The chloroplast PCR primer database: tools for comprehensive phylogeographic analysis of a whole genome Berthold Heinze Federal Research Centre for Forests, Department of Genetics, Hauptstrasse 7, A-1140 Vienna, AUSTRIA [email protected] The data collected: Using the database: A data base is presented which collects published primer information for chloroplast DNA. Additional primers were designed in order to fill gaps were no or little primer information could be found. Chloroplast genes evolve slowly, and many primers have been designed to work across species ('universal primers', e.g. Taberlet et al. 1991, Grivet et al. 2001). Amplicons are either the genes themselves, typically in studies of sequence variation in higher-order phylogeny, or spacers, introns, and intergenic regions (e.g. Graham and Olmstead 2000, Small et al. 1998, Shaw et al. 2005) in studies of phylogeographic patterns within and among species. The current list of 'generic' primers consists of more than 500 sequences. Our experience shows that many of the primers can be combined into pairs for PCR quite freely when 'generic' PCR conditions ("stepdown" or "two-step PCR") are applied. With this set of primers it becomes possible to study the whole chloroplast genome for variation in a comprehensive way for many taxa (table: successful amplification with 75 primer pairs from Fraxinus excelsior; see also list below right). The methods: Alignments of fully sequenced chloroplast genomes (retrieved from GenBank 1998-2005), and primer design, were done using standard methods (software: PC/Gene and OMIGA, Accelrys, UK). BLASTALL (NCBI, USA) was used to search for homologies of the primers in 8 chloroplasts (from GenBank, July 2005, exept Populus): Nicotiana tabacum, Atropa belladonna, Spinacia oleracea, Arabidopsis thaliana, Populus trichocarpa (Heinze et al. unpublished), Oryza sativa, Pinus thunbergii, and Marchantia polymorpha, with a cut-off E value of 0.5. primer F/P primer R/M rpl23p46 trnHM + 1629 rpl2f trnHM ++ 551(551-1019) trnHf psbA Hamilton amplification ++ approx. length (bp) 555 trnHf trnK1r ++ 2096(2096-2452) psbAf1 trnK1r ++ psbAf2 trnK1r trnK1f matK7B trnK1f ccmp1r trnK1f trnK2r matKf2 ccmp1r matKf2 trnK2r ccmp1f primer F/P primer R/M amplification trnD-P trnT-M(P*) ++ trnE Doyle trnT-M(P*) ++ 851(411-851) trnT-f psbD Doyle ++ approx. length (bp) 1408(1408-1690) psbC2-P trnS-M + 983 589(589-764) trnS-P ycf9-M ++ 482(482-641) + 535(535-737) ORF62-P trnG-M ++ 547(500-637) +- 707 ycf9-P trnG-M + 482(411-550) ++ 1984 trnG-P trnfM-M + +- 2455 trnfM-f psaB-FOF ++ ++ 371 rps14-FOF psaB-FOF ++ 611 ++ 864 ycf3-3f ccmp6-r ++ 824(824-938) trnK2r + 658 ccmp6-f ccmp6-r + 133 trnK2f trnQr ++ 1364,3134 ccmp6-f trnS1-M ++ 2324 psbK-P1 ccmp2r ++ 713 trnS1-P rps4-5' ++ 941 ccmp2f ccmp2r + 213(213-353) ucp-a/trnT-f ucp-b + 807(552-807) ccmp2f trnS0r ++ 267(267-404) ucp-c ucp-d ++ 552(552-844) trnS0f trnG2-r - 754 ? ucp-e ucp-f/trnF-r ++ 482 trnG2-f ccmp3r ++ 637 trnF-f trnV1-r + 3670 ccmp3f trnG1-r + 183 ndhC-f trnV1-r ccmp3f trnRr +- 2146(1266-2146) trnV2-f trnM-r ++ 995 trnG1f trnRr + 341(341-619) trnM-f atpE-r2 ++ 652(652-2691) trnR-f2 atpA-r1 + 210(210-551) ccmp7-f rbcL Samuel + 275 trnR-f2 atpA-P3MD + 561 atpB Samuel rbcL Samuel ++ 1002 atpA-f4 ccmp4-F ++ 919 rbcL Heinze f accD M2 ++ 1926 atpF2-f1 ccmp4-F + 405(405-1512) accD-f psaI-r + 1089 ccmp4-R ccmp4-F + 254 accD-f ycf4-r2 ++ 1799 ccmp4-R atpF1-r1 + 544(414-837) ycf4-f3 ycf10-r1 + 1002 atpF1-f1 atpHr ++ 743(743-968) ycf10-f2 petA-r0 + 543 atpH-P atpI-M +- 1125 ycf10-f2 petA-r + 1338 atpI-f ccmp5-R ++ 483 petA-f(FOF) psbE-r(FOF) ++ 2188 ccmp5-F rpoC2-r5 + 2910 rpl20 Hamilton 5'-rps12 Hamilton + rpoC2-f5 rpoC1-r5 + 1965 ccmp9-f clpP1-r + rpoC1-f5 rpoC1-br(Liston) ++ 1331 psbB Hamilton psbF Hamilton ++ 835 rpoC1-f rpoB-r1 + 554 petB-f petB-r ++ 2011 rpoB-f3 trnC-r ++ 1422(1131-1422) rpl16-R1661 rpl16-F71 ++ 1128(1128-1596) psbM-f1 trnD-M ++ 802(802-1563) rpl16-R1516 rpl16-F71 ++ 971(971-1371) psbM-f2 trnD-M ++ 780(780-1457) ccmp10-f rpl23p46 ++ 2231 ccmp10-f rpl2f + 552 1152(1037-1152) 285 850 1270 920 489 http://bfw.ac.at/200/1859.html total number of entries 587 results of BLASTALL homology searches: anchored in Nicotiana tabacum anchored in Atropa belladonna anchored in Spinacia oleracea anchored in Arabidopsis thaliana anchored in Populus trichocarpa anchored in Oryza sativa anchored in Pinus thunbergii anchored in Marchantia polymorpha present in all 8 chloroplast genomes present in Nicotiana and Atropa present in Nicotiana, Atropa, Spinacia present in Nicotiana Atropa Arabidopsis Populus present in Arabidopsis and Populus present in all but Oryza, Pinus, Marchantia present in all but Pinus and Marchantia present in all but Marchantia 575 530 427 421 427 395 301 226 152 530 421 369 372 333 289 152 within trn genes 100 within photosystem genes (psa, psb) 83 within ribosomal proteins and RNA polymerase (rpl, rps, rpo) 92 within ATPase genes (atp) 28 not anchored in identified genes 165 within ycf genes 22 within rbcL 35 within NADH-specific dehydrogenase (ndh) genes 18 Variation in chloroplast DNA fragments Efficient methods for analysing polymorphisms are necessary - traditional sequencing may not be an option in large-scale studies. Alternatives are simple PCR-RFLP in gels, or denaturing high-performance liquid chromatography for simultaneous detection and analysis of polymorphisms. Agarose PCR-RFLP Denaturing HPLC After PCR, samples are scanned on agarose gels for successful amplification. An aliquot of the PCR is treated with restriction enzymes. Restriction polymorphisms and major insertions-deletions can be detected in high-percentage agarose gels. A mixture of the PCR products of sample and a standard plant is heated an cooled to encourage heteroduplex DNA formation, then applied to a silica or polymer column (Varian HELIX system). At a certain temperature specific for each fragment, heteroduplex molecules start to melt and are eluted with different patterns (additional peaks). Example: Polymorphism in Fraxinus excelsior – second lane shows different banding pattern Example: dHPLC analysis of Fraxinus excelsior chloroplast PCR fragment peak unchanged References Graham, S.W. and Olmstead, R.G. (2000) Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. American Journal of Botany, 87, 1712–1730. Grivet, D., Heinze, B., Vendramin, G.G. and Petit, R.J. (2001) Genome walking with consensus primers: application to the large single copy region of chloroplast DNA. Molecular Ecology Notes, 1, 345-349. Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E. and Small, R.L. (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis Am. J. Bot., 92, 142-166. Small, R.L., Ryburn, J.A., Cronn, R.C., Seelanan, T. and Wendel, J.F. (1998) The tortoise and the hare: Choosing between noncoding plastome and nuclear ADH sequences for phylogeny reconstruction in a recently diverged plant group American Journal of Botany, 85, 1301-1315. Taberlet, P., Gielly, L., Pautou, G. and Bouvet, J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol., 17, 1105-1109. early additional peaks late additional peaks
© Copyright 2026 Paperzz