Wave processes Transfer of oscillations from a source to the medium (space) vibrations in time, disturbances in space, moving disturbances in space-time associated with the transfer/transformation of energy. Wave: disturbance of any physical property of a system around a reference value travelling in space. oSound oLight oRadiowaves oSeismic waves oOcean waves oParticle waves oGravitational waves Physics--2016 BioBio-MedMed-Eng www.if.p.lodz.pl/bogdan.zoltowski L2-1 Mechanical waves Mechanical wave: The energy of a vibration is moving away from the source in the form of a disturbance within the surrounding elastic medium! The transmission medium is neither infinitely stiff nor infinitely pliable. No mass transport! Classification upon elastic properties : Compressible media – volumetric elasticity Longitudinal waves: the displacement of the medium is parallel to the propagation of the wave. Compression and expansion wave. In gas - pressure wave - tensile elasticity– solid media Transverse wave: the displacement of the medium is perpendicular to the direction of propagation of the wave crests (highs) and troughs (lows) combined waves Physics--2016 BioBio-MedMed-Eng www.if.p.lodz.pl/bogdan.zoltowski L2-2 Waves Wave’s dimension – number of coordinates necessary to describe wave propagation One dimensional wave Two dimensional (planar) 3D wave Wave front Planar wave Spherical wave Wave ray Single pulse Travelling wave Physics--2016 BioBio-MedMed-Eng Harmonic wave www.if.p.lodz.pl/bogdan.zoltowski L2-3 One dimensional travelling wave (1) disturbance ( x, t ) Propagation to the right ( x vt ) Wave function t 0 ( x) t0 vt to the left x ( x vt ) ( x , t ) ( x vt ) Wave function describes change of the state at different points at different times. b2 eg . ( x , t ) b ( x vt )2 ; ( x, t ) ( x t t1 ( x ) t1 Spacial profile at particular time x x1 ( t ) x1 Time evolution at the chosen point 1 vt ) 2 Velocity of propagation of the certain state of disturbance (a constant phase point) – phase velocity max const x vt const Physics--2016 BioBio-MedMed-Eng dx v dt Phase velocity www.if.p.lodz.pl/bogdan.zoltowski L2-4 One dimensional harmonic wave x0 y y A sin(t ) Source oscillations t observer at a distance x records disturbance with a delay y A sin( Oscillations at that point: Angular frequence of the wave: wavelength: 2 x t ) 2 2f T y x vT Wave number: y( x , t ) A sin( kx t ) 2 Wave travelling to the left k kv phase : Dispersion relationship y A sin( kx t ) A sin k ( x vt ) f ( x vt ) Wave travelling to the right y A sin( kx t ) y A sin( kx t ) k k Physics--2016 BioBio-MedMed-Eng t 2T ( k ) kv const No dispersion f (v , ) dispersion www.if.p.lodz.pl/bogdan.zoltowski L2-5 Wave equation One dimensional travelling harmonic wave y A sin( kx t ) 2 y x 2 Periodical changes in time and in space 1 2 y 2 v t 2 k v One dimesional wave equation Solutions for planar one dimensional wave 2 y x 2 1 2 y y A sin( kx t ) v 2 t 2 y A sin(t kx ' ) equivalence y A cos(t kx ' ' ) For any wave function 2 x 2 2 y 2 2 z 2 1 2 v 2 t 2 Wave equation Physics--2016 BioBio-MedMed-Eng www.if.p.lodz.pl/bogdan.zoltowski L2-6 Dispersion of phase velocity Phase velocity depends on the properties of the transmission medium which may be dependent on the frequency of the deformation. k k v const v Dispersion relationship Dispersive medium Dispersion curve Physics--2016 BioBio-MedMed-Eng v f ( ) ; v f ( ) Nondispersive medium v f ( ) ; v f ( ) v ( ) www.if.p.lodz.pl/bogdan.zoltowski L2-7 Mechanical wave velocity general: Elastic property v transverse wave in an elastic medium Inertial property Tensile elasticity Longitudinal wave in an elastic medium v Volumetric elasticity v B Rigidity modulus density bulk modulus density Longitudinal wave in gases v F Young modulus density v f ( ) no dispersion Dispersion of velocity Low frequencies -isothermal changes of volume Higher frequencies – adiabatic changes of volume BioBio-MedMed-Eng E v Longitudinal wave in a solid object: Phase velocity in a string (transverse wave) Physics--2016 G visot v ad RT RT molar mass cp cv 1 vad visot www.if.p.lodz.pl/bogdan.zoltowski L2-8 Energy, power and intensity in wave motion source medium energy E k max y 0 E p max y 0 For a harmonic wave Ek i Ep are in phase Average power transmitted 1T P Pdt T0 I P S C f 2 A2v P IS 2 Physics--2016 P f2 intensity: average power transmitted through unit area normal to the direction of propagation C f 2 A2 v I S IA P A2 BioBio-MedMed-Eng P 4 r12 I 1 4 r22 I 2 A 1 r I1 r12 I2 r22 inverse square law www.if.p.lodz.pl/bogdan.zoltowski L2-9 Superposition of waves Interference: superposition of waves of equal frequences and amplitudes 1 (r , t ) 2 (r , t ) 1 A sin( kx t ) 2 A sin( kx t ) (r , t ) 1 (r , t ) 2 (r , t ) 2 A cos sin( kx t ) 2 2 amplitude Aw 2 A cos Physics--2016 BioBio-MedMed-Eng 2 Resulting wave vs components: •same frequency •different amplitude •shifted in phase www.if.p.lodz.pl/bogdan.zoltowski L2-10 Interference (1) Aw 2 A cos 2 1. 0 2n Aw 2 A constructive 2. Aw 0 ( 2n 1) destructive 3. ( 2n 1) 2 n resultant wave is shifted in phase Physics--2016 BioBio-MedMed-Eng www.if.p.lodz.pl/bogdan.zoltowski L2-11 Interference (3) condition: coherency path difference const s s2 s1 1 ks1 t 2 1 k ( s2 s1 ) s1 2 ks2 t k s n 1 2 and s z1 k 2 s2 s 5 constructive s ( 2n 1) 2 z s 3 destructive O1 r1 s s 0 r2 O2 r2 r1 s const k hyperbole Physics--2016 BioBio-MedMed-Eng www.if.p.lodz.pl/bogdan.zoltowski L2-12 Standing wave stationary wave Result of interference between two waves travelling in opposite directions. eg due to the reflection at the interface y1 y m sin( kx t ) y 2 y m sin( kx t ) y y1 y 2 y m sin( kx t ) sin( kx t ) y 2 y m sin kx cos t y A( x ) cos t nodes W nW n1 2 standing wave equation A( x ) 2 y m sin kx 0 kx n 2 x n x n 2 y A( x ) 2 ym kx ( 2n 1) anti-nodes S n S n 1 2 2 Physics--2016 x ( 2n 1) 2 t2 t1 2 x ( 2n 1) x 4 S W S W S W S W S W S W t3 S distance between conjugative nodes or antinodes BioBio-MedMed-Eng www.if.p.lodz.pl/bogdan.zoltowski L2-13 Standing waves – characteristic frequencies Creation of the standing waves depends on the boundary conditions eaxamples: transverse wave in a string f v 1. v fI 1. L 4L 4L 4 v 3 4 3 fI 2. L L f III 3 4L 4 3 f N Nf I N 1,3,5..... v F 2 fundamental frequency III harmonic V harmonic VII harmonic IX harmonic fI L 2L v 2L v f II 2 f I L f N Nf I N 1,2,3,4.... 2. L f min ; max harmonics – overtones (aliquots) f f min fundametal frequency Physics--2016 BioBio-MedMed-Eng fundamental frequency II harmonic III harmonic IV harmonic max V harmonic www.if.p.lodz.pl/bogdan.zoltowski L2-14 Resonators Characteristic frequencies of the standing waves in systems are equal to the fundametal frequencies of their free oscillations (resonant frequencies) Resonator: Asborbs waves of resonant frequencies Standing waves in gas tubes f N Nf I N 1,2,3,4.... f N Nf I N 1,3,5..... Vibrating plates - Chladni figures n=2 m=1 musical instruments n=4 m=4 Physics--2016 BioBio-MedMed-Eng n=2 m=2 www.if.p.lodz.pl/bogdan.zoltowski L2-15 Waves on water reservoirs A seiche is a standing wave in an enclosed or partially enclosed body of water seiche Windwaves Tidal waves A tsunami wave: earthquake – whole water depth (mass) shakes small amplitude (wave height) offshore (0,2-1m) low frequency (period :30min) (windwave: 10s) very long wavelength (tens of km) (windwave: 150m) high velocity at deep water of an open sea (>speed of sound) (windwave: 15m/s) v deep travels huge distances (1000 km) without loosing energy slows down on a shallow water huge amplitude on the shore (12m) accumulation of energy - onshore runup v shallow gd epth intensity Physics--2016 g d v height I A2 v const BioBio-MedMed-Eng www.if.p.lodz.pl/bogdan.zoltowski L2-16 Wave packet (1) Wave packet: envelope or packet containing an arbitrary number of wave forms. eg sinusoidal waves of slightly different frequencies Combination of one dimensional waves ; 1 2 0 A1 A2 v 1 1 2 2 No dispersion k1 k 2 y1 A cos(1t k1 x ) y 2 A cos( 2 t k 2 x ) superposition y w y1 y 2 A cos(1t k1 x ) A cos( 2 t k 2 x ) y w 2 A cos( 1 2 2 t 2 k1 k 2 k k2 x ) cos( 1 t 1 x) 2 2 2 packet Physics--2016 BioBio-MedMed-Eng Packet „content” www.if.p.lodz.pl/bogdan.zoltowski L2-17 Wave packet (2) y w 2 A cos( 1 2 2 t 2 k1 k 2 k k2 x ) cos( 1 t 1 x) 2 2 2 Travelling wave of frequency and wave number close to the primary wave amplitude: k y A 2 A cos( t x) 2 2 1 2 2 y x Depends on the coordinate and on time – modulated A 2 packet frequency Physics--2016 kA k 2 packet wave number BioBio-MedMed-Eng A ( k t x) 2 2 packet phase www.if.p.lodz.pl/bogdan.zoltowski L2-18 Group velocity packet’s velocity? The group velocity of a wave is the velocity with which the envelope of the wave propagates. Group velocity In a nondispersive medium u v phase v phase f ( ) f ( k ) group velocity of the packet = phase velocity Energy is transmitted with a group velocity Physics--2016 BioBio-MedMed-Eng www.if.p.lodz.pl/bogdan.zoltowski L2-19 Doppler’s effect (1) change in frequency and wavelength of a wave as perceived by an observer in result of observer’s and source relative motion. f v vo vz source frequency f' perceived frequency wave velocity in a medium observer’s velocity Christian Doppler (1803-1853) source velocity assumptions: - velocities < velocity of the wave v o - unilinearity of source and observer 1842 r , v z v observer and a source both in motion in the medium inward motion approaching each other: outward motion receding from each other: Physics--2016 BioBio-MedMed-Eng v vo f ' f v vz f ' v vo f v vz perceived frequency increases perceived frequency decreases www.if.p.lodz.pl/bogdan.zoltowski L2-20 Doppler’s effect for the electromagnetic waves No material medium required Moving observer case can not be distinguished from the moving source case. Relative velocity creates the frequency shift 1. outward motion receding from each other f ' f 1 vw / c f 1 vw / c „red shift” 2. inward motion approaching each other f ' f 1 vw / c f „blue shift” 1 vw / c Astronomical observations of distant planets Doppler radar The received frequency shift depends on the radial velocity of target. Physics--2016 BioBio-MedMed-Eng www.if.p.lodz.pl/bogdan.zoltowski L2-21 Sonic boom vz vz v v Energy cumulation at the wave front. Abrupt change of the gas pressure at the front – shock wave. vv v Sonic boom Conical shape of the front wave envelopes. P2 P1 v z t r vt vz t vt v sin „Mach cone” vzt vz vz Ma v Mach number Ernst Mach (1838-1916) Mach 1 is approximately 1,225 km/h (761 mph) Light shock waves: "blue glow" of nuclear reactors Cherenkov radiation. Electromagnetic radiation emitted when a charged particle passes through an insulator at a speed greater than the speed of light in that medium. Physics--2016 BioBio-MedMed-Eng www.if.p.lodz.pl/bogdan.zoltowski L2-22
© Copyright 2026 Paperzz