Problem No 9 Assume that after the electron hits the positron, photon 1 deflects β angle and photon 2 deflects θ angle from the electron’s original path. This way, β + θ = α . The electron gains the energy ∆E = e ⋅ U = km0 c 2 . Therefore, its total energy is E = ( k + 1)m0 c 2 . And, it has the momentum (using energy energy-momentum relation): E 2 = m0 2c 4 + p 2c 2 (k + 1)2 m0 2c 4 = m0 2c 4 + p 2c 2 p 2c 2 = m0 2c 4 (k 2 + 2k ) p = m0 c k 2 + 2k When the electron hits the positron, the momentum and energy is conserved. The energy and the momentum of photon 1 and photon 2 are E1 = hf1 and E2 = hf 2 , and p1 = hf1 hf and p2 = 2 , c c respectively. The equation of the conservation of momentum of the axis perpendicular perpendicular to the original path of the electron: p= p hf1 hf sin β − 2 sin θ c c f1 sin β = f 2 sin θ (1) 0= The equation of the conservation of momentum of the axis parallel to the original path of the electron: p= p hf hf m0c k 2 + 2k = 1 cos β + 2 cos θ c c m0c 2 k 2 + 2k = hf1 cos β + hf 2 cos θ (2) The equation of the conservation of the energy: E=E (k + 1)m0c + m0c 2 = hf1 + hf 2 2 m0 c 2 (k + 2) = h( f1 + f 2 ) (3) Substituting (3) into (2), and substitute (1) afterwards: ( f1 + f 2 ) k 2 + 2k = ( f1 cos β + f 2 cos θ )(k + 2) f2 ( sin θ sin θ + 1) k 2 + 2k = ( f 2 cos β + f 2 cos θ )(k + 2) sin β sin β (sin θ + sin β ) k 2 + 2k = (sin θ cos β + cos θ sin β )(k + 2) (sin θ + sin β ) k 2 + 2k = sin(θ + β )(k + 2) Using the relation β + θ = α , we can get: (sin θ + sin β ) k 2 + 2k = sin(θ + β )(k + 2) (sin(α − β ) + sin β ) k 2 + 2k = (k + 2) sin α (4) If we differentiate implicitly with respect to β: (sin(α − β ) + sin β ) k 2 + 2k = (k + 2) sin α dα dα − 1 + cos β k 2 + 2k = (k + 2) cos α cos(α − β ) dβ dβ The implicit graph of the equation (4) >> using WolframAlpha. In this graph, α=B and β=A, and k=1. The smallest possible angle of α will be the angle that dα = 0 (look at the red circle on the graph). dβ dα dα − 1 + cos β k 2 + 2k = ( k + 2) cos α cos(α − β ) dβ dβ [ − cos(α − β ) + cos β ] k 2 + 2k = 0 cos(α − β ) = cos β The solutions for the above equations are α = 0 , α = 2β , etc. But if we examine the graph, the only correct solution is α = 2 β . For α = 2β , : (sin(α − β ) + sin β ) k 2 + 2k = (k + 2) sin α (sin α 2 + sin α 2sin 2sin α 2 ) k 2 + 2k = (k + 2) sin α α k 2 + 2k = 2(k + 2) sin 2 α 2 α k 2 + 2k − cos (k + 2) = 0 2 2 Thus: k 2 + 2k − cos α 2 (k + 2) = 0 cos α 2 = k 2 + 2k (k + 2) k 2 + 2k (k + 2) α = 2 cos −1 For k=1: k 2 + 2k 3 −1 = 2 cos = 1.91 rad 3 (k + 2) α = 2 cos −1 ADRIAN NUGRAHA UTAMA INDONESIA cos α 2
© Copyright 2026 Paperzz