10/8/2010 TUT 8th October 2010 Chem 251 y 7.9a Exercises from the book The equilibrium constant for the gas-phase isomerization of borneol (C10H17OH) to isoborneol at 503 K is 0.106. A mixture consisting of 7.50 g of borneol and 14.0 g of isoborneol in a container of volume 5.0 dm3 is heated to 503 K and allowed to come to equilibrium. Calculate the mole fractions of the q two substances at equilibrium y 7.12b Estimate the temperature at which CuSO4·5H2O undergoes dehydration. y 7.15b Devise cells in which the following are the reactions and calculate the standard emf in each case: a) b) c) Atomic Element weight C 12.011 H 1.0079 O 15.9994 ΔHf / ΔSf / Compound (kJmol‐1) (J K‐1mol‐1) CO2(g) ‐393.51 213.785 ‐241.82 188.83 H2O(g) ‐2279.70 300.40 CuSO4•5H2O(s) CuSO4(S) ‐771.36 109.00 0 205.152 O2(g) Cu(g) 338.32 166.38 ‐285.83 69.95 H2O(l) P(white) + 3H+ + 3e‐ —>PH3(g) 2 H+ + 2 e‐ —>H2(g) AgBr(s) + e‐ —>Ag(s) + Br− 2 H2O + 2 e‐ —>H2(g) + 2OH− Bi(s) + 3 H+ + 3 e‐ —>BiH3 Na+ + e‐ —>Na(s) La3+ + 3 e‐ —>La(s) I3 − + 2 e‐ —>3 I− I2(s) + 2 e‐ —>2 I− 2 Na(s) + 2H2O(l) Æ 2 NaOH(aq) + H2(g) H2(g) + I2(g) Æ 2 HI(aq) H3O+(aq) + OH–(aq) Æ 2H2O(l) B ↔ IB 7.9(a) Mass Cmpd (g) Mole B/IB (MW) Borneol (B) 7.5 0.048942 153.2437 Isoborneol (IB) 14 0.091358 ⎛ ⎞ 0.04.. ⎟⎟ × 1.15.. Q = ΡIB ΡB = ⎜⎜ ⎝ (0.04.. + 0.09.. ⎠ Ρ ⎛ ⎞ 0.09.. ΡIB = ⎜⎜ ⎟⎟ × 1.15.. ⎝ (0.04.. + 0.09.. ⎠ Parameter Value Units R = 0.08205746dm3 atm K‐1 mol‐1 T = 503K V = 5dm3 Q = 1.86666667 ‐ P = nRT/V 1.15816885atm B B ↔ IB 0.404012391 0.754156 Initial +X ‐X change 0.4.. + X 0.75.. ‐ X eqm 1.047168945 0.111 eqm (value) Use K not Q 0.106 = −0.063 0.0000 +0.0713 −0.83 −0.8 −2.71 −2.379 +0.53 +0.54 0.75... + X 0.4... + X χ IB = 0.11... ×1.15.. ΡB = χ B × ΡT chk (k) = χB χIB nB nIB 0.106 0.904159132 0.095840868 0.126852989 0.013446417 1 10/8/2010 Δr Sθ = Ans… 7.12(b) y Rxn of interest is ∑ vS θ − ∑ vS θ m Pr oducts Δr H θ = ∑ vH θ − ∑ vH θ m Pr oducts y CuSO4•5H2O(s) ↔ CuSO4(s) + 5H2O(g) m Re ac tan ts m Re ac tan ts At some temperature, water vapor will be produced, & the value for K will be the amount of water vapor produced (since the solids in any K expression are always unity). We can assume this is occurring at 1 bar (std pressure), & thus the value for K = 1, ∴lnK = 0, & ΔrG = O (ΔrG = -RTlnK). Alternatively, for spontaneous reaction to occur, we know the free energy must be minimized (-ve), thus we can assume that this reaction would proceed at ΔrG =0 Either way: ΔrG ° = ΔrH ° - T ΔrS° 0 = ΔrH ° - T ΔrS° T = = ΔrH ° / T ΔrS° ΔrH ° = [((-771.36) + (5*(-241.82)) – (-2279.7)] = + 299.2 ΔrS°= [(109) + (5*(188.83)) – (300.4) = 752.8 T = 299200 J mol-1 / 752.8 J K-1 mol-1 = 397 K Ans…7.15(b) (a). Right left electrode is determined by the direction the rxn is written, thus combine ½ rxns 2Na+ (aq) + 2e– Æ2 Na(s) 2H2O(l) + 2e– Æ 2OH–(aq) + H2(g) Pt|Na(s) |Na+(aq)|| OH –(aq) | H2(g)|Pt E°= –2.71V E°= –0.83V E°= +1.88 V (b) H2(g) + I2(g) Æ 2 HI(aq) (b). I2(s) + 2e– Æ 2I– (aq) E°= +0.54V 2H+ (aq) + 2e– Æ H2(g) E°= +0.00V Pt| H2(g)|H+(aq)|| I– (aq)| I2(s) |Pt E°= +0.54V (c). H3O+(aq) + OH–(aq) Æ 2H2O(l) 2H+ (aq) + 2e– Æ H2(g) E°= +0.00V 2H2O(l) + 2e– Æ 2OH–(aq) + H2(g) E°= –0.83V Pt| H2(g)|H+(aq)|| OH –(aq) | H2(g)|Pt E°= +0.83V 2
© Copyright 2026 Paperzz