Numerical Methods in CAGD FMN011 2016 Carmen Arévalo & Claus Führer [email protected], [email protected] Lund University Lecture 2 Ht1 2016 Arévalo/Führer FMN100 2013 LINEAR INTERPOLATION A straight line through points p and q is the set of all points of the form x(t) = (1 − t)p + tq; t∈R For 0 ≤ t ≤ 1, the point x is between p and q. This mapping of the interval [0, 1] to the straight line through two given points is also called linear interpolation. Arévalo/Führer FMN100 2013 1 RATIOS q(t) = (1 − t)p0 + tp1 u t p0 x q 1−t u p1 The ratio of q with respect to p0 and p1 is t/(1 − t). Ratios are invariant under affine maps. Arévalo/Führer FMN100 2013 2 DOMAIN TRANSFORMATIONS The map Φ : [c, d] → [0, 1] Φ(u) = u−c d−c is an affine map called a domain transformation. Ψ(t) = (1 − t)p0 + tp1, 0 ≤ t ≤ 1 d−u u−c Ψ ◦ Φ(u) = p0 + p1 , c ≤ u ≤ d d−c d−c are both the same segment [p0, p1]. Arévalo/Führer FMN100 2013 3 BERNSTEIN POLYNOMIALS Binomial expansion of 1: 1 = (t + (1 − t))n = n X n i=0 i ti(1 − t)n−i The Bernstein polynomials of degree n are n i n Bi (t) = t (1 − t)n−i, i Arévalo/Führer FMN100 2013 i = 0, 1, . . . , n 4 COEFFICIENTS OF THE BERNSTEIN POLYNOMIALS The coefficients can be obtained from Pascal’s Triangle: 1 1 1 1 1 1 1 2 3 4 5 Arévalo/Führer FMN100 2013 1 3 6 10 1 4 10 1 5 1 n=0 n=1 n=2 n=3 n=4 n=5 5 PROPERTIES OF BERNSTEIN POLYNOMIALS n−1 • Recursion formula: Bin(t) = (1 − t)Bin−1(t) + tBi−1 (t) • Partition of unity: n X Bin(t) ≡ 1 i=0 • Linearly independent n • Symmetric: Bin(t) = Bn−i (1 − t) • Roots only at 0 and 1: Bin(0) = 0 Bin(1) = 0 (i = 0, . . . , n − 1) (i = 1, . . . , n), • Positive: Bin(t) > 0 for 0 < t < 1 Arévalo/Führer FMN100 2013 6
© Copyright 2026 Paperzz