckert=LG 6 4 5 28 1 Table S1 – Sequencing strategy used for each multiplexed pool of eight haploid 2 samples. Illumina’s machine used and the respective cycle length used is shown. Sample Pools 1 2 3 4 5 6 7 8 9 Titration run GAIIx 1x40bp X Full runs GAIIx 1x100bp GAIIx 1x115bp X X X X X X GAIIx 2x115bp X X X X X X X HiSeq 2x100bp X X 3 4 29 1 REFERENCES 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Adams, W. T., and R. J. Joly, 1980 Genetic of allozyme variants in loblolly pine. Journal of Heredity 71: 33-40. Barnett, D., E. Garrison, A. Quinlan, M. Stromberg and G. Marth, 2011 BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27: 1691-1692. Belo, A., M. K. Beatty, D. Hondred, K. A. Fengler, B. Li et al., 2010 Allelic genome structural variations in maize detected by array comparative genome hybridization. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 120: 355-367. Bernardo, R., 2008 Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Science 48: 1649-1664. Brown, G. R., G. P. Gill, R. J. Kuntz, C. H. Langley and D. B. Neale, 2004 Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci U S A 101: 15255-15260. Bundock, P. C., R. E. Casu and R. J. Henry, 2012 Enrichment of genomic DNA for polymorphism detection in a non-model highly polyploid crop plant. Plant biotechnology journal 10: 657-667. Burleigh, J. G., W. B. Barbazuk, J. M. Davis, A. M. Morse and P. S. Soltis, 2012 Exploring Diversification and Genome Size Evolution in Extant Gymnosperms through Phylogenetic Synthesis. Journal of Botany 2012. Chakravarti, A., L. K. Lasher and J. E. Reefer, 1991 A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128: 175-182. Davey, J. W., P. A. Hohenlohe, P. D. Etter, J. Q. Boone, J. M. Catchen et al., 2011 Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature reviews. Genetics 12: 499-510. Drost, D. R., E. Novaes, C. Boaventura-Novaes, C. I. Benedict, R. S. Brown et al., 2009 A microarray-based genotyping and genetic mapping approach for highly heterozygous outcrossing species enables localization of a large fraction of the unassembled Populus trichocarpa genome sequence. Plant J. Echt, C. S., S. Saha, K. V. Krutovsky, K. Wimalanathan, J. E. Erpelding et al., 2011 An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genetics 12: 17. Eckert, A. J., B. Pande, E. S. Ersoz, M. H. Wright, V. K. Rashbrook et al., 2009 Highthroughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genetics and Genomes 5: 225-234. Eckert, A. J., J. van Heerwaarden, J. L. Wegrzyn, C. D. Nelson, J. Ross-Ibarra et al., 2010 Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185: 969982. Elsik, C. G., and C. G. Williams, 2001 Low-copy microsatellite recovery from a conifer genome. Theoretical and Applied Genetics 103: 1189-1195. 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Gnirke, A., A. Melnikov, J. Maguire, P. Rogov, E. M. LeProust et al., 2009 Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27: 182-189. Gonzalez-Martinez, S. C., N. C. Wheeler, E. Ersoz, C. D. Nelson and D. B. Neale, 2007 Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175: 399409. Grattapaglia, D., O. B. Silva-Junior, M. Kirst, B. M. de Lima, D. A. Faria et al., 2011 High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species. BMC plant biology 11: 65. Hackett, C. A., and L. B. Broadfoot, 2003 Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90: 33-38. Kayihan, G. C., D. A. Huber, A. M. Morse, T. L. White and J. M. Davis, 2005 Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 110: 948958. Kovach, A., J. L. Wegrzyn, G. Parra, C. Holt, G. E. Bruening et al., 2010 The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11. Krutovsky, K. V., M. Troggio, G. R. Brown, K. D. Jermstad and D. B. Neale, 2004 Comparative mapping in the Pinaceae. Genetics 168: 447-461. Lange, K., and M. Boehnke, 1982 How many polymorphic genes will it take to span the human genome? American journal of human genetics 34: 842-845. Mackay, J., J. F. Dean, C. Plomion, D. G. Peterson, F. M. Canovas et al., 2012 Towards decoding the conifer giga-genome. Plant molecular biology 80: 555-569. Maron, L. G., C. T. Guimaraes, M. Kirst, P. S. Albert, J. A. Birchler et al., 2013 Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proceedings of the National Academy of Sciences of the United States of America 110: 5241-5246. Martinez-Garcia, P., K. Stevens, J. Wegrzyn, J. Liechty, M. Crepeau et al., 2013 Combination of multipoint maximum likelihood (MML) and regression mapping algorithms to construct a high-density genetic linkage map for loblolly pine (Pinus taeda L.). Tree Genetics & Genomes: 1-7. Neves, L. G., J. M. Davis, W. B. Barbazuk and M. Kirst, 2013 Whole-exome targeted sequencing of the uncharacterized pine genome. The Plant Journal 75: 146-156. Neves, L. G., E. M. Mamani, A. C. Alfenas, M. Kirst and D. Grattapaglia, 2011 A highdensity transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus. BMC Genomics 12: 189. Remington, D. L., R. W. Whetten, B. H. Liu and D. M. O'Malley, 1999 Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 98: 1279-1292. Resende, M. F., Jr., P. Munoz, J. J. Acosta, G. F. Peter, J. M. Davis et al., 2012 Accelerating the domestication of trees using genomic selection: accuracy of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 prediction models across ages and environments. The New phytologist 193: 617624. Saintenac, C., D. Jiang and E. D. Akhunov, 2011 Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome biology 12: R88. Sato, S., S. Tabata, H. Hirakawa, E. Asamizu, K. Shirasawa et al., 2012 The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635641. Stewart, J. F., C. G. Tauer and C. D. Nelson, 2012 Bidirectional introgression between loblolly pine (Pinus taeda L.) and shortleaf pine (P-echinata Mill.) has increased since the 1950s. Tree Genetics & Genomes 8: 725-735. Swanson-Wagner, R. A., S. R. Eichten, S. Kumari, P. Tiffin, J. C. Stein et al., 2010 Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Research 20: 1689-1699. Teo, S. M., Y. Pawitan, C. S. Ku, K. S. Chia and A. Salim, 2012 Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics 28: 2711-2718. Tuskan, G. A., S. Difazio, S. Jansson, J. Bohlmann, I. Grigoriev et al., 2006 The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 15961604. Valdes-Mas, R., S. Bea, D. A. Puente, C. Lopez-Otin and X. S. Puente, 2012 Estimation of copy number alterations from exome sequencing data. PLoS ONE 7: e51422. Van Ooijen, J. W., and R. E. Voorrips, 2001 JoinMap® 3.0, Software for the calculation of genetic linkage maps., pp., edited by P. R. International, Wageningen, the Netherlands. Voorrips, R. E., 2002 MapChart: software for the graphical presentation of linkage maps and QTLs. The Journal of heredity 93: 77-78. Zhou, L., and J. A. Holliday, 2012 Targeted enrichment of the black cottonwood (Populus trichocarpa) gene space using sequence capture. BMC Genomics 13: 703. 32 LG 1 LG 2 0.0 0_15062_534 4.7 2_6495_300 9.1 9.7 2_3850_246 2_447_780 11.2 11.8 0_16700_115 0_5387_782 13.4 0_2579_P AV 14.7 0_12178_548 15.9 16.7 0_4838_266 2_5793_437 19.1 20.2 21.2 21.6 22.5 22.9 24.2 24.9 25.5 26.0 26.7 27.0 28.1 28.5 28.9 29.2 29.5 30.3 31.0 31.3 32.1 32.9 33.9 35.1 36.1 36.5 37.0 37.6 38.0 38.5 39.0 39.7 41.3 UMN_6323_491 0_14764_206 0_5550_374 2_10223_651 0_4894_98 0_9125_505 0_6783_P AV 2_8726_532 0_17002_168 0_9750_161 2_10350_629 2_3200_492 0_2563_337 2_5340_701 2_2374_541 0_1321_85 2_4968_227 0_8329_207 2_2781_547 UMN_2387_276 0_8673_117 UMN_937_141 0_816_254 0_2529_559 0_14094_191 0_10547_201 0_9830_308 UMN_4153_293 2_9586_451 0_13888_222 0_17858_786 0_14398_666 0_15067_550 UMN_2682_447 0_17278_268 42.9 43.4 44.0 44.7 45.5 45.8 47.4 47.6 48.8 49.2 49.9 50.8 51.1 51.5 52.3 52.6 53.9 UMN_4995_247 0_2632_222 UMN_6386_373 0_14470_680 0_9318_540 2_3622_750 0_13162_342 0_12713_581 2_5877_270 0_7636_347 2_4761_507 1_5378_128 0_16691_263 2_916_592 0_17082_397 0_4826_129 0_4121_139 55.0 0_10359_297 0_17154_139 55.9 58.3 58.7 58.9 59.9 61.3 61.6 62.1 63.7 64.4 65.7 67.0 67.3 67.7 67.8 68.4 68.9 69.8 70.3 71.3 71.8 72.6 72.7 72.9 73.5 73.7 74.0 74.5 74.7 75.1 75.4 75.9 76.1 76.5 77.4 78.1 78.3 78.4 78.8 79.0 79.1 79.4 79.5 79.8 80.7 81.7 82.2 82.5 83.1 83.3 83.6 84.6 85.3 85.9 86.8 87.8 88.0 88.7 88.9 89.6 90.0 90.3 91.0 91.6 92.1 93.1 93.3 93.4 94.2 95.1 95.5 95.6 96.5 96.9 97.3 97.9 99.1 100.0 100.9 101.0 102.3 103.4 104.5 104.6 105.1 106.0 106.4 106.8 108.2 109.4 110.8 112.0 112.9 115.2 115.6 116.6 117.6 117.9 118.6 119.0 119.4 119.5 120.5 120.6 122.2 122.8 123.0 124.1 124.7 125.1 126.1 127.2 127.7 127.9 128.7 129.9 131.5 132.7 135.2 136.0 138.6 139.2 140.8 141.8 0_9281_53 0_9287_580 0_3358_169 0_3784_402 0_5281_608 0_12778_389 0_8667_487 0_15763_368 0_6165_182 2_4534_713 UMN_7046_591 0_13843_538 2_4455_192 UMN_791_67 0_17030_741 0_7183_187 2_6536_179 2_2617_201 0_16927_638 0_10476_375 0_10789_125 0_17434_590 0_2231_412 0_12717_277 UMN_1639_137 UMN_755_366 0_4780_70 0_15448_153 0_18884_282 0_9052_319 2_2125_674 0_15194_464 UMN_6664_247 2_9496_346 2_9228_222 0_11442_492 2_3685_335 0_12249_164 2_7289_359 0_18837_628 0_17411_181 0_11992_119 0_3288_426 2_1668_471 0_16175_101 0_14972_463 0_8185_368 2_10327_727 0_9151_167 0_14511_206 2_8880_296 UMN_873_270 0_17880_250 2_5610_348 0_2691_191 2_781_235 0_5747_137 0_8699_583 UMN_1609_187 0_754_290 0_1213_656 2_6137_155 0_7940_484 0_13971_681 0_5575_354 UMN_3326_120 UMN_476_80 0_945_304 2_9053_589 0_1864_253 2_1001_220 0_12577_272 2_4604_177 2_9664_449 0_17776_485 0_10246_348 0_2329_670 0_4904_338 0_16980_374 2_6249_441 2_3747_944 2_9110_131 0_18368_637 0_1521_206 0_3715_368 0_8679_156 0_9600_654 2_6660_825 2_7532_593 0_10195_585 UMN_5947_170 UMN_613_200 0_16955_354 2_7174_497 2_4462_270 0_10540_200 0_17493_372 0_4829_300 0_4435_184 UMN_765_230 2_2099_598 0_5630_427 0_6952_568 UMN_979_146 0_13204_275 0_9515_538 UMN_3466_116 2_8585_261 2_4040_734 0_16206_760 0_18261_714 0_17242_224 UMN_6446_124 0_1849_397 0_17726_498 2_1223_663 2_6131_P AV 0_17140_611 0_13101_568 0_17577_605 2_6018_747 0_3685_172 0_14506_143 0_18313_255 0_12285_535 0_15934_504 2_3177_223 2_9851_487 144.7 0_817_133 0.0 1.6 4.0 5.2 6.2 7.2 8.3 8.7 9.9 11.2 12.4 13.4 14.5 15.1 15.4 16.0 16.6 16.7 17.3 17.8 19.1 19.3 19.6 20.2 21.0 21.9 23.0 23.5 24.9 25.7 26.6 27.1 27.9 28.6 29.6 30.9 31.4 31.8 33.0 33.7 34.3 35.6 36.2 36.4 37.4 37.9 39.2 40.0 40.8 41.7 42.6 42.9 43.3 44.4 45.0 45.6 46.2 46.6 47.2 47.5 48.1 48.7 49.5 49.8 50.5 50.8 51.2 52.1 52.2 52.6 53.4 53.7 53.9 54.6 55.3 55.4 55.9 56.3 57.1 57.9 58.3 58.4 58.8 59.0 59.4 59.8 60.3 60.6 60.9 61.1 61.6 61.7 61.8 62.7 62.8 63.3 63.6 63.9 64.2 64.5 65.1 65.4 65.8 66.2 66.4 66.5 66.8 67.3 67.5 67.8 68.1 68.3 68.5 68.6 68.7 68.9 69.2 69.4 69.5 69.7 70.1 70.3 70.8 71.0 71.1 71.8 72.1 72.6 73.1 73.3 73.9 74.1 74.2 74.4 74.6 75.2 75.3 75.5 75.9 76.0 76.5 76.6 76.7 76.8 77.1 77.7 77.9 78.3 78.4 78.7 78.8 78.9 79.3 79.4 79.7 79.9 80.4 80.7 80.8 81.0 81.3 81.5 81.7 82.0 82.2 82.3 82.4 82.7 83.0 83.1 83.3 83.4 83.9 84.1 84.3 84.7 84.8 85.1 85.4 85.5 85.8 86.3 86.7 86.9 87.0 87.4 87.7 87.9 88.3 89.3 89.5 89.7 90.3 91.0 91.5 91.9 92.0 92.3 93.1 94.3 94.5 95.1 95.9 96.6 97.2 97.8 97.9 98.1 98.2 98.9 100.0 100.5 101.3 101.6 101.8 102.4 103.4 103.8 104.4 104.5 104.6 105.3 105.4 106.0 106.9 107.8 108.5 108.8 109.8 110.1 110.2 110.9 111.6 111.8 112.0 112.3 112.6 113.5 114.7 114.9 115.6 116.7 117.5 119.4 120.8 123.1 0_273_216 0_17554_P AV 0_14509_411 0_1433_157 2_5667_365 0_16872_528 UMN_3505_222 2_9967_651 0_10104_118 0_10920_126 2_1327_218 0_16937_87 0_2955_135 0_7088_387 0_5882_450 2_374_598 0_8281_448 2_3505_273 0_11472_245 0_2019_342 2_9475_170 0_2491_490 2_693_396 2_8643_410 0_14360_538 0_9820_567 2_2681_222 0_18633_648 0_11406_295 0_18470_454 0_6626_81 0_18123_94 0_5565_553 0_12129_180 0_3853_180 0_12568_529 0_12630_344 0_13144_567 UMN_852_207 0_6505_441 0_16267_517 0_10164_694 2_7618_243 0_4032_400 UMN_1443_255 0_16658_340 2_9870_466 0_6206_255 0_13705_578 0_507_170 0_1037_360 UMN_3395_42 2_3626_467 0_1085_244 2_6335_211 0_4050_618 0_17988_220 2_9049_243 0_2222_390 2_6908_144 UMN_607_228 2_2875_230 0_18632_679 2_5743_863 0_6807_321 UMN_858_246 0_9288_419 0_18348_430 2_1094_111 0_16128_239 0_1131_182 0_6234_272 UMN_3020_244 UMN_1597_468 0_17015_176 0_1028_239 UMN_3237_228 0_5145_239 0_7484_333 0_16230_605 0_6607_454 2_6034_653 2_2946_669 0_6510_244 UMN_1309_129 0_15782_517 2_1285_384 0_6606_314 0_1938_219 0_4017_322 UMN_3423_176 1_4996_733 0_18635_609 0_13127_435 0_6976_496 UMN_1678_196 0_975_P AV 2_3222_369 2_220_585 0_13172_291 0_16484_353 0_12206_30 0_12786_238 0_1659_285 0_6257_706 0_4574_117 2_4077_664 0_18437_154 UMN_834_180 0_6939_447 0_9902_152 2_9730_125 0_4520_258 0_9156_655 2_8497_314 2_2483_425 2_2156_515 0_14455_267 2_7351_286 2_8779_265 2_4196_479 2_6434_466 0_978_334 0_4690_335 0_9529_385 0_17884_701 UMN_2367_269 2_7811_454 0_1471_109 0_13832_706 UMN_1345_286 2_620_825 2_6562_621 UMN_490_104 2_7409_185 0_18483_418 0_7072_221 0_3896_519 0_11688_310 0_9533_218 0_15227_339 UMN_553_239 UMN_4665_224 UMN_1689_224 2_2370_380 0_10902_430 UMN_1992_551 0_14227_708 UMN_4089_342 0_13576_141 0_9427_485 2_2450_503 2_6736_89 0_9584_602 UMN_2734_79 0_1730_285 UMN_7156_113 UMN_2610_90 0_1273_430 UMN_4760_416 UMN_3554_216 0_18596_210 0_8963_373 2_9380_124 2_9786_164 0_4394_500 0_18604_580 0_12104_506 0_3353_196 UMN_3454_175 0_7715_283 0_14602_151 2_5479_464 0_9344_210 0_15524_159 0_8735_658 2_8971_545 0_13118_294 0_6354_393 0_14101_97 2_4531_230 0_9055_82 UMN_4297_156 2_3914_304 0_18081_773 0_16537_357 0_16021_183 0_4214_249 0_8441_206 2_3781_900 UMN_1285_87 0_15588_203 2_7207_721 2_9057_295 0_953_286 2_9713_742 0_1845_512 UMN_4346_139 0_5890_510 UMN_3804_197 2_6613_434 0_366_281 0_17539_373 2_358_180 0_9110_298 0_1974_185 UMN_2728_86 0_3544_635 2_383_224 0_13584_586 2_2611_755 0_17304_349 0_13271_310 2_8658_651 0_12675_444 0_335_145 UMN_971_249 2_33_464 UMN_2065_600 0_3458_157 0_6043_172 2_2665_424 2_4919_326 2_289_315 0_6934_214 0_16710_309 UMN_3225_406 0_8475_171 0_1740_456 0_16614_375 0_13833_397 UMN_2355_201 UMN_3992_90 0_10382_356 0_6062_616 2_9485_233 0_13511_600 UMN_7035_121 0_2780_264 2_5919_337 0_1279_230 0_18786_703 0_14696_203 2_9201_455 0_12921_224 0_12964_514 UMN_5942_297 0_13176_127 0_2414_599 0_15987_695 0_18775_144 0_127_517 0_4057_315 0_16769_399 UMN_2026_329 0_18569_514 0_8864_373 0_3191_444 0_262_161 0_12453_245 LG 3 0.0 3.8 4.6 6.5 7.1 8.9 9.7 10.3 11.1 11.3 12.0 13.3 13.6 13.8 14.3 15.0 15.2 16.2 16.3 16.7 16.8 17.3 17.8 19.1 20.1 20.2 20.7 20.9 22.0 22.1 23.1 23.4 23.7 24.0 24.3 24.9 25.1 25.7 26.3 26.5 27.2 27.5 28.1 29.1 29.5 30.0 30.2 30.4 30.8 31.0 31.3 31.6 32.3 32.9 33.0 33.3 33.8 34.2 34.5 34.8 35.5 35.7 36.2 36.3 36.7 37.3 38.2 38.5 38.9 40.0 40.5 40.7 42.1 43.7 44.4 45.2 45.3 45.4 46.0 46.4 47.3 47.6 48.6 49.2 49.5 49.9 50.0 50.5 50.6 50.7 50.8 50.9 51.0 51.1 51.2 51.5 51.7 52.2 52.8 53.6 54.3 55.0 55.6 56.0 56.6 57.0 58.5 59.3 59.5 60.1 60.3 61.0 61.6 62.1 62.9 64.1 64.4 64.6 65.6 65.8 66.2 67.1 67.3 67.6 67.9 68.1 68.9 69.0 69.5 70.2 70.6 71.0 71.4 72.7 73.5 73.7 73.8 74.2 74.9 75.5 76.0 76.7 77.6 78.7 79.2 79.8 81.3 81.4 82.6 83.4 84.1 84.8 85.1 85.4 85.8 86.3 87.3 88.4 88.6 88.8 89.4 89.6 90.1 90.9 91.3 91.6 92.3 92.5 93.7 94.4 94.8 95.8 96.2 97.0 97.5 98.6 99.2 99.6 100.3 100.7 101.8 102.9 104.0 104.8 105.1 105.8 106.3 107.6 108.4 109.5 110.8 111.3 112.3 112.4 113.3 2_8399_678 UMN_6379_106 0_4859_P AV 0_9773_820 2_6329_219 1_3327_428 0_1979_274 0_16974_237 0_13240_663 0_16132_589 0_12267_140 0_3780_226 0_11754_278 2_10111_710 0_4073_165 0_5359_96 2_10066_203 2_138_P AV UMN_777_308 0_13114_223 0_4077_208 0_8334_542 0_14085_695 0_12552_187 2_9501_229 0_12248_365 0_9323_710 0_8465_300 UMN_660_123 2_8840_743 2_4902_226 0_14868_348 0_6366_761 0_2683_667 0_18885_564 2_2180_207 0_5798_516 2_6050_469 0_5995_141 UMN_4163_439 2_1630_358 0_1852_340 0_2220_90 0_17159_154 0_6072_349 0_5936_457 0_18468_288 2_5911_451 0_13722_456 0_313_488 0_4413_122 0_14228_411 0_2006_220 0_10108_106 0_2055_210 0_14592_560 0_14191_226 2_4021_119 0_4421_195 0_4094_116 0_15300_263 2_3228_727 2_3128_582 2_8507_958 2_2430_404 0_8846_98 0_14740_254 0_11443_348 0_5091_174 0_8404_373 0_16864_567 0_15944_309 0_3963_170 2_2216_380 0_16355_626 UMN_2893_232 2_6533_607 0_14140_357 0_13135_220 UMN_671_240 0_11661_556 UMN_1653_242 0_18003_723 UMN_2701_472 2_2864_504 0_5158_317 0_5146_181 0_1651_277 0_4943_207 2_8922_106 2_2467_654 2_613_389 0_14520_509 0_11339_231 0_17735_519 2_7567_293 0_16300_393 0_1438_135 2_9232_170 0_18636_191 2_9490_515 0_4901_250 0_6364_281 0_2477_585 2_9757_542 2_1114_196 2_10207_523 0_15097_123 0_12048_276 0_18686_513 0_4760_371 0_3933_617 2_2829_201 0_10240_426 0_12307_734 0_16975_138 0_12219_167 0_9601_548 0_16169_479 0_15697_117 0_1511_346 0_18413_552 2_798_272 0_16665_218 2_5021_78 0_12995_501 0_9197_652 2_9733_186 0_14916_159 0_14826_629 UMN_5588_84 0_5613_179 0_1355_241 0_4218_141 UMN_1069_227 2_10349_226 0_13378_389 2_6959_357 0_7688_160 2_7009_498 2_8612_209 2_3131_293 0_1097_366 0_5284_622 2_5420_670 0_7239_597 0_13988_134 0_18100_246 0_12559_142 0_9844_P AV 0_8872_294 0_18478_394 0_8711_579 0_16502_222 2_9235_272 0_5350_109 0_263_362 0_17091_304 0_15382_160 0_16808_352 0_7598_186 2_4557_181 0_16138_133 0_5266_519 0_2885_606 0_17241_259 UMN_3759_385 0_5343_604 0_8876_374 2_2878_448 0_16120_582 UMN_2296_316 0_17432_699 2_5769_334 0_7034_453 0_13401_733 0_1791_218 UMN_6398_194 0_5149_386 0_9380_248 UMN_3165_420 0_6613_P AV UMN_2675_254 0_14858_111 0_3261_611 0_381_307 0_634_311 UMN_5156_592 0_16330_270 0_8926_187 0_14439_483 2_3144_310 2_521_211 UMN_2688_418 2_2737_725 UMN_6508_359 0_5340_219 0_18911_145 0_7605_101 0_8798_421 0_2858_P AV 0_18497_367 0_7876_435 0_14699_401 UMN_2174_239 LG 4 0.0 5.4 6.4 8.6 9.8 11.0 11.4 12.9 14.4 14.6 15.1 15.4 16.4 18.0 18.4 18.7 19.7 20.3 21.1 21.6 22.4 23.1 23.5 24.1 25.0 25.6 25.9 26.6 26.8 27.4 27.7 27.9 29.0 29.9 30.2 31.0 31.5 32.0 33.0 33.7 34.4 35.1 35.6 36.5 36.9 37.7 38.3 38.9 39.8 40.9 41.2 42.0 43.1 43.8 44.0 44.4 44.9 45.6 45.9 46.4 47.1 48.1 48.4 48.9 49.2 49.6 49.9 50.3 50.5 51.6 52.0 52.5 52.6 53.5 53.8 54.0 54.1 54.3 54.8 55.2 55.9 57.6 57.7 58.2 58.7 59.0 59.4 59.8 60.1 60.5 61.1 61.2 61.3 61.9 62.4 63.4 65.2 65.8 66.3 66.6 66.8 67.1 67.5 68.2 68.3 69.6 69.9 70.1 71.0 71.4 71.9 72.4 73.1 73.4 73.5 74.2 75.0 75.4 75.9 76.5 77.3 77.5 77.7 78.1 78.8 79.5 79.7 80.3 80.8 81.2 82.1 82.3 82.5 83.4 84.2 84.3 85.9 86.1 86.8 87.3 87.7 88.2 88.6 89.4 90.5 91.2 91.6 92.1 93.1 93.5 94.5 95.6 95.9 96.7 97.9 98.7 99.2 100.0 100.2 100.8 101.9 102.9 103.6 103.9 104.4 104.5 104.6 105.4 106.3 107.1 107.7 108.1 109.6 109.9 111.0 111.9 112.7 114.1 114.5 115.2 115.6 117.3 118.0 118.4 119.8 121.0 122.5 124.8 2_944_356 2_9526_689 2_6003_160 0_18482_257 0_607_131 0_18384_570 UMN_2291_100 0_11528_416 2_5746_294 0_5012_435 UMN_5553_170 0_5483_209 0_15866_27 0_14038_652 0_10754_618 2_1790_320 2_8343_601 UMN_2565_98 UMN_2590_280 2_8554_759 0_16012_420 0_14601_632 2_2742_184 0_14949_507 0_15991_724 UMN_4564_390 0_3061_518 2_4263_331 2_3387_121 2_7249_164 0_8350_245 2_5128_232 0_3641_129 0_6832_490 0_9680_400 0_5610_529 0_7479_264 0_8160_162 0_13535_258 0_17139_118 0_11482_661 0_14529_285 2_3646_160 2_1564_P AV UMN_1229_PAV 2_5868_658 2_6847_725 2_229_243 2_7346_451 0_16998_251 0_5204_526 UMN_4691_148 2_5103_484 0_10449_444 2_378_464 0_10083_351 0_8467_672 0_18063_312 UMN_4552_77 2_9214_643 2_3374_209 0_13153_425 2_1443_364 UMN_695_194 2_2959_72 0_18157_250 0_13947_114 UMN_728_399 UMN_849_246 2_6202_163 0_6435_641 2_2556_563 0_14375_381 UMN_662_336 2_1627_335 0_7344_181 UMN_3823_59 0_17396_305 UMN_4959_217 0_13203_365 0_6860_529 0_14249_205 0_6392_776 0_13040_337 2_1744_214 0_7363_292 2_9014_673 2_1379_129 UMN_2806_84 0_8317_385 2_746_88 0_12917_337 0_6375_498 0_13745_360 UMN_1373_145 0_4792_223 0_5767_570 0_15813_124 0_3748_603 0_12636_369 0_1150_496 2_6518_294 0_4345_180 0_16687_395 UMN_5506_139 2_2501_85 0_17660_207 2_2944_302 2_1870_484 0_2255_567 0_2839_678 UMN_2473_70 UMN_7373_1019 0_2213_201 0_4364_232 0_17557_407 0_2009_224 UMN_3039_342 0_14184_288 UMN_4763_143 0_6306_102 0_849_175 0_12356_460 2_8371_118 0_11184_187 0_6814_290 2_9905_653 0_364_568 0_9588_501 0_10194_258 0_13380_356 2_5983_185 0_4207_83 0_6564_377 0_17559_367 2_8244_376 UMN_2775_151 2_5530_487 UMN_1352_323 2_4749_622 UMN_488_106 2_8105_287 0_1872_638 0_2337_417 0_1729_305 0_17845_617 UMN_5319_213 2_8428_203 2_9916_697 2_8731_423 2_9637_879 0_16785_237 0_8796_628 0_13391_629 0_15142_450 0_16771_174 2_1215_121 0_6083_178 0_13422_425 0_3243_794 0_13515_485 UMN_797_146 1_3187_760 0_13042_339 2_5806_586 2_6424_88 UMN_3551_430 0_8315_159 UMN_2667_154 0_2210_116 0_14812_423 0_4225_102 0_7033_384 2_10295_384 0_15286_211 2_7323_689 0_17830_341 2_8290_67 UMN_3921_251 0_17212_737 0_9893_148 0_10987_725 2_1747_817 0_10892_98 2_6301_616 UMN_2642_47 UMN_2626_171 0_15137_201 2_3926_347 2_8051_155 2_5855_275 2_1250_587 UMN_2368_332 2_1253_521 2_8021_123 LG 5 0.0 7.4 8.5 9.8 10.6 10.8 11.3 12.1 12.3 12.9 13.7 14.0 15.1 15.4 15.9 16.2 16.3 18.2 18.9 19.2 19.5 20.4 20.6 21.1 21.3 21.5 21.8 22.5 23.4 24.0 24.6 24.8 25.2 25.5 25.8 26.1 26.5 27.9 28.2 28.7 28.8 29.3 29.6 29.8 30.0 30.4 31.1 31.4 31.5 31.8 32.0 32.4 32.7 32.9 33.6 33.8 34.1 34.2 34.3 34.5 34.6 34.7 34.8 35.0 35.1 35.2 35.4 35.8 35.9 36.1 36.3 36.4 36.9 37.1 37.6 37.9 38.0 38.3 38.7 39.0 39.2 39.4 39.5 39.6 39.9 40.7 40.8 40.9 41.5 41.6 41.7 42.2 42.5 42.9 43.1 43.2 43.5 44.0 44.2 44.3 44.7 45.5 45.8 46.0 46.1 46.2 46.3 46.5 46.7 46.8 46.9 47.1 47.3 47.4 47.9 48.0 48.2 48.5 48.6 48.9 49.0 49.1 49.3 49.5 49.6 49.8 49.9 50.2 50.3 50.4 50.5 50.6 50.8 50.9 51.1 51.4 51.7 52.1 52.3 52.5 52.8 53.2 53.7 53.9 54.0 54.2 54.6 54.9 55.5 55.9 56.0 56.7 57.0 57.6 57.7 57.9 58.1 58.4 58.8 59.4 60.0 60.8 61.4 61.5 61.6 62.2 62.8 63.4 63.8 63.9 64.0 64.2 64.6 65.2 65.3 65.4 65.5 65.7 66.1 66.5 67.0 67.3 68.0 68.5 68.7 68.9 69.0 69.4 69.8 70.5 70.8 71.0 71.7 71.9 72.2 73.1 73.2 74.0 74.1 74.5 76.2 76.5 76.6 77.8 77.9 78.0 78.5 78.9 80.5 81.2 81.5 82.0 82.8 83.1 83.9 84.2 85.0 86.0 87.3 88.1 89.0 89.7 90.7 92.1 92.8 93.0 93.8 95.0 95.5 96.4 96.7 97.6 100.2 105.1 0_6174_P AV 0_4910_264 0_2530_372 0_8339_251 0_9292_511 0_12765_141 UMN_6022_389 0_14681_138 2_6360_302 2_8908_231 2_10394_109 2_9107_470 0_12885_215 2_9047_462 0_17963_530 0_16878_342 0_7438_256 0_7618_177 0_842_269 2_1071_560 2_10480_515 UMN_1989_154 UMN_2460_144 0_2145_181 UMN_3623_99 0_5366_662 0_11162_213 UMN_823_250 0_11888_188 0_3176_687 0_17145_256 UMN_1378_111 0_8718_166 2_4856_497 0_10210_667 2_4883_484 0_14259_284 0_3499_402 UMN_4170_210 UMN_4870_132 0_15861_116 2_2306_83 0_14741_244 0_9155_574 2_10078_615 2_5429_544 0_2498_163 0_2495_400 0_9301_393 0_8598_441 0_7572_470 0_969_149 2_8860_787 2_8160_236 UMN_2948_182 0_1094_432 0_1804_245 0_7527_532 0_7578_423 2_9132_477 0_12397_85 UMN_737_249 2_218_907 2_6560_113 0_15714_192 UMN_1157_198 0_8359_233 2_3181_348 0_2249_566 UMN_2713_131 0_14129_388 0_2259_183 2_6109_478 0_4465_508 0_12147_475 2_3359_332 0_14585_151 0_2599_485 2_9227_256 0_13710_154 0_8089_116 0_14550_690 2_2194_442 UMN_6629_439 UMN_2753_361 0_16458_343 0_18493_75 0_12686_610 0_1144_329 0_17724_205 0_8764_119 0_5505_326 0_10329_276 0_5467_373 0_2086_294 UMN_3645_124 2_8080_374 0_16574_368 0_11847_65 0_13913_135 UMN_4969_253 0_11141_606 2_3361_319 0_8390_444 2_3497_159 0_10556_333 0_8802_159 UMN_3234_448 0_14421_693 0_13948_174 0_3084_512 0_2323_495 0_7999_46 0_7496_469 UMN_2398_199 2_6686_323 0_3699_583 0_7206_572 2_2866_678 2_5897_654 UMN_3790_108 0_3056_781 2_2333_466 UMN_3640_378 0_17416_297 0_5831_197 0_10651_217 0_15394_155 0_8958_274 2_4311_513 2_7129_120 0_8252_302 0_10171_614 UMN_5077_190 0_14747_524 0_16158_196 UMN_4983_212 0_11020_689 2_9333_703 1_210_646 UMN_1221_74 2_10191_626 UMN_1197_253 0_8028_172 0_8984_526 0_3856_374 0_11492_578 0_9768_336 0_3266_181 0_17863_676 UMN_3789_138 2_323_226 0_6522_474 0_18372_618 0_14252_208 0_1823_455 0_15868_411 UMN_678_331 0_4499_64 2_2815_170 2_9575_713 UMN_7467_142 0_13222_730 UMN_4551_63 0_16495_734 0_9987_389 0_16711_259 0_11525_426 0_13167_405 2_6178_333 0_9477_180 2_1850_359 2_507_711 0_6741_409 0_10732_360 0_16773_139 2_1621_442 UMN_4919_249 2_6328_325 0_18871_315 UMN_2719_PAV 0_18715_160 0_2369_551 UMN_2213_153 0_6233_683 0_10755_P AV 0_2189_524 0_1643_146 0_14919_613 2_4267_218 0_17469_587 0_14559_194 0_13121_215 UMN_6638_84 UMN_1861_265 0_506_475 2_7725_691 0_16220_472 0_18195_382 0_18834_710 0_2038_328 0_9291_243 0_8621_372 0_9396_214 UMN_2847_80 0_706_460 2_5663_827 UMN_1011_132 2_8769_460 0_9779_597 UMN_2007_104 2_5076_625 0_967_314 0_15180_751 0_1396_556 0_18014_692 2_1069_382 0_9383_335 2_9190_834 0_17308_P AV 0_13196_667 0_9946_369 0_12270_162 0_1522_259 0_14850_364 0_18093_344 0_18249_681 0_1622_92 2_3440_489 0_10303_583 2_2217_739 0_13221_227 0_10245_543 0_15220_98 UMN_2789_236 0_5581_117 2_3236_517 0_16609_P AV UMN_1177_138 2_5921_254 2_10372_685 2_6319_227 0_16332_336 0_12936_136 0_804_234 0_1669_426 2_10130_330 0_15017_360 UMN_4754_129 2_3540_213 UMN_1792_140 0_16841_298 2_4066_574 0_10432_251 0_16639_541 UMN_5750_303 0_16594_269 2_8153_513 0_18405_427 UMN_4266_135 2_1023_903 0_13292_242 0_9456_425 LG 6 0.0 10.6 12.4 14.9 16.6 17.1 17.8 19.1 19.2 20.3 21.5 22.5 23.3 24.3 25.5 26.2 27.3 27.7 28.7 29.2 29.3 29.4 30.2 31.2 31.7 31.8 31.9 32.2 32.5 33.7 34.1 34.8 35.7 36.0 36.8 37.0 37.3 38.9 39.0 39.1 39.8 40.3 41.1 41.2 41.8 42.7 43.0 43.8 44.0 44.5 44.7 45.0 45.6 46.0 47.1 47.2 47.5 48.2 48.4 48.5 48.9 49.3 49.8 49.9 50.4 50.7 51.0 51.6 51.8 51.9 52.1 52.6 53.1 54.0 54.3 54.7 55.2 55.5 55.8 55.9 56.3 56.4 56.8 57.9 58.4 58.6 58.7 58.8 59.3 59.6 60.1 60.4 60.5 60.6 61.2 61.3 61.5 62.3 62.8 63.3 63.5 63.9 64.0 64.3 64.6 64.8 65.3 65.5 66.0 66.4 66.7 67.2 67.3 68.4 68.6 68.9 69.3 69.4 69.9 70.1 70.4 70.5 70.6 70.7 71.2 71.7 71.8 72.0 72.2 73.3 73.4 73.7 73.8 74.3 74.5 74.9 75.3 75.5 76.1 76.5 77.3 77.7 77.9 78.6 79.4 79.5 80.2 80.9 81.2 82.2 82.7 82.8 83.2 83.4 83.6 84.5 84.6 84.8 84.9 85.3 85.5 85.6 85.7 86.1 86.2 86.9 88.1 88.5 89.0 89.5 89.6 90.0 90.3 90.6 91.0 91.4 91.5 91.9 92.0 92.1 92.2 92.3 92.4 92.5 92.7 93.2 93.3 93.5 94.0 94.8 95.0 95.5 95.7 96.7 97.0 97.7 98.1 98.3 98.6 98.9 99.5 100.0 101.2 101.7 103.1 104.4 105.0 106.7 107.8 110.4 111.6 115.2 117.5 0_5484_261 0_11925_147 0_7764_394 0_15621_521 0_8862_299 0_488_351 2_5456_159 2_9928_96 0_7227_669 0_10822_387 0_8703_404 0_14596_P AV UMN_6650_507 0_6092_557 0_14737_P AV 1_6453_P AV UMN_1480_292 0_1597_199 0_1713_160 0_9564_690 UMN_2379_115 2_10498_171 2_6245_267 0_2819_360 2_4138_371 0_2011_78 0_16478_406 UMN_4554_149 0_14061_588 2_7489_126 0_14283_626 2_9315_197 0_7753_541 2_1803_673 0_6675_349 0_6216_59 0_12613_746 UMN_3676_173 0_3944_479 0_10746_89 0_2236_167 UMN_3584_211 0_7459_85 0_7584_313 0_8549_244 UMN_1577_361 2_5025_285 UMN_4600_412 0_4284_270 0_7544_507 0_7361_263 0_11626_143 2_1264_635 0_9693_535 2_5673_746 2_4910_669 2_9661_422 0_9244_160 0_5312_368 2_6026_100 0_13850_265 2_3677_104 0_9056_333 0_11017_592 UMN_985_134 0_16068_573 0_8685_289 0_12551_329 0_9082_496 0_13718_768 2_4205_146 0_5379_104 UMN_2464_228 0_8686_287 0_12545_363 2_4996_556 0_9096_286 0_9126_110 0_11417_240 0_17614_489 0_2500_80 0_8224_P AV 0_4519_412 0_2090_454 0_13274_495 2_8487_635 2_2750_611 UMN_5812_93 0_676_466 0_17299_735 0_15759_101 2_9055_520 2_3949_685 0_2071_463 2_1460_505 0_11241_130 0_14013_320 0_18208_454 UMN_6882_122 2_10390_636 0_10266_562 0_3521_705 0_2963_259 0_7700_315 2_8557_641 0_5652_98 0_15726_348 UMN_962_101 UMN_6029_176 UMN_7550_654 2_2240_479 UMN_675_104 0_9034_144 1_2687_P AV UMN_5594_402 0_7248_196 2_5557_562 UMN_4447_173 0_10374_424 0_12944_88 2_4048_119 UMN_3233_256 2_7254_755 UMN_6591_135 0_18645_611 0_14423_347 2_1467_864 2_401_310 2_6205_83 0_13374_325 UMN_1744_239 UMN_3180_163 0_2017_336 0_11819_204 0_11363_83 1_2880_212 0_11971_376 UMN_3760_177 2_6072_490 0_3609_512 2_7194_124 0_12229_571 0_12290_182 2_10092_676 0_17385_417 0_17433_364 2_8527_769 0_7838_322 2_6162_669 0_7914_354 0_2981_665 0_11781_588 2_7754_767 0_8452_212 0_16679_388 2_3984_602 0_5262_448 2_6623_464 0_4223_239 0_16635_189 0_6006_410 UMN_1939_303 0_13050_477 0_5436_432 0_17831_212 2_1081_217 2_10180_435 0_16259_365 0_44_310 0_12080_774 0_7969_191 2_10129_303 0_2590_173 0_14682_520 0_5511_221 2_6346_743 0_15532_121 0_828_87 0_5623_201 0_9523_617 0_9749_336 0_59_458 2_6206_541 UMN_2180_300 0_473_488 0_18507_564 0_9531_78 2_4985_682 2_2891_339 0_8804_98 0_3755_307 0_14736_269 2_2110_836 0_13984_372 0_12423_652 UMN_2470_158 2_5844_427 0_8523_609 0_806_590 0_14157_533 0_3634_129 0_8705_441 0_3688_363 UMN_2907_464 2_9431_515 2_10248_432 2_5843_230 0_3277_280 0_10926_418 UMN_3295_205 0_18848_479 0_16100_151 2_2072_330 0_14128_620 0_14193_548 0_13614_179 UMN_1484_416 2_1465_251 UMN_6442_235 2_6447_596 0_8478_148 0_9989_375 2_2332_216 UMN_1015_227 0_2827_234 0_14655_312 0_3038_610 0_17336_640 0_14146_250 0_12462_114 LG 7 0.0 4.6 6.0 12.7 13.1 14.9 18.1 18.6 18.9 19.0 19.1 21.0 21.9 22.7 23.2 23.7 24.5 24.8 25.6 26.5 27.3 27.8 28.2 28.5 29.0 29.6 30.6 30.9 31.3 31.6 32.6 33.3 33.7 34.0 34.2 34.3 34.5 35.1 35.3 35.5 36.3 36.4 36.6 36.8 37.0 37.3 38.2 38.5 38.6 39.1 39.3 39.8 40.3 40.8 41.0 41.6 42.0 42.5 42.8 43.1 43.4 43.6 44.3 44.7 45.5 45.8 46.2 46.3 46.5 47.2 47.4 47.7 47.9 48.1 48.5 48.6 48.7 48.8 49.0 49.1 49.3 49.4 49.5 49.7 49.8 50.1 50.2 50.3 50.9 51.2 51.8 52.7 52.8 53.9 54.2 54.7 55.0 55.2 55.3 55.8 56.0 56.2 56.6 57.0 57.3 57.4 57.9 59.0 59.2 59.6 60.3 60.8 61.4 61.6 61.7 61.9 62.2 62.5 63.0 63.3 63.5 63.6 63.9 64.0 64.2 64.4 65.0 65.6 65.9 66.5 66.8 67.1 67.8 67.9 68.1 68.4 68.8 69.4 69.8 70.3 70.4 70.6 71.2 71.9 72.5 72.6 72.8 74.2 74.3 74.4 74.5 74.9 75.6 76.0 76.7 76.9 77.3 77.7 78.4 79.2 80.0 80.3 80.5 81.5 81.7 82.0 83.0 83.4 84.0 84.6 85.8 86.1 86.3 86.5 86.7 87.0 87.1 87.9 88.0 88.5 88.6 88.9 89.3 89.8 89.9 90.0 90.4 91.3 92.3 92.9 94.3 95.0 95.6 95.9 96.1 96.5 96.8 97.5 97.9 98.4 99.0 99.1 99.6 100.3 101.1 101.6 102.4 103.5 103.6 104.6 105.2 105.9 106.4 107.9 108.6 109.2 109.3 110.5 111.5 111.9 113.1 113.5 115.2 117.6 119.8 125.0 2_3227_178 0_12624_89 2_4795_377 0_12123_510 2_6464_735 0_10706_711 0_18800_142 0_7592_248 0_14435_234 2_9295_467 0_17213_205 0_12079_464 0_8373_82 0_469_401 0_7095_371 0_18643_405 UMN_4110_230 UMN_5176_809 0_17203_715 0_13239_345 0_18027_462 2_5493_312 0_14408_580 2_8567_PAV UMN_5743_677 0_12970_507 2_6037_639 0_1105_86 0_11795_127 2_10310_231 0_12250_225 2_4615_188 2_8923_297 0_12641_99 2_6113_PAV UMN_7051_285 UMN_6338_111 2_8946_349 0_8348_736 UMN_2438_236 0_18101_268 0_15414_153 0_1034_431 UMN_3022_207 0_3336_342 0_10574_409 0_7445_165 0_18489_276 2_5402_911 0_5657_403 0_5022_299 0_8279_72 2_3820_572 0_6683_137 UMN_2595_479 UMN_4082_141 UMN_2869_PAV 0_15164_428 2_6191_625 0_7804_280 0_6061_114 0_6596_PAV 0_7779_390 UMN_7078_240 0_10342_53 UMN_6002_591 0_15107_334 0_18907_185 2_9102_632 0_11927_219 UMN_6123_145 2_2960_470 0_16488_186 0_16446_170 UMN_4710_109 0_15894_301 0_8367_304 UMN_2043_222 0_1649_261 0_12517_502 0_16079_477 0_13096_590 0_2214_274 UMN_5309_152 0_9624_529 2_3176_109 2_2527_227 0_12914_429 0_5897_407 0_5570_565 2_87_702 0_17579_455 0_1798_102 0_17475_124 2_7866_201 0_6046_207 0_8801_228 0_15795_PAV 0_13190_247 0_5572_409 0_18916_206 0_4629_225 0_2150_104 2_7216_132 0_14917_733 UMN_1790_PAV 2_4539_712 UMN_4176_173 0_17485_400 2_10103_390 2_3070_320 0_10787_598 2_5697_406 UMN_5122_155 UMN_2074_315 0_9262_175 0_1772_573 2_6461_647 1_5330_232 2_3776_245 0_14151_205 2_3947_86 2_6590_161 2_4898_287 0_14905_261 0_2641_203 0_15259_154 0_16443_618 0_18854_674 0_9909_573 2_8017_297 2_10009_494 0_18430_225 0_8894_436 0_13856_490 0_10942_684 0_8947_259 2_7649_89 0_1344_451 0_3151_735 2_6149_188 UMN_649_348 0_1310_140 0_18818_194 0_13897_83 0_4443_PAV 0_14043_671 0_14381_141 0_136_157 0_15013_266 UMN_3888_303 2_4905_340 0_1058_208 0_2318_534 0_15483_85 0_17762_196 0_5740_341 2_10270_414 0_1641_245 0_13126_469 UMN_918_124 0_10653_83 2_9633_101 2_5804_472 0_2335_358 UMN_3058_427 0_5963_174 0_1694_80 0_15790_265 0_8694_632 0_2381_357 0_14295_170 0_7858_442 0_12447_108 0_18746_161 0_6031_80 UMN_3613_177 0_771_448 0_11792_418 UMN_5758_574 2_6059_867 0_8908_249 2_7411_332 0_15249_150 0_13946_554 UMN_1072_100 2_2986_164 0_14495_466 2_4356_271 UMN_7021_316 0_10933_558 0_2784_535 0_9417_191 0_6999_444 0_15209_142 0_10488_222 0_12364_479 0_16584_344 0_13785_140 UMN_5447_254 0_2091_485 UMN_3979_247 0_15455_224 0_444_569 0_4591_296 0_830_478 0_17786_396 2_4634_200 2_9246_273 0_16567_285 2_6085_137 0_2092_345 0_9784_340 0_17542_221 UMN_3847_250 UMN_7253_167 0_629_372 0_13319_522 0_15715_217 0_13643_512 2_5227_400 0_16157_335 0_16963_444 2_4032_124 2_8106_428 0_14634_531 0_8122_248 0_9445_728 0_1743_576 0_9641_477 0_7242_334 0_17643_312 0_10602_482 UMN_2525_239 UMN_568_219 UMN_1211_393 2_881_597 0_10320_212 0_1819_420 0_689_396 2_8972_130 0_18910_725 LG 8 0.0 0.9 4.5 5.6 6.3 7.6 8.3 8.7 9.1 10.0 10.2 10.7 10.9 11.1 11.3 11.5 11.8 12.0 12.2 12.3 12.9 13.5 14.1 14.4 14.7 15.5 16.2 16.3 17.3 17.6 18.1 18.5 19.0 19.5 20.0 20.1 21.2 21.3 21.6 21.8 21.9 22.6 23.3 23.6 23.8 23.9 24.0 24.5 24.7 24.8 25.2 26.2 26.6 27.2 27.9 28.0 28.3 28.6 28.7 29.0 29.4 29.7 30.1 31.0 31.2 31.3 31.5 32.0 32.1 32.4 32.8 33.3 34.2 34.6 34.8 34.9 35.6 36.2 36.9 37.4 37.6 38.1 38.4 38.5 38.8 39.6 40.3 40.7 41.1 41.2 42.1 42.2 42.7 44.0 44.4 45.0 45.7 46.1 46.4 47.4 47.5 47.7 48.0 48.5 48.8 49.1 49.4 49.7 50.4 50.6 51.8 52.0 52.3 52.6 53.1 53.2 53.5 53.6 53.7 54.0 54.1 54.4 55.0 55.7 56.2 56.4 56.8 57.0 57.2 57.5 57.6 57.8 57.9 58.6 58.8 59.0 59.2 59.3 59.6 59.7 60.1 61.1 61.3 61.4 61.8 62.3 62.4 63.1 63.7 63.9 64.0 64.2 64.6 64.9 65.1 65.9 66.2 66.3 66.4 66.6 66.7 66.9 67.0 67.3 67.8 68.1 68.2 68.5 69.2 69.5 69.9 70.1 70.3 70.7 70.8 71.6 72.0 72.4 73.0 73.2 73.3 73.7 74.1 74.3 74.6 75.4 75.7 76.2 76.8 76.9 77.4 77.5 77.6 77.9 78.1 78.2 78.5 78.7 79.1 79.2 79.8 79.9 80.7 81.0 81.1 81.6 81.8 82.2 82.4 82.9 83.1 83.2 83.8 84.2 84.5 84.6 84.9 85.5 85.8 86.0 86.3 86.6 86.8 87.3 87.5 87.9 88.0 88.3 88.7 89.5 89.6 89.7 90.0 90.1 90.4 91.5 92.0 92.5 93.8 94.3 95.1 96.2 96.4 96.8 97.4 97.8 98.5 98.9 99.3 99.8 100.4 101.0 101.3 101.4 101.5 101.6 101.9 102.0 102.5 102.7 103.0 103.2 103.7 104.3 104.7 105.2 105.9 106.7 107.2 107.9 108.1 110.3 112.6 113.2 115.5 118.5 LG 9 0_7202_334 UMN_7457_245 0_675_82 0_14705_P AV 0_9119_371 UMN_2646_242 0_5095_239 UMN_4875_186 0_6211_410 0_14973_538 2_8242_413 0_5852_649 0_8366_312 0_7682_160 0_16535_213 UMN_2505_319 0_6389_632 UMN_2875_502 0_16559_187 0_3924_557 2_1736_178 0_2161_301 0_3800_388 0_7418_278 2_7820_139 0_17805_216 0_3019_638 2_3696_656 0_16685_297 0_14339_571 0_919_446 0_9639_226 0_14504_184 0_5780_92 0_4228_389 0_11864_260 0_2264_126 2_1405_447 0_11132_283 0_15364_430 2_4213_488 0_17877_642 0_9023_331 0_3193_183 0_14445_655 2_6126_222 0_12732_635 0_16589_226 0_14500_411 0_4330_444 0_9152_336 UMN_2325_204 2_6136_489 2_9802_808 UMN_2503_255 0_5574_177 2_168_134 0_9198_174 UMN_150_255 UMN_3821_88 UMN_6558_401 2_10366_817 2_5991_295 0_17701_548 0_14377_338 0_12955_715 0_8806_677 0_11367_490 0_16228_393 0_5609_433 0_6906_271 0_14508_199 0_8827_409 0_11081_634 2_1447_256 0_10453_433 2_5655_568 0_9691_332 0_17038_115 2_5845_445 0_9563_496 0_13874_460 2_7655_444 2_5139_462 0_6304_581 0_6334_295 2_8488_150 0_13022_545 0_3808_450 UMN_5514_114 0_302_390 UMN_5677_151 0_17803_194 0_6559_492 0_8327_303 0_14282_587 0_16829_595 0_3830_245 0_10054_749 0_6809_214 2_4514_255 0_11079_495 0_14560_324 2_6031_297 0_14891_231 UMN_5535_322 0_9806_126 0_4086_125 2_8745_563 UMN_6475_137 2_2945_278 2_8700_267 0_11170_422 0_14459_687 0_2862_474 0_12152_239 0_9538_398 0_16363_78 0_4800_381 2_8173_534 2_3589_251 UMN_5978_316 2_10296_72 0_8636_305 0_11246_289 0_14832_232 0_673_447 2_860_294 UMN_6601_120 0_16558_248 UMN_2868_383 2_9901_748 0_10379_473 0_15088_90 0_719_109 0_7465_545 0_5992_121 0_11172_229 0_4147_209 0_9941_613 UMN_3539_290 0_5865_293 0_13394_459 2_10403_226 0_14112_625 UMN_1362_177 UMN_1190_200 0_8535_97 UMN_3636_PAV 0_2305_104 0_160_533 0_6690_249 0_1779_187 0_13955_459 UMN_3299_171 0_5222_270 2_6808_604 UMN_6150_138 0_8842_292 0_4911_240 UMN_2588_108 0_2193_255 0_12896_761 0_16637_424 0_8358_502 2_9521_323 0_1143_227 2_587_619 2_3362_105 UMN_4045_202 UMN_3648_102 0_10278_499 0_3991_628 2_4861_684 UMN_1169_100 2_3941_585 0_4211_271 0_10151_351 0_9064_354 0_9413_124 0_15570_345 0_17150_139 UMN_2513_228 UMN_1356_317 0_4134_265 2_6914_292 0_4850_386 0_3448_268 0_11042_396 0_13836_524 0_4333_PAV 0_3696_301 2_9658_393 0_767_614 0_13369_199 UMN_4048_440 0_236_548 2_9310_441 0_1579_103 0_8976_500 0_850_153 0_9066_546 2_5724_398 0_2098_492 0_16763_566 0_3776_256 0_7696_164 0_4508_207 0_14290_44 0_11407_356 2_3896_385 0_1065_167 2_7269_773 0_164_277 0_8696_480 0_1232_426 0_13259_215 0_9336_254 0_10021_310 0_1982_580 0_15653_170 0_7787_380 2_4600_537 2_3707_233 UMN_3239_92 2_202_737 UMN_3773_499 0_17509_193 0_18588_100 2_10149_348 0_5464_57 0_4563_596 0_1679_415 0_3062_123 0_9341_581 0_1839_78 0_11010_558 UMN_801_233 0_9950_368 0_14587_452 2_1975_429 0_6680_182 2_1941_746 UMN_2422_298 0_18809_607 2_9283_257 0_8899_386 2_3604_222 UMN_1632_483 UMN_3013_125 2_10484_453 0_16293_77 0_11211_235 UMN_958_182 0_1071_630 2_9280_586 0_3054_388 0_17979_227 0_4303_322 2_3496_213 0_14481_355 0_7311_132 UMN_3102_114 0_6521_122 UMN_293_103 0_18481_193 0_16717_190 2_4199_469 0_16766_430 0_15175_339 0_8972_418 UMN_1076_306 0_18317_437 2_10301_810 2_6609_452 0_11012_114 2_9765_240 2_5354_720 0_16508_703 2_8696_310 2_4502_308 0_16967_158 0_16499_272 1_2145_299 2_9474_735 0_2413_325 0_11239_195 0_4103_132 2_2038_262 0_12334_P AV 2_930_208 LG 10 0_13111_390 0.0 UMN_4454_36 3.7 5.7 6.2 6.7 8.0 8.9 9.2 9.5 9.9 10.6 11.2 12.5 13.7 14.0 14.2 15.0 15.7 16.2 16.4 17.2 17.8 18.3 18.4 18.9 19.2 19.3 19.6 20.1 20.5 20.9 21.3 21.7 21.8 21.9 22.1 22.8 23.4 23.9 24.6 25.3 25.8 26.0 26.6 26.8 27.1 27.4 28.1 29.1 29.3 29.6 30.1 30.5 31.2 31.4 31.7 31.9 32.5 32.9 33.5 34.0 34.1 34.6 35.3 35.6 36.4 37.1 37.6 38.0 38.2 38.4 39.0 39.5 40.2 40.5 41.5 41.8 42.0 42.2 42.4 43.0 43.3 43.5 43.6 43.8 44.5 44.9 46.6 48.1 49.9 50.7 50.9 51.8 52.5 53.5 54.6 56.3 57.3 58.8 59.4 60.9 61.8 62.2 62.8 64.2 65.3 67.2 68.0 69.0 69.6 71.1 71.5 73.0 74.2 74.4 75.7 75.9 76.0 76.6 77.1 77.2 77.3 77.4 78.2 79.0 80.0 80.5 80.8 81.2 82.3 82.6 84.2 84.6 85.1 86.0 86.7 87.3 87.9 88.6 89.1 89.3 89.8 90.1 91.3 92.0 92.5 92.9 94.5 95.4 95.9 96.5 97.1 97.4 98.3 99.0 99.2 99.6 99.7 99.9 100.1 100.7 101.1 101.8 102.1 103.1 103.9 104.1 105.2 105.7 106.5 107.2 107.9 108.6 110.0 110.5 111.8 112.5 113.7 114.4 115.7 116.7 117.5 119.3 119.9 121.6 123.4 125.5 126.8 127.7 128.4 129.2 129.5 129.9 130.1 130.5 130.9 131.9 132.5 133.0 133.8 135.1 136.2 137.0 137.1 138.0 139.7 141.1 141.6 143.5 144.9 147.4 0_1500_209 0_15011_309 0_14067_372 2_9551_249 0_5119_P AV 0_2426_P AV 0_2760_146 0_14269_183 0_10429_453 0_16055_289 0_10781_393 0_1557_356 0_14875_481 2_3883_609 0_9080_131 2_6440_289 2_1961_265 2_6220_491 0_6020_215 0_9409_331 0_17590_666 0_18006_75 0_14614_99 2_9833_650 0_10229_319 0_1033_555 2_3389_305 UMN_1030_398 2_6203_273 0_13607_255 0_13608_405 UMN_3925_250 0_14200_222 0_17343_135 0_12110_310 2_6409_194 UMN_1440_271 0_11127_284 0_18199_298 UMN_519_289 0_8074_412 0_7834_298 0_8457_755 0_5239_242 UMN_1835_154 0_14531_221 0_1881_146 2_5809_235 0_15471_142 0_13102_452 2_6355_240 UMN_5610_606 UMN_1409_154 0_18328_260 0_16546_521 0_16934_313 2_9497_587 0_7891_287 2_8073_153 0_11790_234 0_648_314 0_3028_471 0_2723_422 0_7052_246 0_9322_255 0_7125_379 0_14811_728 0_13659_277 0_3415_563 0_3631_330 2_3444_328 0_13402_441 0_7619_525 0_7556_P AV 0_12413_670 0_12488_488 0_2204_318 UMN_1894_444 0_13835_700 0_15166_490 0_3805_286 UMN_4694_364 0_3643_479 0_14303_679 0_11140_57 0_2711_172 0_4537_345 2_6575_305 0_12956_423 UMN_213_406 0_15329_141 0_10500_435 0_6292_253 0_9308_290 0_1573_300 UMN_2354_259 0_10958_603 0_10503_377 0_10124_414 0_17561_575 0_18820_107 0_18610_233 2_1833_342 UMN_4721_259 2_3447_509 2_7965_754 0_5955_75 2_6111_833 0_9012_284 0_12663_398 0_2076_P AV 0_12785_73 2_7083_269 0_17829_617 0_17700_654 0_545_141 0_13063_595 UMN_2993_251 0_3359_294 0_1302_306 0_15124_405 UMN_4134_40 0_4265_107 0_18762_290 0_5361_426 0_12133_310 UMN_5684_530 0_7568_126 2_3868_327 0_12790_377 2_3824_657 0_15985_737 2_2142_294 0_6100_216 UMN_5003_312 0_17916_408 0_17868_178 0_433_93 0_18822_225 UMN_5717_405 0_15547_141 0_683_469 2_4358_98 0_18116_311 0_11642_528 0_7045_269 2_7488_353 0_14622_110 2_10439_334 0_13249_149 0_1868_578 0_705_372 UMN_6317_351 2_8309_512 0_18572_595 0_4922_130 UMN_1767_365 0_9546_245 UMN_5803_524 2_5973_264 0_15713_577 0_1592_198 0_2439_84 0_13957_338 0_17261_288 0_14443_549 0_14660_313 0_17861_705 UMN_3595_301 0_3518_755 0_3069_320 0_11794_626 0_3157_564 0_9862_701 0_12993_582 UMN_2022_PAV 0_17120_596 0_17912_257 0_16213_293 UMN_7016_119 2_3037_387 0_12538_747 0_10943_401 UMN_188_PAV UMN_5063_306 2_2041_292 2_3541_390 0_2756_403 2_6324_420 0_17655_387 2_2559_607 0_13828_426 UMN_5830_343 UMN_5113_205 0_1896_577 0_14523_733 2_5726_186 0_17123_178 0_3964_659 0_16894_228 2_10028_189 UMN_507_394 UMN_3963_305 2_6731_612 0_18435_560 0_848_397 2_9847_80 0_3_553 0_1722_282 0_2184_404 2_3136_190 0_1691_434 2_10215_401 0_2654_479 UMN_6746_233 0_757_91 0_17149_166 2.4 0_3070_521 3.6 0_15463_227 4.8 UMN_2564_167 6.4 0_18137_503 9.2 2_8266_569 10.5 0_1986_632 12.1 12.4 12.7 0_11082_103 UMN_2621_209 0_18703_210 14.8 15.6 15.9 16.4 17.1 17.7 18.7 19.1 19.7 20.1 20.6 20.7 21.1 22.1 22.3 23.0 23.5 23.8 24.4 25.1 25.5 26.2 26.7 28.5 30.0 30.5 31.1 31.8 32.6 33.0 33.1 33.9 34.4 34.6 34.9 35.2 35.9 150.2 UMN_5072_469 37.3 37.7 38.5 38.9 39.3 40.4 40.7 40.8 41.0 41.3 41.5 41.8 42.4 42.6 43.5 43.9 44.0 44.4 44.7 45.5 45.9 46.6 47.0 47.1 47.9 48.5 48.8 49.1 49.5 49.7 49.8 50.6 50.9 52.1 53.0 53.1 54.4 55.3 55.8 56.4 57.1 57.6 58.5 59.0 59.8 60.2 60.7 61.1 61.7 62.3 63.1 63.4 64.0 64.4 64.5 64.8 65.4 65.6 65.8 67.7 68.1 68.6 69.2 69.6 70.3 70.8 71.9 73.5 73.9 74.6 75.0 75.7 75.9 76.1 76.7 77.3 78.3 78.9 80.0 80.4 80.7 81.5 82.2 82.4 83.0 84.1 85.3 87.2 88.4 90.7 91.4 92.2 92.3 93.3 93.8 93.9 94.2 94.3 95.9 96.4 96.8 97.2 97.5 98.0 98.3 98.9 99.0 99.3 100.5 101.0 101.5 101.7 103.2 104.0 104.9 105.7 107.8 107.9 110.2 112.3 114.1 114.5 115.8 117.2 117.6 118.9 120.3 121.4 122.8 124.6 125.4 127.3 127.6 128.2 129.7 131.1 131.4 133.2 134.8 135.2 136.4 137.1 137.9 138.6 139.2 140.8 141.6 143.0 143.2 144.3 144.8 145.8 146.8 147.3 147.7 148.3 149.3 150.1 151.0 UMN_2253_88 0_17254_661 UMN_4869_226 0_12925_686 0_1745_359 0_11413_394 2_2065_222 2_9649_843 0_14069_506 0_337_311 UMN_3837_756 0_16250_309 0_12301_559 0_6275_653 UMN_6257_226 0_6416_211 0_6242_292 UMN_5001_539 0_5558_390 0_14920_542 2_2923_398 2_6397_216 2_5780_601 2_1822_405 2_4194_359 2_1616_73 UMN_2111_PAV 0_17866_334 0_18130_338 2_4927_101 0_9700_466 UMN_572_70 2_485_664 0_11344_114 UMN_3143_342 UMN_2600_110 2_6046_306 UMN_7613_573 2_9343_280 0_17773_378 UMN_4056_167 2_9422_361 UMN_7361_356 0_12748_207 0_15834_323 0_15560_244 0_823_493 2_4755_348 2_7344_255 0_14629_770 UMN_4382_189 0_13358_647 UMN_4643_160 0_18790_137 0_17501_323 2_10322_237 0_12256_330 2_2020_773 2_7097_134 2_10436_516 0_3213_195 0_17933_608 0_16902_385 2_5055_132 2_2484_287 0_17143_68 2_10515_466 0_6323_383 0_14604_95 0_11214_215 2_4337_734 0_18619_710 0_3787_160 0_7321_145 0_6699_390 0_13755_444 UMN_2557_PAV UMN_6326_112 0_10729_218 0_3328_593 2_9393_615 0_16837_355 0_2751_478 2_8432_180 UMN_6284_547 0_12526_596 0_16774_189 2_10184_869 0_11382_340 0_5879_P AV 0_18764_495 2_35_309 0_7674_100 2_9122_89 0_727_404 0_14024_343 2_7619_331 0_2277_444 2_4900_239 0_2224_58 2_3869_610 2_1118_660 2_6177_595 2_8935_76 0_11409_189 0_12348_364 0_7127_248 0_7214_397 2_6593_698 0_10968_94 0_9560_728 0_16879_351 0_17611_438 0_13634_330 2_9918_73 0_6106_277 UMN_2862_343 0_13151_227 0_2238_597 UMN_1439_115 2_2149_167 2_3038_695 0_7917_353 0_16697_418 0_10744_244 0_9121_550 2_4405_492 0_4809_173 0_5305_633 0_8287_677 0_15954_506 0_18422_135 2_5487_317 0_17881_524 2_101_625 2_9532_686 0_9720_190 0_14755_271 2_9294_478 0_18843_391 2_8281_720 0_18536_400 0_18187_234 2_5368_380 0_17959_480 0_18835_422 2_5143_204 2_140_171 0_17896_297 0_11281_167 2_5736_618 0_13195_245 UMN_3064_152 0_5346_819 2_7852_645 2_918_355 0_711_238 2_7807_263 2_5382_304 0_1829_389 2_8806_94 0_13455_152 2_5742_498 0_4607_487 UMN_4815_130 0_16891_217 0_4224_142 UMN_1342_474 UMN_3502_217 0_6918_465 2_6159_298 0_1964_342 2_6510_336 0_11576_392 0_4768_78 0_17947_165 UMN_5976_198 0_12818_466 0_1854_493 2_8597_341 2_6344_549 UMN_2957_480 0_16935_459 0_15315_488 2_8665_642 0_17617_642 0_1038_222 2_4486_197 0_13822_517 0_6901_511 UMN_5911_189 0_13892_240 0_3020_208 0_18795_77 UMN_6365_281 0_6774_559 0_7393_439 0_18458_395 0_12973_377 2_7352_430 0_5650_343 2_1458_375 0_13620_226 2_5791_200 0_16375_120 0_6743_148 2_4343_186 0_8482_584 2_9024_206 152.3 0_12055_P AV 152.9 153.6 153.8 0_15970_318 0_7610_298 0_3665_226 155.6 2_1820_119 157.1 0_3121_292 158.2 0_14489_528 161.1 UMN_5956_695 163.5 2_7751_355 165.7 2_5943_527 0.0 156.6 0_14642_102 158.4 2_1894_546 169.3 2_1182_352 36.5 LG 11 0.0 0_17409_479 5.8 UMN_4512_103 9.5 UMN_847_190 10.4 12.3 13.0 14.0 14.7 16.4 17.0 17.5 18.0 19.3 20.0 20.5 21.3 23.8 24.0 24.6 26.0 26.6 27.1 27.8 28.4 29.3 29.7 30.6 31.3 31.8 32.6 32.9 33.3 33.6 33.9 34.9 35.8 36.6 37.8 39.1 40.1 40.4 41.6 42.3 44.8 46.2 46.9 48.1 48.7 49.5 50.0 50.7 50.8 51.4 51.9 52.8 53.0 53.4 53.8 54.4 54.8 55.2 55.6 56.5 57.2 57.9 58.0 58.2 58.3 58.4 59.2 59.6 60.4 60.7 61.2 61.6 62.2 62.8 63.2 63.9 64.7 64.9 65.7 66.0 66.5 67.2 67.9 68.4 68.6 68.9 69.1 69.2 69.4 69.6 70.3 70.6 70.8 71.2 72.2 72.4 72.6 72.9 73.4 73.9 74.1 74.5 75.0 75.8 76.0 76.2 76.5 77.2 77.7 78.7 79.2 81.2 81.6 82.1 82.6 83.0 84.1 85.2 86.0 86.4 86.6 86.7 87.4 87.7 88.3 88.8 89.1 89.6 90.2 90.9 91.6 92.0 92.1 92.6 93.2 94.4 94.7 95.1 95.3 95.5 95.6 95.8 96.0 96.1 96.8 97.0 97.4 98.1 98.2 98.7 98.9 99.2 99.5 99.8 100.5 101.0 101.6 102.8 103.4 103.6 104.3 105.0 105.6 106.1 106.7 106.8 106.9 107.1 107.9 108.9 109.5 109.6 109.8 110.5 111.5 112.5 113.9 114.8 117.2 117.6 118.4 119.2 120.2 120.6 122.5 123.1 123.7 124.9 125.7 126.7 126.9 128.1 128.8 129.3 129.8 131.3 131.7 132.0 133.8 134.8 135.6 136.9 137.7 140.5 142.4 142.9 145.3 146.6 147.0 147.7 148.1 149.0 149.7 150.4 150.8 151.2 151.6 152.2 154.0 155.1 156.4 157.8 157.9 158.9 159.5 160.5 161.8 162.6 163.2 163.6 164.7 165.0 166.1 167.1 167.5 168.3 168.8 169.1 171.8 172.8 173.7 174.1 174.7 174.9 176.0 177.3 177.9 178.9 179.6 180.4 181.7 181.8 183.1 184.9 186.4 187.2 189.1 190.0 0_936_176 0_17892_251 2_10478_46 2_7945_354 0_630_278 0_3260_229 2_9408_165 0_6449_356 0_16801_351 0_4650_277 2_10320_650 2_10116_163 0_731_479 2_6107_607 0_344_603 0_9969_173 UMN_2711_200 2_3239_178 0_856_591 0_8845_673 UMN_887_229 UMN_4193_234 0_11446_168 0_8572_475 0_18128_124 0_10228_242 2_9009_126 2_3445_167 0_15627_129 UMN_1291_86 0_11991_219 0_18750_409 UMN_491_64 0_9473_762 0_10333_271 0_16223_385 0_15371_383 0_1216_235 0_12076_511 0_15639_207 0_11610_425 2_6310_133 0_8351_358 0_7933_365 0_5559_527 2_9772_172 UMN_3258_272 2_8466_238 0_16819_249 0_2999_471 0_2217_289 0_5994_239 2_9546_61 0_6029_102 0_11694_429 0_2527_590 UMN_6009_86 0_13213_268 0_9808_121 0_5323_479 0_188_78 UMN_4514_102 2_2172_282 0_2252_224 2_3871_693 UMN_4239_108 0_18231_194 0_12087_467 2_6180_141 0_17533_135 0_10060_PAV 2_10497_273 2_2669_183 0_10941_PAV 2_4244_124 0_1664_472 0_17083_113 0_12036_135 0_10515_373 2_2572_356 2_9003_496 UMN_527_52 0_10239_142 UMN_4378_110 2_5912_670 0_18785_468 0_9511_185 0_13523_300 0_3300_136 UMN_1866_401 0_8698_331 0_15416_582 UMN_2501_199 0_9949_251 0_17188_PAV 0_15581_132 0_5130_114 2_2795_435 0_14613_766 2_10479_478 2_3641_361 0_5973_218 UMN_1926_380 0_4685_365 0_644_327 2_3554_81 0_14674_356 0_604_296 2_7643_472 0_2946_260 2_6439_106 0_13143_213 2_9899_756 0_14388_406 2_4137_485 0_9163_703 2_7992_164 0_9390_144 0_10772_203 0_17386_512 2_6229_294 UMN_5395_450 0_4803_482 0_8280_229 0_17822_74 0_16430_117 0_14848_344 0_4384_299 0_12228_185 0_16880_444 0_14631_98 2_9435_174 0_3729_721 0_18122_606 2_4815_516 0_13732_408 0_2663_433 0_4170_450 0_14_423 0_1423_P AV UMN_3523_395 UMN_705_488 0_18624_181 2_7326_371 2_7844_489 0_11153_180 0_6429_262 UMN_4605_296 0_14306_357 0_15938_327 2_5301_321 UMN_4149_148 2_9683_322 0_7881_438 0_5619_717 0_3806_181 0_8499_180 UMN_3241_572 0_10413_174 0_4245_189 0_2077_419 0_538_463 0_11137_PAV 2_5931_435 0_1822_248 2_4230_392 0_16445_270 UMN_437_204 UMN_6290_1091 0_10900_564 0_12282_253 0_2048_205 0_9106_427 UMN_4649_99 0_6552_125 0_13244_424 UMN_3266_220 0_10366_151 UMN_3531_161 0_18069_456 2_5980_469 0_13868_261 2_5545_378 0_14593_466 UMN_5867_139 0_11640_308 0_11_355 0_1402_350 0_421_PAV 0_11902_PAV 2_3332_206 2_5827_164 0_266_PAV UMN_3316_268 0_14988_559 2_2268_190 UMN_3872_349 2_1909_773 UMN_1271_263 UMN_4224_167 2_10549_744 0_8476_705 UMN_601_350 0_10393_633 2_4579_731 0_7786_104 0_18691_671 UMN_3264_284 0_8053_243 0_14482_502 0_6742_P AV 0_13543_583 0_779_433 UMN_1034_381 2_3287_434 0_1803_265 UMN_280_PAV 0_16524_186 UMN_4818_48 0_5787_185 UMN_874_556 0_7262_368 0_15687_261 2_5345_558 0_13929_200 0_17220_301 2_5730_436 UMN_706_364 0_6196_623 0_2324_P AV 0_9113_P AV 0_487_311 0_18924_382 0_10505_PAV 0_6751_325 0_9242_P AV 2_4888_265 0_15941_636 2_8878_405 2_10380_395 UMN_3384_239 0_5293_P AV 0_18496_676 2_4556_557 2_9514_213 UMN_4111_111 2_9087_506 UMN_2378_389 0_12244_603 0_5461_405 0_6226_311 2_4251_123 0_8229_134 0_10614_457 2_10201_259 0_4924_260 0_14991_457 0_9317_105 0_17937_PAV UMN_6070_263 0_18451_178 UMN_5166_307 0_13044_383 0_5978_232 0_11736_237 0_1009_P AV 0_6214_695 2_8417_453 LG 12 0.0 3.3 4.2 5.8 7.1 9.0 9.5 10.6 10.7 13.1 13.2 13.7 14.2 14.3 15.1 15.4 15.7 16.8 17.9 18.5 18.6 19.2 20.5 21.4 21.9 22.5 23.0 23.8 24.3 24.9 25.2 25.3 26.0 26.4 26.8 27.3 27.6 27.7 27.9 28.6 28.8 29.5 29.7 30.4 30.5 30.6 31.1 31.3 31.6 32.0 32.2 32.4 32.8 33.0 33.2 33.4 33.7 34.0 34.1 34.3 34.7 34.8 35.1 35.2 35.4 35.6 36.1 36.6 37.2 37.6 37.9 38.4 38.6 39.2 39.5 40.2 40.4 40.8 41.3 41.6 42.0 42.4 42.5 42.6 42.7 42.8 43.0 43.1 43.4 43.8 43.9 44.5 44.7 45.0 45.4 45.5 45.6 46.5 46.7 47.1 47.7 47.8 48.1 49.7 50.4 50.8 51.4 51.6 52.5 52.9 53.5 53.7 54.4 54.7 55.0 55.3 55.6 55.7 56.0 56.3 56.7 56.9 57.3 58.8 59.1 59.3 59.8 60.8 62.7 63.8 64.0 64.8 65.3 65.9 66.7 67.4 68.5 68.8 69.3 69.7 70.1 70.4 71.1 71.5 72.0 72.7 73.1 73.7 73.9 74.6 75.2 75.3 75.7 77.3 77.7 78.4 79.2 79.8 80.8 81.2 81.7 82.0 84.5 85.2 85.9 86.2 87.1 88.9 89.4 91.6 92.0 93.2 94.2 94.5 95.3 97.1 99.2 101.0 102.0 104.1 104.6 105.2 106.0 106.5 106.9 107.2 107.8 108.2 108.7 109.5 109.7 110.7 111.1 111.5 111.8 112.5 113.9 114.2 114.8 115.2 115.6 115.7 116.0 116.3 116.4 117.7 117.8 118.3 118.5 119.0 119.5 120.0 120.6 121.5 122.6 123.6 123.8 123.9 124.1 124.6 124.9 125.3 125.9 126.9 127.6 129.0 130.5 131.3 132.7 133.3 134.7 140.3 UMN_6145_PAV UMN_1128_109 2_10437_243 0_10427_191 0_9670_557 2_9345_254 0_9160_388 0_3501_169 2_8987_531 UMN_3646_139 0_13769_75 2_4458_351 0_13183_515 UMN_5017_266 0_11078_659 UMN_991_325 2_1164_608 2_2479_716 0_8726_357 0_11835_252 0_16948_349 UMN_1296_614 2_6614_230 UMN_5591_102 0_8936_362 0_10007_309 0_9466_344 UMN_1189_PAV 0_13898_462 0_11772_491 2_1205_279 UMN_702_154 0_13110_327 0_9354_386 0_2616_173 0_11007_358 0_6533_194 UMN_560_126 0_572_156 UMN_3725_174 UMN_4096_339 2_6576_612 UMN_592_287 0_9194_740 2_3223_328 0_13181_437 UMN_5235_260 0_18379_434 0_16860_274 UMN_1150_252 0_6458_422 UMN_6614_79 2_5264_214 0_18742_657 UMN_540_267 UMN_6062_421 UMN_7042_387 0_12284_245 0_5695_356 0_18007_215 2_1093_646 0_13484_569 0_15374_317 0_18676_201 0_13609_471 0_8769_285 0_3314_793 0_17890_295 0_11037_279 0_12853_337 2_5641_112 UMN_1471_96 2_3801_401 0_5614_376 0_18830_460 0_10064_727 0_5038_244 2_3173_881 0_16653_262 2_6298_696 2_4375_590 2_10340_110 0_7167_425 0_12851_89 0_11451_575 0_1611_76 2_3207_388 2_4444_218 0_8870_162 0_9486_753 0_18411_219 0_10739_294 0_15758_492 0_5405_568 0_1319_227 0_12060_99 0_2703_308 UMN_4692_172 0_14894_126 0_18460_642 0_248_666 2_9090_260 0_6983_297 0_10384_343 0_954_378 UMN_3386_127 0_8803_161 0_17454_383 0_9001_61 0_12402_79 0_13315_486 0_11593_321 2_8131_552 0_14093_653 2_6221_466 0_17588_265 UMN_3238_451 2_55_457 0_10113_246 0_14730_267 2_6357_316 0_2295_187 UMN_3497_273 UMN_6280_403 0_14383_379 2_8522_743 0_8284_325 2_4174_99 2_6041_398 0_457_144 0_3251_517 2_3628_229 2_3382_510 0_11195_412 2_6429_235 0_6337_234 0_18322_627 0_17894_347 0_7654_250 0_4356_184 0_10099_195 2_4921_583 2_768_350 0_15885_561 0_1578_339 0_8335_762 2_2348_333 2_5574_470 0_10037_592 UMN_2583_273 0_16350_473 2_10071_281 0_16565_413 0_14944_705 0_14499_230 2_3018_334 UMN_5730_282 0_882_168 2_294_376 0_1069_121 0_1367_104 UMN_495_89 UMN_1974_193 0_2168_204 0_2152_222 2_6278_580 2_2210_184 UMN_2192_112 UMN_6256_135 UMN_1956_79 0_4482_519 0_5306_141 0_7115_415 0_2542_P AV 0_14956_530 0_16098_244 0_17458_292 0_17445_339 0_9201_81 0_7381_567 1_256_440 0_14369_348 0_9450_318 0_3011_434 2_8984_228 0_6456_202 0_5671_245 2_4323_399 0_4793_470 0_9571_348 0_6300_242 0_1345_520 2_9779_602 2_4342_124 0_13907_550 0_8332_390 2_5840_482 0_9865_786 2_9360_435 UMN_6177_172 UMN_5614_306 2_8381_596 0_1022_272 0_15935_227 0_15121_381 0_18457_502 2_6052_256 0_5322_335 0_15704_61 2_6128_492 0_3319_534 0_8504_471 0_12346_305 UMN_2312_300 UMN_2883_787 UMN_5180_395 0_18465_177 0_18535_163 0_13829_694 0_5132_403 0_18698_410 0_6055_394 0_9868_756 0_6536_256 0_352_449 2_9651_408 2_3542_428 UMN_6313_975 0_6738_143 2_10483_474 0_13256_217 0_17800_494 0_13760_289 UMN_2152_67 0_18620_PAV UMN_56A_58 0_1349_P AV 0_49_175 2_4944_440 0_13093_165 100 Linkage Group 4 60 0 20 40 Eckert relative position (%) 60 40 20 0 Eckert relative position (%) Spearman cor. = 0.99 80 Spearman cor. = 0.55 80 100 Linkage Group 2 0 20 40 60 Neves relative position (%) 80 100 0 20 40 60 Neves relative position (%) 80 100
© Copyright 2026 Paperzz