Table 2.1: Concentration of Cr(VI) ions under different industrial waste water Industry Cr(VI) concentration References (mg/L) Electroplating plant 20.7 - 75.4 Tukaram Bai et al., 2005; Kiptoo et al., 2004 Hardware factory 60.0 Xu et al., 2005 Tannery plant 8.3 – 3,950.0 Esmaeili et al., 2005; Onyancha et al., 2008 Chrome plating plant 3.7 Gupta et al., 1999 Table 2.2: Electroplating Industry: Wastewater discharge Parameter pH Temperature Oil and Grease Suspended solids Cyanides (as CN) Ammonical nitrogen (as N) Total residual chlorine (as Cl2) Cadmium (as Cd) Nickel (as Ni) Zinc (as Zn) Chromium as Cr Hexavalent Total Copper (as Cu) Lead (as Pb) Iron (as Fe) Total metal Concentration not to except, mg/l (except for pH and temperature) 6.0 to 9.0 Should not exceed 5°C above the ambient temperature of the receiving body 10 100 0.2 50 1.0 2.0 3.0 5.0 0.1 2.0 3.0 0.1 3.0 10.0 Source: EPA Notification [S.O. 393(E), dt 16th April 1987] Table 2.3 Chemical species of Chromium in the environment (Zayed & Terry, 2003) Chemical species Elemental Cr Oxidation Examples state Cr(0) - Remarks Divalent Cr Cr(II) CrBr2 , CrCl2 , CrF2 , CrSe, Cr2Si Relatively unstable and is readily oxidized to the trivalent state. Trivalent Cr Cr(III) CrB, CrB2, CrBr3,CrCl3.6H2O, CrCl3, CrF3, CrN Forms unstable compounds and occurs in nature in ores, such as ferrochromite (FeCr2O4). Tetravalent Cr Cr(IV) CrO2, CrF4 Does not occur naturally. The Cr(VI) ion and its compounds are not very stable and because of short half-lives, defy detection as reaction intermediates between Cr(VI) and Cr(III). Pentavalent Cr Cr(V) CrO43-, potassium perchromate Does not occur naturally. Cr(V) species are derived from the anion CrO43- and are longlived enough to be observed directly. However, there are relatively few stable compounds containing Cr(V). Hexavalent Cr Cr(VI) (NH4)2CrO4, BaCrO4, CaCrO4, K2CrO4, K2Cr2O7 The second most stable state of Cr. However, Cr(VI) rarely occurs naturally, but is produced from anthropogenic sources. It occurs naturally in the rare mineral crocoites (PbCrO4). Does not occur naturally. Table 2.4: Chromium(VI) reducing bacterial strains Name of Species Isolation Conditions/ C-Sources References Achromobacter sp. Anaerobic/Luria Broth; glucose- Zhu et al., 2008 StrainCh 1 lactate Bacillus megatarium Aerobic/ nutrient broth-minimal salt Cheung et al., 2006 TKW3 medium-glucose, maltose, mannitol Bacillus sp. ES 29 Aerobic/Luria-Bertani (LB) medium Camargo et al., 2003 Ochrobactrum sp. Aerobic/glucose Zhiguo et al., 2009 Providencia sp. Aerobic-Anaerobic/ Luria (tryptone-yeast extract) Pseudomonas aeruginosa Aerobic/ nutrient broth or Luria Aguilera et al., 2004 broth broth Thacker et al., 2006 Pseudomonas putida Anaerobic/Luria- Bertani-citric acid- Park et al., 2000 MK1 Tris-acetic acid Pseudomonas spp. Aerobic/Vogel-Bonner (VB)-Dglucose Mclean and Beveridge, 2001 Shewanella alga (BrYMT) ATCC 55627 Aerobic-Anaerobic/ M9 brothglucose Guha et al., 2001 Shewanella putrefaciens MR-1 Anaerobic/ lactate-fumarate Myers et al., 2000 Table 2.5. Properties of purified bacterial chromate reducing enzymes Bacteria Enzyme Substrates Cofactor/ Mol. Wt electron (KDa) donor and subunits P. ambigua G1 Chr Chromate, FMN 65 Dimer nitrocompounds NAD(P) P. putida Chr Quinones,chromate, FMN 50 Dimer 2,6 DichloroindoNAD(P)H phenol,Potassium ferricyanide E. coli Chr Chromate FMN 84 Dimer NAD(P)H E. coli YieF E. coli NfsA T. Scotoductus Chr Chromate, quinone, 2,6 -Dichloroindo Phenol, Potassium Ferricyanide, V (V) , Mo(VI) Chromate, Nitrocompounds Chromate R. sphaeroides Chr Chromate V. harveyi NfsA Nitrofurazone, Trinitrotoluene Chromate References Suzukis et al, 1992 Parked et al, 2000 Bae et al., 2005 FMN NAD(P)H 50 Dimer Ackerley et al., 2004a FMN NADH FMN NAD(P)H NADH 50 Dimer FMN NADH 50 Dimer Ackerley et al., 2004b Opperman et al., 2008 Nepple et al., 2000 Kwak et al., 2003 72Dimer 42 Dimer Table 3.1 : List of Instruments used during the present study INSTRUMENTS FUNCTION MODEL No. Vertical Autoclave Sterilization PI110P6 SANCO Analytical Balance Weight measurement CPA225D SARTORIUS Laminar airflow Aseptic conditions MICROSIL pH Measurement of pH Digitl pH meter BOD Incubator Incubation of cultures NSW-152 CALTON Ultra Low Temperature freezer Preservation of cultures RQFV-265 REMI Double Distillation Unit Preparation of the stock solution, throughout the experiment etc. MQD2PQ Bhanu Scientific Spectrophotometer (UV/Vis) Estimation of Biomass and Cr (VI) degradation UV-2450 SHIMADZU BOD Incubator Shaker Batch degradation kinetics of Cr (VI) LETTD ORBITEK Ultra Centrifuge Collection of pellet and Cr (VI) estimation 0191 LOGIC CONTROLS PVT Atomic Absorption Spectrophotometer Estimation of total chromium Z-6100 HITACHI Electrophoresis Unit Protein profile study Model-192 BIORAD Table 4.1: Physico-chemical characterization of Electroplating effluent Parameters Concentration Standards* Color Temperature (0C) Dull green 18.90±0.06 Shall not exceed 5oC above ambient temperature of receiving water body 6.0 to 9.0 10 2100 pH (1:2) 5.66±0.61 Conductivity(millimoh/cm2)(1:2) 59.2 Oil and grease 20 Total dissolved solids 480±0.62 Total suspended solids 58±0.93 Biochemical oxygen demand 58±0.93 30 Chemical oxygen demand 675±0.45 250 Sulfate 199 Phosphate 0.79 Total chromium 48±0.186 2.0 Hexavalent chromium 25±0.823 0.1 Cadmium 16.85±0.914 2.0 Copper 0.354±0.01 3.0 Iron 3.31±0.31 3.0 Nickel 27.713 3.0 Lead 0.66±0.094 0.1 Zinc 40.54 ±0.26 0.5 All values are expressed in mg/L, otherwise stated; values are mean ±SD (n=3) *Source- Environmental Protection Agency Notification, (1987). Table4.2: Physico-chemical characterization of soil contaminated with electroplating waste water Parameters Soil organic matter (%) Total Chromium (mg/g) Potassium (1:2) (mg/L) Sodium (1:2) (mg/L) Values are mean ± SD (n=3) Concentration 1.85±0.5 6.00±2.5 112.50±5.6 61.60±3.21 Table 4.3: Morphological tests for isolated bacterial strains: Tests S1 S2 S3 S4 Circular Circular Circular Circular Entire Entire Entire Entire Elevation Convex Convex Convex Convex Surface Smooth Smooth Smooth Smooth Pigment Creamish Creamish Creamish Creamish Opacity Transparent Transparent Transparent Transparent + ve + ve + ve + ve Cell shape Short rods Short rods Short rods Short rods Size (m) 1-1.5 1 1.5 1 Scattered Scattered Scattered Scattered Spore(s) - ve - ve - ve - ve Motility + + + + Colony morphology Configuration Margin Gram’s reaction Arrangement Table 4.4: Physiological tests for isolated bacterial strains: Tests S1 S2 S3 S4 4 C + + + + 10 C + + + + 25 C + + + + 30 C + + + + 37 C + + + + 42 C + + + + 55 C - + - - pH 5.0 + + + + pH 6.0 + + + + pH 8.0 + + + + pH 9.0 + + + + 2.0 + + + + 4.0 + + + + 6.0 + + + + 8.0 + + + + 10.0 - - - - 12.0 - - - - Growth under + + + + Growth at temperatures Growth at pH Growth on NaCl (%) anaerobic condition Table 4.5: Biochemical tests for isolated bacterial strains: Tests S1 S2 S3 S4 Growth on MacConkey lf lf lf lf Indole test - - - - Methyl red test - - - - Voges Proskauer test - - - - Citrate utilization + + + + H2S production - - - - Gas production - - - - Starch hydrolysis - - - - Nitrate reduction + + + + Catalase test + + + + Oxidase test - - - - Urea hydrolysis + + + + Esculin hydrolysis + + + + Arginine dihydrolase + + + + Tween 20 hydrolysis - - - - Tween 40 hydrolysis - - - - Tween 60 hydrolysis - - - - Tween 80 hydrolysis - - - - Galactose (+) - - - Mannose + + - - Maltose + + + + Sucrose + + + + Fructose (+) (+) (+) (+) Lactose + + + + from glucose Acid Production from +: Positive; -: Negative ;(+): Weak positive; lf: lactose fermenting; Table 4.6: The Box-Behnken design matrix for experimental design and observed response for Cr(VI) biotransformation using Salmonella sp. S1 and Salmonella sp. S2 Experimental Run pH (A) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 4 4 6 4 6 6 6 6 8 4 8 6 6 8 8 6 6 Temp. (OC) (B) 30 25 25 30 25 30 30 30 30 35 30 35 35 25 35 30 30 Initial Cr(VI) ion conc. (C) 40 25 40 10 10 25 25 25 10 25 40 40 10 25 25 25 25 %Cr(VI) Biotransfomation By Salmonella sp. S1 13 17 50 20 75 75 79 60 75 14 49 43 53 53 73 75 79 %Cr(VI) Biotransfomation By Salmonella sp. S1 15 20 45 20 65 75 64 74 75 18 49 40 49 50 73 74 75 Table 4.7: The Box-Behnken design matrix for experimental design and observed response for Cr(VI) biotransformation using Salmonella sp. S3 and Salmonella sp. S4 Experimental Run pH (A) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 4 4 6 4 6 6 6 6 8 4 8 6 6 8 8 6 6 Temp. (OC) (B) 30 25 25 30 25 30 30 30 30 35 30 35 35 25 35 30 30 Initial Cr(VI) ion conc. (C) 40 25 40 10 10 25 25 25 10 25 40 40 10 25 25 25 25 %Cr(VI) Biotransfomation By Salmonella sp. S3 17 26 44 22 73 72 72 72 68 20 47 39 55 43 70 64 74 %Cr(VI) Biotransfomation By Salmonella sp. S4 21 23 45 20 74 72 73 73 73 20 49 40 49 56 70 64 72 Table 4.8 Analysis of variance for RSM variables fitted to quadratic model Bacterial strain Source Sum of squares d.f. Mean square F-value P-value Prob>F Salmonella Model Residual sp S1 8853.56 512.20 267 247 0.9451 0.8745 9 7 3 4 983.73 73.46 89.00 61.80 13.39 0.0012 Significant 1.44 0.3560 Not Significant Salmonella Model Residual sp S2 8016.92 437.20 348 89.20 0.9483 0.8818 9 7 3 4 890.77 62.46 116.00 22.30 14.26 0.0010 significant 5.20 0.0725 not-significant Salmonella Model Residual sp S3 6813.71 352.05 291.25 60.80 0.9509 0.8877 9 7 3 4 757.08 50.29 97.08 15.20 15.05 0.0009 Significant 6.39 0.0526 Not Significant Salmonella Model Residual sp S4 6848.57 297.55 238.75 58.80 0.9584 0.9048 9 7 3 4 760.95 42.51 79.58 14.70 17.90 0.0005 Significant 5.41 0.0682 Not Significant Lack-of-fit Pure error r2 r2adj Lack-of-fit Pure error r2 r2adj Lack-of-fit Pure error r2 r2adj Lack-of-fit Pure error r2 r2adj Table 4.9: Cr(VI) biotransformation in electroplating effluent using different dilutions by Salmonella sp. S1 Time (hrs) 6 12 24 48 72 96 120 25% dilution Salmonella sp. S1 Cr(VI) Conc. in effluent (mg/L) 50% dilution 75% dilution 12.24 ± 0.01 18.11 ± 0.025 29.80 ± 0.017 35.23 ± 0.45 39.35 ± 0.200 48.33 ± 0.26 54.29 ± 0.26 8.81 ± 0.02 12.01 ± 0.63 20.89 ± 0.47 24.55 ± 0.20 28.87 ± 0.16 31.63 ± 0.09 35.71 ± 0.65 Source of variation Interraction Time % Cr(VI) Concentration - 3.20 ± 0.23 5.89 ± 0.36 12.87 ± 0.55 13.92 ± 0.24 15.19 ± 0.10 19.91 ± 0.48 20.11 ± 0.04 Undiluted effluent 1.25 ± 0.011 1.70 ± 0.23 6.87 ± 0.15 8.92 ± 0.90 8.99 ± 0.46 9.05 ± 0.35 9.99 ± 0.30 % of total variation P value 8.95 < 0.0001 56.28 < 0.0001 34.73 < 0.0001 *Above values are averages of three triplicates ± SD ** Concentrations units are expressed in percentage Table 4.10: Cr(VI) biotransformation in electroplating effluent using different dilutions by Salmonella sp. S2 Time (hrs) 6 12 24 48 72 96 120 25% dilution Salmonella sp. S2 Cr(VI) Conc. in effluent (mg/L) 50% dilution 75% dilution 12.81 ± 0.55 12.99 ± 0.66 26.51 ± 0.45 35.76 ± 0.50 41.00 ± 0.75 48.88 ± 0.65 55.00 ± 0.47 10.25 ± 0.76 17.73 ± 0.81 25.55 ± 0.69 33.06 ± 0.36 36.66 ± 0.55 39.16 ± 0.65 39.98 ± 0.91 Source of variation Interraction Time % Cr(VI) Concentration - 5.51 ± 0.81 9.90 ± 0.50 10.83 ± 0.65 11.89 ± 0.80 14.43 ± 0.47 23.49 ± 0.56 25.88 ± 0.65 % of total variation 12.10 55.29 32.49 *Above values are averages of three triplicates ± SD ** Concentrations units are expressed in percentage P value < 0.0001 < 0.0001 < 0.0001 Undiluted effluent 2.23 ± 0.65 2.71 ± 0.80 4.41 ± 0.47 6.41 ± 0.75 6.62 ± 0.32 7.32 ± 0.70 7.99 ± 0.65 Table 4.11: Cr(VI) biotransformation in electroplating effluent using different dilutions by Salmonella sp. S3 Tim e (hrs) 6 12 24 48 72 96 120 25% dilution 10.07 ± 0.12 15.77 ± 0.10 20.09 ± 0.13 28.91 ± 0.05 36.61 ± 0.65 45.06 ± 0.38 45.21 ± 0.21 Salmonella sp. S3 Cr(VI) Conc. in effluent (mg/L) 50% dilution 75% dilution Undiluted effluent 8.82 ± 0.43 3.86 ± 0.57 1.11 ± 0.32 10.99 ± 0.23 5.98 ± 0.42 2.33 ± 0.79 15.52 ± 0.21 8.88 ± 0.76 4.88 ± 0.31 22.80 ± 0.15 15.54 ± 0.39 6.61 ± 0.35 36.93 ± 0.19 17.72 ± 0.46 6.80 ± 0.64 40.44 ± 0.25 20 ± 0.27 7.71 ± 0.97 42.26 ± 0.74 20.02 ± 0.47 7.92 ± 0.25 Source of variation Interraction Time % Cr(VI) Concentration - % of total variation 11.99 47.55 40.39 P value < 0.0001 < 0.0001 < 0.0001 *Above values are averages of three triplicates ± SD ** Concentrations units are expressed in percentage Table 4.12: Cr(VI) biotransformation in electroplating effluent using different dilutions by Salmonella sp. S4 Tim e (hrs) 6 12 24 48 72 96 120 25% dilution 12.04 ± 0.42 18.88 ± 0.32 27.79 ± 0.25 38.80 ± 0.71 41.64 ± 0.42 49.73 ± 0.65 58.01 ± 0.23 Salmonella sp. S4 Cr(VI) Conc. in effluent (mg/L) 50% dilution 75% dilution Undiluted effluent 11.01 ± 0.22 5.51 ± 0.34 1.00 ± 0.67 17.74 ± 0.11 9.90 ± 0.29 1.61 ± 0.47 26.66 ± 0.21 10.83 ± 0.35 3.70 ± 0.55 34.43 ± 0.12 11.89 ± 0.29 4.12 ± 0.79 39.11 ± 0.29 14.43 ± 0.92 4.49 ± 0.82 42.90 ± 0.65 23.49 ± 0.96 4.89 ± 0.72 45.00 ± 0.52 25.88 ± 0.82 5.02 ± 0.11 Source of variation Interraction Time % Cr(VI) Concentration - % of total variation 11.74 63.29 24.90 *Above values are averages of three triplicates ± SD ** Concentrations units are expressed in percentage P value < 0.0001 < 0.0001 < 0.0001
© Copyright 2026 Paperzz