Supplement of Atmos. Chem. Phys., 16, 3743–3760, 2016 http://www.atmos-chem-phys.net/16/3743/2016/ doi:10.5194/acp-16-3743-2016-supplement © Author(s) 2016. CC Attribution 3.0 License. Supplement of Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US Sean Coburn et al. Correspondence to: Rainer Volkamer ([email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. S1 InstrumentandMeasurementSite TheinstrumentandmeasurementsiteareidenticaltothatdescribedinCoburnetal.(2011).Only abriefoverviewwillbegivenhere.Forthedurationofthemeasurementsdiscussedinthisstudy, aresearch-gradeMAX-DOASinstrumentwaslocatedataUnitedStatesEnvironmentalProtection Agency(USEPA)facilityinGulfBreeze,FL(30.3N87.2W)andmeasuredfortimeperiodsbetween May2009andFebruary2011.Thissiteis~10kmsoutheastofPensacola,FL(populationappr. 50,000) and ~1 km from the coast of the Gulf of Mexico, which enables the measurement of urbanandmarineairmasses.Thespectrometerandcontrollingelectronicswereset-upinthe warehouseoftheEPAfacility,whilethetelescopewasmountedonasupportstructureonthe roofofthewarehouse(~10-12mabovesealevel)connectedviaanopticalfiber.Thetelescope wasoriented~40°westoftruenorthinordertorealizeaclearviewinthelowestelevationangles tothecoast.Duringoperationthefull180°elevationanglerangeofthetelescopewasutilizedto enablethecharacterizationofair-massesovertheseawaterlagoontotheNorth,andoverthe coastalregionoftheGulfofMexicototheSouth.Forthepurposesofthisstudy,thenorthviewing direction will be considered to minimize changes in the radiative transfer calculations due to azimutheffectsthroughouttheday. TheinstrumentusedforthisstudyconsistsofaPrincetonInstrumentsActonSP2300iCzernyTurnergrating(500groove/mmwitha300nmblazeangle)spectrometerwithaPIXIS400BbackilluminatedCCDdetector(Coburnetal.,2011).Thissetupwasoptimizedtocoverthewavelength range ~321-488 nm with an optical resolution of ~0.68 nm full-width at half the maximum (FWHM).Thespectrometeriscoupledtoaweather-resistanttelescope(capableofrotatingthe elevationangleby180°,50mmf/4optics)viaa10mlong1.7mmdiameterquartzfiber.During normal field operation this instrument was routinely able to realize values of the root mean square(RMS)oftheresidualremainingaftertheDOASfittingprocedureontheorder0.9-3x10-4. Thissystemwasverystable,withlittleneedformaintenance,andwasoperatedremotelyfor periodsbetweenMay2009andFebruary2011tomeasuremultipletracegases,including:BrO, IO,nitrogendioxide(NO2),formaldehyde(HCHO),glyoxal(CHOCHO),andtheoxygenmolecule collisioninducedabsorptionsignal(referredtoasO4). S2 DOASretrievalsensitivitystudies S2.1 Retrievalwindow:Severalsensitivitystudieswereperformedtodeterminethemost suitableanalysissettingsfortheBrOretrieval.Thiswasaccomplishedthroughacomparisonof bothO3andHCHOdSCDvaluesfromtheBrOfittingwindowwithdSCDspredictedusing WACCMverticalprofiles.Also,theeffectofusingdifferentO4referencecross-sectionswas testedwithrespecttotheO4dSCDintheBrOfittingwindow. WACCMmodeloutputprofilesforO3andHCHOwereusedtoforwardcalculatedSCDsfor comparisontomeasureddSCDsofO3andHCHOretrievedusingtheBrOfittingwindow.Five differentBrOanalysissettingwindowsweretested:1)fittingwindow345-359nmwitha2nd orderpolynomial(encompassestwoBrOabsorptionpeaks–2-bandanalysis);2)fittingwindow 346-359nmwitha2ndorderpolynomial(2-bandanalysis);3)fittingwindow340-359nmwitha 3rdorderpolynomial(3-bandanalysis);4)fittingwindow340-359nmwitha5thorder polynomial(3-bandanalysis);and5)fittingwindow338-359nmwitha5thorderpolynomial(4bandanalysis).Itwasdeterminedthatanalysissetting5)(4-bandanalysiswith5thorder polynomial)includingaconstrainedintensityoffset(Sect.S2.2)bestrepresentedbothO3and HCHO.ThesearetheanalysissettingsthatwerethenusedtoassesstheeffectsofdifferentO4 crosssectionsintheBrOfittingwindow:1)Hermans(2002);2)Greenblattetal.(1990);and3) ThalmanandVolkamer(2013).TheO4dSCDsretrievedfromtheBrOfittingwindowwere comparedwiththeO4dSCDsretrievedfromanO4optimizedfittingwindowintheUV(353-387 nm);andwhilenoneofthecrosssectionsareabletofullyreproducetheO4dSCDsfromtheO4 optimizedwindow,theThalmanandVolkamer(2013)cross-sectionwasdeemedtobean improvementoverHermansandGreenblatt/BurkholderinrepresentingO4intheBrOfitting window. S2.2 Intensityoffset:AnadditionalparameterthatcanbeutilizedintheDOASretrievalisan intensityoffset,whichwouldbeusedtohelpaccountforanyinstrumentstraylight.The instrumentemployedforthisstudywasdesignedtoactivelyminimizespectrometerstraylight throughtheuseofcut-offfilters(BG3andBG38),aswellasthemethodofbackground correction.ThebackgroundcorrectionissimilartothatdescribedinWagneretal.(2004)and utilizesdarkregionsontheCCDdetectortocorrectfordarkcurrentandoffsetnoiseaswellas straylight.Itwasdeterminedthatstraylightintheinstrumentwasonlyafewpercent(before correction)inthewavelengthrange330-360nm.Fittinganintensityoffsetshouldonlyaccount foruncorrectedstraylightandisexpectedtobeontheorderofmagnitudeoftheerrorinthe backgroundcorrection.ThefittingofthisparametertypicallyhelpsreducetheRMSofthe fittingroutine,thusimprovinginstrumentsensitivity.However,preliminarystudiesfounda significanteffectontheretrievedBrOdSCDsdependingonwhetherornotthisparameterwas includedinthefittingroutine,andthatthiseffectwasmostpronouncedinthenarrowerfitting windows.Inthemostextremecase(analysiswindow346-359nm),retrievedBrOdSCDs changedfrom~1x1014moleccm-2withoutfittingtheintensityoffsettovalueslessthanzero whenanunconstrainedintensityoffsetwasincluded.Inallfittingwindowstested,utilizingan unconstrainedintensityoffsetresultedinthehighestfitfactorfortheoffsetandlowestvalues fortheBrOdSCDs,andinsomecasesleadtosignificantlynegative(non-physical)values.In thesecases,itwasfoundthatperiodsoftimeexistedwhenthefitfactorfortheintensityoffset wasmuchgreaterthanwhatwasdeterminedtobeareasonablevalueforthisinstrument.For thisreason,theintensityoffsetwaskeptintheretrieval(tohelpwithRMS),butlimitedtoa rangedeterminedbytheupperlimitofthisestimatedcorrection(±3x10-3). BasedonthefindingsoftheoffsetsensitivitytestsandthedSCDcomparisontestspresentedin thissection,thedSCDsusedfortheBrOinversionarefromthe338-359nmfittingwindow utilizinga5thorderpolynomial,theconstrainedintensityoffset,andtheThalmanandVolkamer (2013)O4cross-section. S3 AerosolRetrieval Aerosol profiles are determined through an iterative comparison of measured O4 dSCDs (analyzed in the wavelength window 437-486 nm) with O4 dSCDs calculated from the RTM McArtim3(Deutschmannetal.,2011)outputsbasedonspecificaerosolextinctionprofiles.This processisperformedoneachsetofMAX-DOASviewingangles(forthispointforwardreferred toasascan)ofthecasestudyday(totalof56scans)inordertodetermineindividualaerosol profiles.Theinitialaerosolprofileusedforeachscandecreasedexponentiallywithaltitudefrom avalueof0.01km-1at483nm(scaleheightof0.6km).Thiswavelengthischosenforitsproximity totheO4peakabsorptionstructureat477nmwhileavoidingthefeatureitself,aswellasavoiding absorptionstructuresfromothertracegases(i.e.NO2).ThisO4fittingwindowwaschosendueto the better general agreement achieved between measured and forward calculated O4 dSCDs (calculatedafteraerosolextinctionprofilesweredetermined)ascomparedwiththeO4retrieval intheUVrange.ThisissimilartofindingsfromVolkameretal.,(2015),whereitisdetermined thatusingthe477nmO4bandforderivingaerosolprofilesismuchmorerobustthanusingthe UV bands due to the increased Rayleigh scattering at shorter wavelengths, which can mask aerosolextinction. TheO4verticalprofilesusedforallcalculationsandasinputtotheRTMarebasedontemperature andpressureprofilesavailablefromNOAA’sESRLRadiosondeDatabaseforlocationsclosetothe measurementsite,whichareingoodagreementwiththecorrespondingprofilesfromWACCM. IneachstepoftheiterationthemeasuredO4dSCDsarecomparedtotheforwardcalculated dSCDsateachelevationangleofthescanbeinganalyzed,andthedifferencesbetweenthese valuesareusedasinputforoptimizingthemodificationoftheaerosolprofileforthesubsequent iteration.Forthisstudy,theconvergencelimitissetatapercentdifferenceof5%betweenthe lowest two elevation angle dSCDs, or if the process reaches 5 iterations without finding convergencethelastaerosolprofileisused.Thelimitof5iterationsischosenasacompromise betweenachievingoptimalagreementbetweentheO4dSCDsanddatacomputationtime.For this case study, the 5% criterion is reached for every sequence. The resulting time series of aerosolextinctionprofilesareshowninFig.S10(Supplement). Theaerosolextinctionprofilesat483nmwerescaledtoderiveextinctionat350nmusingthe relationshipfoundinEq.(S1). 𝜀"#$ =𝜀%&" ·( "#$ )*.,# ) %&" (S1) whereε350andε483representaerosolextinctioncoefficientsat350and483nm,respectively.An Angstromexponentof-1.25waschosenasamoderatevaluethatwouldberepresentativeofan averageatmosphere(Duboviketal.,2002).Theretrievedaerosolprofilesat350nmprovided inputtotheRTMinordertocalculatetheappropriateweightingfunctionsforBrO. S4 BoxModelDescription ThemodelingportionofthisstudyisdesignedtoassesstheconcentrationofBrradicalsavailable toparticipateinthemercuryoxidationreactionbasedonBrOverticalprofilesprovidedfromthe MAX-DOASmeasurementsandGEOS-Chem.Othertracegasandatmosphericparameterinputs to the diurnal steady-state box model (Dix et al., 2013, Wang et al., 2015) are median daily profilesderivedfromtheMAX-DOASmeasurements,WACCM,andGEOS-Chem.Asinglemedian profile representing the entire day (daily median, for each model input) is used rather than individualprofiles.Fromtheseprofiles,theboxmodelthencalculatesthepartitioningbetween bromine species throughout the troposphere (including: reactions with other trace gases; photolysis; and some aqueous phase partitioning and chemistry) in order to derive vertical profilesoftheBrradical,whicharesubsequentlyusedforcalculatingmercuryoxidationrates.A summaryofallthereactionsinvolvingmercurycompoundsconsideredintheboxmodelalong withassociatedratecoefficientscanbefoundinTable2.Themodelconceptuallyfollowsthe framework of Crawford et al., (1999), where model inputs are initiated and allowed to reach steady-stateoverseveraldays.Intheboxmodel,theBrOandIO(toassesstheimpactofiodine radical species in the mercury oxidation reactions) profiles are taken from the MAX-DOAS measurements;however,theGEOS-ChemBrOprofileisalsousedinordertoassesstheimpact of the differences between these profiles. Other box model inputs are taken as the output profilesfromtheexternalmodelsutilizedinthisstudyandtheseinclude:temperature,pressure, andHCHOfromWACCM;andO3andNO2fromGEOS-Chem.AsasensitivitytestWACCMO3and NO2werealsousedtoassesstheimpactonthemercuryoxidationschemetowardsdifferences in the vertical distributions of these molecules. The resulting vertical profiles of the rate of mercuryoxidationusingthesetwoprofilesasboxmodelinputsisfoundinFig.S11(Supplement), whichfollowsthesameformatasFig.7.AerosolsurfaceareameasurementsfromtheTORERO dataset(Volkameretal.,2015;Wangetal.,2015)areassumedrepresentativeofconditionsin the marine atmosphere, and therefore used as model inputs for lack of independent measurements. The vertical distribution of Hg0 from GEOS-Chem was used in all scenarios. Additionally, photolysis rates for a variety of species, calculated using the Tropospheric UltravioletandVisible(TUV)Radiationmodel,areincluded.TheTUVmodelwasinitiatedfora Rayleighatmosphere(aerosolextinction=0),withO3andNO2columnsof380and0.3Dobson Units(DU),respectively,whicharederivedfromtheaverageverticalprofilesfromWACCM.Since themedianBrOprofilederivedbytheMAX-DOASmeasurementscloselyresemblestheprofiles retrievedaroundsolarnoon(seeFig.5),theTUVcalculationsfromthistimeareused.Forthe modelrunscomparingtheBrOprofilesfromthemeasurementsandGEOS-Chem,onlytheBrO profileischanged;allotherinputsremainconstant. Forthedeterminationofthedominantoxidativepathways,thereactionratesforoxidationof Hg0againstBrandO3arecalculatedasafunctionofaltitudeforthedifferentreactantvertical profiles, which is important due to atmospheric temperature gradients. This also allows the assessmentoftherelativecontributionsofthesereactionstotheoverallrateofoxidationasa functionofaltitude.OxidationbyO3isincludedintheboxmodelduetotheamountofevidence from laboratory studies indicating that this reaction might play a role in the atmosphere; althoughpotentiallynotcompletelyinthegasphase. FollowingWangetal.(2015),theboxmodelisinitiatedundertwodifferentmodestoinvestigate thesensitivityofoxidationrates,andlikelyproductdistributionstothemechanisticassumptions aboutmercuryoxidation.ThetwomodesdifferinthescavengingreactionsoftheHgBradduct. A“traditional”scenarioonlyincludesBrandOHradicalsasscavengers(Holmesetal.,2009),and a“revised”modeincludesspeciessuggestedbyDibbleetal.,2012(BrO,NO2,andHO2)aswell asadditionalhalogenspecies(IandIO).Themodelalsotrackstheconcentrationsofallspecies as a function of altitude, which gives indications for the product distributions of the various reactions. References(Supplement) Coburn,S.,Dix,B.,Sinreich,R.,andVolkamer,R.:TheCUgroundMAX-DOASinstrument: characterizationofRMSnoiselimitationsandfirstmeasurementsnearPensacola,FLofBrO, IO,andCHOCHO,Atmos.Meas.Tech.,4,2421-2439,10.5194/amt-4-2421-2011,2011. Crawford,J.,Davis,D.,Olson,J.,Chen,G.,Liu,S.,Gregory,G.,Barrick,J.,Sachse,G.,Sandholm, S.,Heikes,B.,Singh,H.,andBlake,D.:AssessmentofuppertroposphericHOxsourcesover thetropicalPacificbasedonNASAGTE/PEMdata:NeteffectonHOxandother photochemicalparameters,J.Geophys.Res.-Atmos.,104,16255-16273, 10.1029/1999JD900106,1999. Deutschmann,T.,Beirle,S.,Friess,U.,Grzegorski,M.,Kern,C.,Kritten,L.,Platt,U.,PradosRoman,C.,Pukite,J.,Wagner,T.,Werner,B.,andPfeilsticker,K.:TheMonteCarlo atmosphericradiativetransfermodelMcArtim:IntroductionandvalidationofJacobiansand 3Dfeatures,J.Quant.Spectrosc.Radiat.Transfer,112,1119-1137, 10.1016/j.jqsrt.2010.12.009,2011. Dibble,T.S.,Zelie,M.J.,andMao,H.:ThermodynamicsofreactionsofClHgandBrHgradicals withatmosphericallyabundantfreeradicals,Atmos.Chem.Phys.,12,10271-10279, 10.5194/acp-12-10271-2012,2012. Dix,B.,Baidar,S.,Bresch,J.F.,Hall,S.R.,Schmidt,K.S.,Wang,S.,andVolkamer,R.:Detection ofiodinemonoxideinthetropicalfreetroposphere,Proc.Natl.Acad.Sci.U.S.A.,110, 2035-2040,10.1073/pnas.1212386110,2013. Dubovik,O.,Holben,B.,Eck,T.F.,Smirnov,A.,Kaufman,Y.J.,King,M.D.,Tanre,D.,Slutsker,I.: Variabilityofabsorptionandopticalpropertiesofkefaerosoltypesobservedinworldwide locations,J.Atmos.Sci.,59,3,590-608,doi:10.1175/15200469(2002)059<0590:VOAAOP>2.0.CO;2,2002. Greenblatt,G.,Orlando,J.,Burkholder,J.andRavishankara,A.:Absorption-Measurementsof Oxygenbetween330nmand1140nm,J.Geophys.Res.-Atmos.,95,18577-18582, 10.1029/JD095iD11p18577,1990. Hermans,C.,Measurementofabsorptioncrosssectionsandspectroscopicmolecular parameters:O2anditscollisionalinducedabsorption: http://www.aeronomie.be/spectrolab/o2,2002. Wagner,T.,Dix,B.,vonFriedeburg,C.,Frieß,U.,Sanghavi,S.,Sinreich,R.,andPlatt,U.:MAXDOASO4measurements:Anewtechniquetoderiveinformationonatmosphericaerosols. Principlesandinformationcontent,J.Geophys.Res.109,D22205, doi:10.1029/2004JD004904,2004.al.(2004) Holmes,C.D.,Jacob,D.J.,Mason,R.P.,andJaffe,D.A.:Sourcesanddepositionofreactive gaseousmercuryinthemarineatmosphere,Atmos.Environ.,43,2278-2285, 10.1016/j.atmosenv.2009.01.051,2009. Thalman,R.andVolkamer,R.:Temperaturedependentabsorptioncross-sectionsofO2-O2 collisionpairsbetween340and630nmandatatmosphericallyrelevantpressure,Phys. Chem.Chem.Phys.,15,15371-15381,10.1039/c3cp50968k,2013. Volkamer,R.,Baidar,S.,Campos,T.L.,Coburn,S.,DiGangi,J.P.,Dix,B.,Eloranta,E., Koenig,T.K.,Morley,B.,Ortega,I.,Pierce,B.R.,Reeves,M.,Sinreich,R.,Wang,S., Zondlo,M.A.,andRomashkin,P.A.:AircraftmeasurementsofBrO,IO,glyoxal,NO2,H2O, O2-O2andaerosolextinctionprofilesinthetropics:Comparisonwithaircraft-/ship-basedin situandlidarmeasurements,Atmos.Meas.Tech.8,2121-2148,2015.doi:10.5194/amt-82121-2015. Wang,S.,Schmidt,J.A.,Baidar,S.,Coburn,S.,Dix,B.,Koenig,T.,Apel,E.C.,Bowdalo,D., Campos,T.L.,Eloranta,E.,Evans,M.J.,diGangi,J.P.,Zondlo,M.A.,Gao,R.S.,Haggerty,J.A., Hall,S.R.,Hornbrook,R.S.,Jacob,D.J.,Morley,B.,Pierce,B.R.,Reeves,M.,Romashkin,P.A., terSchure,A.,andVolkamer,R.:Activeandwidespreadhalogenchemistryinthetropical andsubtropicalfreetroposphere,P.Natl.Acad.Sci.USA,2015. FigureCaptions Figure S1: BrO box-AMFs for two elevation angles (25° and 90°, solid and dashed lines respectively)atdifferentSZAs.Forthesehigherpointingelevationangles,thebox-AMFspeakat altitudesof2-15km(freetroposphere)forSZAslowerthan70°,whileathigherSZAthebox-AMFs indicatethatthesensitivitytowardsthefreetroposphereisdecreasing. FigureS2:Overviewofbox-AMFSforSZAslessthan70°for4elevationangles:a)3.8°;b)10°;c) 25°;andd)90°. FigureS3:OverviewoftheWACCMBrOverticalprofilesasafunctionofaltitudeandtimeofday (panela),andthencollapsedintotothecorrespondingpartial(greentrace)andtotal(bluetrace) VCDsinpanelb. FigureS4:ExampleresultsfortheinversionofIOfromtheMAX-DOASmeasurements.Panela) containsthethreea-prioriprofilesusedintheinversion(dashed,coloredlines),thea-posteriori resultsfromaMAX-DOASscanat~45°SZA(morning)correspondingtothea-prioriprofiles(solid lines,colorscorrespondwiththea-priori),andthemedianIOprofile(redtrace,wheretheerror barsreflectthe25thand75thpercentiles).Panelb)showstheaveragingkernelsfortheinversion using a-priori “Prf1”. Panel c) shows the diurnal variation of the IO VCD for the BL (0-1 km), troposphere(0-15km),andtotal(0-25km). FigureS5:OverviewofthesensitivityofSCDRefandthederivedVCDsonthechoiceofreference spectra/scananda-prioriprofileassumption.Panel(a)containstheSCDRefdeterminedfromboth forwardcalculationsofthea-prioriprofiles(greytraces)andtheiterativeapproach(bluetraces) for47differentzenithspectra.Thea-prioricasescorrespondingtothemedianBrOprofilebased on WACCM (WACCM*1.4) are denoted with thicker and darker lines. The error bars on the forwardcalculatedmedianBrOprofilecase(darkgrey)reflectthe±1x1013moleccm-2criteriafor selectingsuitablereferences.Panel(b)containsthecorrespondingVCDsderivedforoneMAXDOAS scan (near solar noon) for each of the references and a-priori combinations. The blue shadedverticalboxesdenotereferencesthatmeetthecriteriaforbeingusedintheinversion; andthehorizontalgreybox(panelb)coverstherangeof2.3±0.9x1013moleccm-2,whichfully capturesallthereferencescontainedwithintheshadedblueregion. FigureS6:TimeseriesoftheDoFsandinversionRMSforthreedifferentanalysisprocedures:1) changingreferenceanalysis(referenceisselectedfromeachmeasurementscanthroughoutthe day,bluetrace);2)fixedreferencewithoutaccountingforanySCDRef(greentrace);and3)fixed referenceanalysisaccountingforSCDRef(redtrace).IncludedintheplotisSZA(blacktrace)for reference. FigureS7:ShowsacomparisonofthemeasuredBrOdSCDsandthedSCDscalculatedfromtheaposterioriprofiles(inversionusingtheWACCMprofile)forboththeentirecasestudyday(panel a)andforasmallsubsetofscansbeforesolarnoon(panelb).PanelccontainstheRMSofthe differencebetweenthemeasuredandcalculateddSCDsforeachscan. FigureS8:Overviewofverticalprofilesofparametersusedasinputtotheboxmodelutilizedin this study which were: 1) from WACCM (temperature, pressure, HCHO); 2) from GEOS-Chem (BrO,O3,NO2,andHg0);3)fromtheTOREROfieldexperiment(totalsurfacearea);and4)derived duringthisstudy(BrOandIO). FigureS9:ObservedconcentrationsofselectedtracegasesduringApril2010atthePensacola MDNsite.Notescalefactorsforsomespeciesgiveninthelegend. FigureS10:ComparisonofmeasuredO4dSCDsanddSCDcalculatedbasedonthederived aerosolprofilesfortheentirecasestudyday(panela)andasubsetofscans(panelb).Panelc containsthediurnalvariationinthederivedaerosolprofiles,andanexampleprofileisfoundin paneld. FigureS11:Boxmodelresultsoftherateofmercuryoxidationasafunctionofaltitudefortwo species:1)ozone(red);and3)bromineradicals(solidblue:MAX-DOAS;dashedpink:GEOSChem)(panela);thecorrespondinglifetimesarefoundinpanelb.Theblackdashedlineat4km showswheremeasurementsensitivitystartstodropbecauseofthedecreasingamountofBrO (themeasuredparameter)inthelowerlayersoftheatmosphere.Thisfigureiscomplementary toFig.7,butusestheWACCM,ratherthanGEOS-Chem,O3andNO2verticalprofilesasinput. FigureS1 FigureS2 FigureS3 FigureS4 FigureS5 FigureS6 FigureS7 FigureS8 FigureS9 FigureS10 FigureS11
© Copyright 2026 Paperzz