BENDING ! ! ! ! ! ! Shear and moment diagrams Bending Deformation of a Straight Member The Flexure Formula Unsymmetric Bending Composite beams Reinforced Concrete Beams 1 Shear and bending moment diagram P A RA w B L2 L1 D MoC L3 RB P RA RA - P x1 L3- x1 + x RB M RAL1 + (RA-P)L2 RAL1 x RAL1 + (RA-P)L2 - Mo 2 Example 1 Draw the shear and moment diagram for the beam shown. 8 kN 12 kN 3 kN/m A C B 4m D 4m 4m 3 8 kN 12 kN 3 kN/m A RA C B 4m D 4m 4m RD + ΣMA = 0: -8(4) -12(8) - (3x4)(10) + RD(12) = 0 RD = 20.67 kN + ΣFy = 0: RA - 8 -12 - (3x4) + 20.67 = 0 RA = 11.33 kN 4 12 kN 3(4) = 12 kN 8 kN A 11.33 kN C B 4m D 4m 20.67 kN 4m V(kN) 11.33 +11.33(4) = 45.32 3.33 +3.3(4) = 3..32 -8.67 −(1/2)(8.67+20.67)(4) = −58.64 x -20.67 M(kN•m) 45.32 58.64 x 5 Example 2 Draw the shear and moment diagram for the beam shown. 10 kN 8 kN•m 3 kN/m A C B 3m 3m D 2m 6 10 kN 8 kN•m 3 kN/m A RA B 3m 3m RC C D 2m + ΣMA = 0: -10(3) - 8 - (0.5x3x3)(3+(2/3)x3) + RC(6) - (3x2)(7) = 0 RC = 17.08 kN + ΣFy = 0: RA - 10 - (0.5x3x3) + 17.08 - (3x2) = 0 RA = 3.42 kN 7 6 kN 3 kN/m 10 kN 4.5 kN 8 kN•m 3.42 kN 3m 17.08 kN 2m 3m V(kN) 6 3.42 +3.42(3) = 10.26 x − +(1/2)(2)(6)=6 -6.58 -11.08 M(kN•m) 18.26 10.26 x -6 8 Bending deformation of A Straight Member Before deformation M Horizontal lines become curved M Vertical lines remain straight, yet rotate After deformation 9 • Strain ( ε ) y z Neutral axis M ∆x x − 2δ max ∆x = ε max = dθ dθ y 2 y δmax ρ c Neutral axis ∆x Longitudinal axis ε max = dθ 2 dθ )c 2 ρdθ ε max c = ε y ε = ε max − 2( −c ρ ε= ε= y c −c y ( ) ρ c −y ρ 10 y dθ z Neutral axis M ε ∆x δmax c y x ∆x Longitudinal axis ε ε max = ε= ρ Neutral axis −y c −y ε max c Notes : ε = f (y ) ε max = constant c 11 The Flexure formula σmax σ y σ max x σ y y c σ = y c M = σ max c For positive bending moment M: σ = −y σ max c Note : σ = f (y ) σ max = constant c 12 M σmax dA y dF NA σNA = 0 NA M Bending Stress diagram • General formula • Neutral axis (NA) : A definition dM = ydF = y (σdA) ∑F x y M = ∫ y ( − σ max )dA c A =− =− σ max c σ max c 0 = ∫ σdA A y 0 = ∫ ( − σ max )σdA c A 2 y ∫ dA A Ix = − σ y My σ =− I σ is compression when +M = 0 = ∫ dF 0=− Ix σ max c ∫ yσdA A ∫ yσdA = 0 A yA = 0; y = 0, A ≠ 0 Pure Bending : σ = 0 at neutral axis 13 • Stress and Strain Distribution for Pure Bending M y NA z NA c σmax M y σ σNA = 0 Stress Distribution • y σ = σ max c M x εmax ε εNA = 0 y Strain Distribution • ε ε max = y c 14 Beam P A C B D P Ax NC A C Ay VC VC MC MC D ND NC C MD VD P Ax ND A D Ay VD MD 15 Example 3 The simply supported beam has the cross-sectional area shown. Determine the absolute maximum bending stress in the beam and draw the stress distribution over the cross section at this location. 17.5 kN 5 kN/m 30 kN•m 300 mm 4m 4m 250 mm 16 17.5 kN 5 kN/m • Internal Loading 30 kN•m 17.5 kN 4m 4m 20 kN V (kN) 17.5 17.5 x(m) 40 M(kN•m) -20 x (m) -30 Neutral Axis (σmax)C 40 kN•m σNA = 0 (σmax)T 17 0.15 m 0.3 m 0.15 m Neutral Axis 0.075 m B (σmax)C = 10.7 MPa 40 kN•m 5.33 MPa σNA = 0 5.33 MPa (σmax)T = 10.7 MPa 0.25 m • Section Property I = ∑ ( I + Ad 2 ) = 1 ( 0 . 25 m )( 0 . 3 m ) 3 + 0 = 0 . 0005625 m 4 12 • Bending Stress σ max = σB = Mc ( 40 kN • m )( 0 . 15 m ) = = 10 . 7 MPa (C) ⇐ I (. 5625 × 10 −3 m 4 ) − My B − ( 40 kN • m )( 0 . 075 m ) = = −5 . 33 MPa (C) ⇐ I (. 5625 × 10 −3 m 4 ) 18 Example 4 The simply supported beam has the cross-sectional area shown. Determine the absolute maximum bending stress in tension and also in compression in the beam, and draw the stress distribution over the cross section at the mid-span. 17.5 kN 5 kN/m 30 kN•m 250 mm 20 mm 300 mm 4m 4m 20 mm 19 • Section property 250 mm 20 mm NA 300 mm y' y dfrange dweb 310 mm 150 mm 20 mm y = ∑ y A (150 )( 300 × 20 ) + ( 310 )( 250 × 20 ) = = 222 . 7 mm ∑A ( 300 × 20 ) + ( 250 × 20 ) y ' = 320 − 222.7 = 97.3 mm I NA = Σ ( I + Ad 2 ) =[ 1 1 (20)( 300) 3 + (20 × 300)( 222.7 − 150) 2 ] + [ (250)( 20) 3 + (250 × 20)( 310 − 222.7) 2 ] 12 12 = .1150x109 mm4 = .1150x10-3 m4 20 17.5 kN 5 kN/m • Internal Loading 30 kN•m 17.5 kN 4m 4m 20 kN V (kN) 17.5 17.5 x(m) 40 M(kN•m) -20 x (m) -30 The positive maximum bending M+ = 40 kN•m The maximum negative bending M - = -30 kN•m 21 • The Bending Stress in the Maximum Bending in Tension (M = 40 kN•m) 250 mm 20 mm 97.3 mm NA B 300 mm 40 kN•m (σmax)C = 33.8 MPa 222.7 mm (σmax)T = 77.5 MPa 20 mm (σ max ) C = Mc 1 ( 40 kN • m )( 0 . 0973 m ) = = 33 . 8 MPa (C) −3 4 I (. 115 × 10 m ) (σ max )T = Mc 2 ( 40 kN • m )( 0 . 2227 m ) = = 77 . 5 MPa (T ) −3 4 I (. 115 × 10 m ) 22 • The Bending Stress in Maximum Bending in Compression (M = -30 kN•m) 250 mm 20 mm 97.3 mm NA B 300 mm 30 kN•m (σmax)T = 25.4 MPa 222.7 mm (σmax)C = 58.1 MPa 20 mm (σ max )T = Mc 1 ( 30 kN • m )( 0 . 0973 m ) = = 25 . 4 MPa ( T) −3 4 I (. 115 × 10 m ) (σ max ) C = Mc 2 ( 30 kN • m )( 0 . 2227 m ) = = 58 . 1 MPa ( C) I (. 115 × 10 −3 m 4 ) 23 • The absolute maximum bending stress in tension and also in compression in the beam 250 mm (σmax)C = 33.8 MPa 20 mm 97.3 mm 300 mm 40 kN•m NA 222.7 mm (σmax)T = 77.5 MPa 20 mm (σmax)T = 25.4 MPa NA 30 kN•m (σmax)C = 58.1 MPa By comparison, The maximum bending stress in tension; (σmax)T = 77.5 MPa (T) The maximum bending stress in compression; (σmax)C = 58.1 MPa (C) 24 Example 5 The simply supported beam has the cross-sectional area shown. Determine the absolute maximum bending stress in the beam and draw the stress distribution over the cross section at this location. 30 kN•m 4m 17.5 kN 5 kN/m 500 mm 300 mm 250 mm 2.25 m 4m 250 mm 25 • Internal Loading 30 kN•m 17.5 kN 5 kN/m 4m B A C 2.25 m 17.5 kN D 4m 20 kN V (kN) 17.5 17.5 x(m) M(kN•m) 9.38 40 -20 x (m) -30 26 (σmax)T = 9.33 MPa 0.15 m NA 0.3 m 30 kN•m 0.15 m (σmax)C = 9.33 MPa 0.25 m • Section Property I = ∑ ( I + Ad 2 ) = 1 ( 0 . 25 m )( 0 . 3 m ) 3 + 0 = 0 . 0005625 m 4 12 • Bending Stress at A σ max = Mc ( 30 kN • m )( 0 . 15 m ) = = 9 . 33 MPa I (. 5625 × 10 −3 m 4 ) 27 (σmax)C = 3.84 MPa 0.25 m NA 0.5 m 40 kN•m σNA = 0 0.25 m (σmax)T = 3.84 MPa 0.25 m • Section Property I = ∑ ( I + Ad 2 ) = 1 ( 0 . 25 m )( 0 . 5 m ) 3 + 0 = 0 . 002604 m 4 12 • Bending Stress at D σ max = Mc ( 40 kN • m )( 0 . 25 m ) = = 3 . 84 MPa −3 4 I ( 2 . 604 × 10 m ) Maximum bending stress occurs at D σ max = 9 . 33 MPa 28 30 kN•m 4m 17.5 kN 5 kN/m B A C 2.25 m 17.5 kN M(kN•m) 9.38 D 4m 20 kN 40 x (m) -30 0.15 m 0.3 m (σmax)T = 9.33 MPa NA 30 kN•m 0.15 m 0.25 m (σmax)C = 9.33 MPa Maximum bending stress occurs at A σ max = 9 . 33 MPa 29 Unsymmetric Bending • Moment Applied Along Principal Axis y y εmax z ε y dA y z dF = σdA C M x c x Normal Strain Distribution (Profile View) y σmax σ y Bending Stress Distribution (Profile View) c M x 30 • Moment Arbitrarily Applied y Mz = M cos θ y z x M z θ y x My = M sin θ σ =− Mz y M yz + Iz Iy z x 31 [(σx)max - (σ´x)max] y (σx)max [(σx)max + (σ´x)max] z α (σx)max N z [(σx)max + (σ´x)max] Mz A x [(σx)max - (σ´x)max] y My (σ´x)max (σ´x)max 32 • Orientation of the Neutral Axis (α α) [(σx)max - (σ´x)max] α y y [(σx)max + (σ´x)max] A F N z A [(σx)max + (σ´x)max] B F D E x A A α O H C G z x [(σx)max - (σ´x)max] C B G D α = tan −1 ( FH ) HO 33 Example 6 The rectangular cross section shown is subjected to a bending moment of M = 12 kN•m. Determine the normal stress developed at each corner of the section, and specify the orientation of the neutral axis. x 0.2 m 0.2 m 0.1 m B E M = 12 kN•m. D5 3 4 z C 0.1 m y 34 x 0.2 m 0.2 m 0.1 m B E (4/5)(12) = 9.60 kN•m. M = 12 kN•m. D5 3 C 4 z (3/5)(12) = 7.20 kN•m. 0.1 m N 0.2 m Iy = 1 ( 0 . 4 m )( 0 . 2 m) 3 = 0 . 2667 (10 −3 ) m 4 12 Iz = 1 ( 0 . 2 m )( 0 . 4 m ) 3 = 1 . 067 (10 −3 ) m 4 12 • Bending Stress : σ = y 2.25 MPa z B • Section Properties My I M = 7 . 20 kN • m : 7 . 2 (10 3 ) N • m ( 0 . 2 m ) σ = = ±1 . 35 MPa 1 . 067 (10 −3 )m 4 M = 9 . 60 kN • m : 9 . 60 (10 3 ) N • m ( 0 . 1 m ) σ = = ±3 . 60 MPa 0 . 2667 (10 −3 ) m 4 4.95 MPa A E 2.25 MPa D M = 7.2 kN•m M = 9.6 kN•m σB = ( - 1.35 MPa ) + ( + 3.60 MPa ) = 2.25 MPa (T) C 4.95 MPa σC = ( - 1.35 MPa ) + ( - 3.60 MPa ) = -4.95 MPa (C) σD = ( + 1.35 MPa ) + ( - 3.60 MPa ) = -2.25 MPa (C) σE = ( + 1.35 MPa ) + ( + 3.60 MPa ) = 4.95 MPa (T) 35 • Orientation of Neutral Axis 4.95 MPa 4.95 MPa c A 2.25 MPa D 2.25 MPa 2m C z B N F E D -2.25 MPa FD 2 = ; FD = 0 . 625 m 2 . 25 ( 4 . 95 + 2 . 25 ) 4.95 MPa 0.2 m 2.25 MPa B G 2m y F E C -4.95 MPa 62.5 mm GC 2 = ; GC = 1 . 375 m 4 . 95 ( 4 . 95 + 2 . 25 ) D 400 mm NA z B G α C 137.5 mm α = tan −1 ( 400 ) = 79.4 o 137.5 − 62.5) 36 Example 7 A T-beam is subjected to the bending moment of 15 kN•m as shown. Determine the maximum normal stress in the beam and the orientation of the neutral axis. z 30 mm M = 15 kN•m 100 mm 30o y z 80 mm 40 mm 80 mm 37 z • Section Properties Mz = 15 sin 30o = 7.5 kN•m B 30 mm M = 15 kN•m 100 mm 30o z C z z y My = 15 cos 30o = 13 kN•m 80 mm 40 mm 80 mm z A ( 0 . 05 m )( 0 . 1 m × 0 . 04 m ) + ( 0 . 115 m )( 0 . 03 m × 0 . 2 m ) ∑ = = = 0 . 0890 m × + × A ( 0 . 1 m 0 . 04 m ) ( 0 . 03 m 0 . 2 m ) ∑ Iz = 1 1 ( 0 . 10 m )( 0 . 04 m ) 3 + ( 0 . 03 m )( 0 . 20 m ) 3 = 20 . 53 (10 −6 ) m 4 12 12 Iy =[ 1 ( 0 . 04 m )( 0 . 10 m ) 3 + ( 0 . 04 m × 0 . 10 m )( 0 . 089 m − 0 . 05 m) 2 ] 12 1 + [ ( 0 . 20 m )( 0 . 03 m ) 3 + ( 0 . 2 m × 0 . 03 m )( 0 . 115 m − 0 . 089 m ) 2 ] = 13 . 92 (10 −6 ) m 4 38 12 • Maximum Normal Stress, : σ = z My I Mz = 7.5 kN•m B 0.041 m D I z = 20 . 53 (10 −6 ) m 4 0.089 m y My = 13 kN•m I y = 13 . 92 (10 −6 ) m 4 C 0.02 m z Mz = 7.5 kN•m 0.1 m 0.08 m My = 13 kN•m σB = (+7.5 kN•m) (0.10 m) 20 . 53 (10 −6 ) m 4 + (+13 kN•m) (0.041 m) 13 . 92 (10 −6 ) m 4 = 74.8 MPa (T) σC = (-7.5 kN•m) (0.02 m) 20 . 53 (10 −6 ) m 4 + (-13 kN•m)(0.089 m) 13 . 92 (10 −6 ) m 4 = -90.4 MPa (C) σD = (-7.5 kN•m) (0.10 m) 20 . 53 (10 −6 ) m 4 + (+13 kN•m) (0.041 m) 13 . 92 (10 −6 ) m 4 = 1.76 MPa (T) 39 • Orientation of Neutral Axis z z σ D = 1 . 76 MPa Mz = 7.5 kN•m B 0.1 m B α D 0.041 m e = 0.00273 m A D 0.041 m y 0.089 m y My = 13 kN•m C z σ B = 74 . 8 MPa 0.1 m N 74.8 MPa 1.76 MPa 0.1 m B D 0.2 m 0.2 + e e = , 1 . 76 74 . 8 tan α = e e = 2 . 738 (10 −3 ) m ( 0 . 10 m + 0 . 002738 m ) , 0 . 0410 m α = 68 o 40
© Copyright 2026 Paperzz