Nordic Society Oikos Sex Differences in Parasitic Infections among Arthropod Hosts: Is There a Male Bias? Author(s): Letitia A. D. Sheridan, Robert Poulin, Darren F. Ward and Marlene Zuk Reviewed work(s): Source: Oikos, Vol. 88, No. 2 (Feb., 2000), pp. 327-334 Published by: Wiley-Blackwell on behalf of Nordic Society Oikos Stable URL: http://www.jstor.org/stable/3547028 . Accessed: 21/08/2012 12:51 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. . Wiley-Blackwell and Nordic Society Oikos are collaborating with JSTOR to digitize, preserve and extend access to Oikos. http://www.jstor.org OIKOS 88: 327-334.Copenhagen 2000 in parasiticinfections Sex differences hosts: amongarthropod is therea male bias? LetitiaA. D. Sheridan,RobertPoulin,DarrenF. Ward and MarleneZuk in Sheridan,L. A. D., Poulin, R., Ward, D. F. and Zuk, M. 2000. Sex differences parasitic infectionsamong arthropod hosts: is there a male bias? - Oikos 88: 327-334. A highersusceptibility to diseases or parasites in males than femalesmay be an ultimateconsequenceof the different reproductivestrategiesfavoredby selectionin the two sexes. At the proximatelevel,the immunosuppressant effectsof testosterone in vertebrates providea mechanismthatcan cause male biases in parasiteinfections. Invertebrates, however,lack testosteroneand other steroidhormones.We used a meta-analysisof published results to investigatewhethersex biases in parasite infectionsweregenerallyobservedamong arthropodhostsdespitethe absence of the immune-endocrine coupling provided by testosterone.Overall, male and female arthropodsdid not differin prevalenceor intensityof parasite infections.This is based on an analysisof sex differences correctedforsample size and, whenpossible, variabilityin the originaldata. Sex biases in parasiteinfectionwere not more likely to be observedin certainhost or parasitetaxa, and were not more pronouncedin experimentalstudiesthan in surveysof naturallyinfectedhosts. Our resultssuggest that because of the absence of endocrine-immune interactionsin arthropods,males are not generallymore prone to parasiteinfectionsthan femalesdespitethe greater intensity of sexual selectionactingon males. L. A. D. Sheridanand R. Poulin (correspondence), Dept of Zoology, Univ.of Otago, - D. F. P.O. Box 56, Dunedin,New Zealand (robert.poulin(stonebow.otago.ac.nz). Ward,School of Zoology,La Trobe Univ.,Bundoora,Victoria3083, Australia.- M. Zuk, Dept of Biology,Univ.of California,Riverside,CA 92521, USA. surveys havefoundsmallbutconsistent mostifnotall differences between thesexes literature Ultimately, male are theproductof sexualselection (Clutton-Brock and biasesin infections by helminth and arthropod paraParker1992,Owensand Thompson1994). In most sitesin birdsand mammals(Poulin1996a,Schalkand species,malesinvestincostlysecondary sexualfeatures Forbes 1997).The proximate mechanism mostoften or courtship whileat the associatedwithmale-biased displaysto attractfemales, is the parasiticinfection same timecompeting withothermalesfor immunesuppression intensely associatedwithandrogens, priaccess to females.This resultsin greaterinter-and marilytestosterone, the hormonesnecessaryfor the on malesthanfemales, development intrasexual selection pressures ofmalesexualtraitsandbehavior (Grosswiththelifeofa malebeingmoresociallyand energet- man 1985,Alexander and Stimson1988,Schuursand icallystressful thanthatof a female.One consequence Verheul1990,Zuk 1990, 1996,Folstad and Karter ofthismightbe thehigher mortality incurred bymales 1992). In contrast,femaleoestrogensmay actually in manytaxa (e.g. Promislow1992,Promislow et al. boosthumoralimmunity (Grossman1985).Thesehor1992). mone-mediated differences betweenthesexescan proAnotherconsequencemightbe the higherparasite duce males that are relatively more susceptibleto infection levelscommonly observedin the males of parasiteinfections thanfemales.In nature,sexualdifmanyvertebrate speciesrelativeto females.Recent ferences in susceptibility to parasites maybe maskedto Accepted 19 May 1999 CopyrightC) OIKOS 2000 ISSN 0030-1299 Printedin Ireland - all rightsreserved OIKOS 88:2 (2000) 327 somedegreeby differences in exposureresulting from collectionand our own data sets.Most of the data sex-specific behaviors(e.g. see McCurdyet al. 1998). (88% ofthemale-female comparisons used)camefrom Thustheproximate on suscepti- studiesthatdid not focuson sex biasesin parasitism effect ofsexhormones bilityto parasitesis moreeasilydetectable in experi- butreported thesedatanonetheless fordescriptive purmentalstudies,whereexposureis controlled,than poses.It is therefore thatourdata setsuffered unlikely amongnaturally infected malesand females of non-signifi(seeSchalk froma problemofunder-representation and Forbes1997). cantdifferences. The bulkof theresearch Two measuresof parasitism carriedout thusfaron sex wereconsideredand biasesin parasitism has beenperformed on vertebrates,recorded separately foreachsex:prevalence (percentage and almostnothingis knownof thegeneralpatterns of hoststhatare infected) and intensity (meannumber andprocesses ininvertebrates (ZukandMcKean1996). ofparasites perinfected hosts).To be included, a study On the one hand,the operationof sexual selection had to reportprevalence and/orintensity of infection shouldbe the samein invertebrates as in vertebratesbya parasitespeciesand samplesizesforbothsexesof and Parker1992),ultimately (Clutton-Brock producing a hostspecies.If available,we also recorded thestandifferent in malesand females darddeviation reproductive strategies in intensity forbothmalesand females. and causingsex biasesin parasiteinfections. On the Finally,we onlykept studiesin whichthe typeof otherhand, the proximatemechanism (experimental operatingin infection or natural)was clearlystated. vertebrates, i.e.theimmunosuppressive effects oftestos- Some studiesprovidedmorethanone comparison to terone,is absentin invertebrates. The relationship be- thedata set.A totalof 33 studiescontributed to the tweensexand parasiteinfections be less data set(see Appendix1). maytherefore likelyto developin invertebrates (Zuk and McKean 1996).However,othermechanisms couldproducesex biasesin parasiteinfections amonginvertebrates. For analysis instance, malesmayhave less energyto investin im- Statistical muneresponses thanfemalesbecausemalesengagein We treatedeach host-parasite speciescombination as intrasexual competition and courtshipof females.It an independent observation. Whilephylogenetic effects wouldbe important to quantify thegeneralpattern of mayinfluence sexbiasesin infection (HarveyandPagel sex biasesin parasitism amonginvertebrate speciesto 1991),it is difficult to controlsimultaneously forboth determine theexpected whether ultimate effects of sex- thehostandparasitephylogenies. Previous meta-analyual selectionon parasiteinfections also occurin taxa ses of sex biasesin parasiteinfections have similarly thatlacktestosterone and othersteroid hormones (Zuk treatedeach host-parasite combination as statistically and McKean 1996). independent (Poulin1996a,Schalkand Forbes1997, The objectiveof thisstudywas to investigate the McCurdyet al. 1998). occurrence and generaldirection of sexbiasesin paraofprevalence Comparisons and intensity ofinfection siteinfections amongarthropod species.We performedbetween thesexeswerecomputed foreachhost-parasite a meta-analysis of published data on maleand female system to producestandard measures thatareindepeninfection levelsin whichwe controlled forsamplesizes dentof samplesize (Hedgesand Olkin1985).Differas well as assessingthe influence of othervariables. encesin prevalence werecalculatedas Theseothervariableswerehostand parasitetaxonomy andwhether thehostshadbeennaturally orexperimenwhereJ 1- [3/(4(Nf+ Nm-2) - 1)] tallyinfected by theparasites.We examined theeffect (pf-Pm)(J), ofthesevariables becausesexbiasesinparasitism might betweenthe prevalence in females, pfp be morelikelyto developin certainhosttaxainfected The difference bycertainparasitetaxa,or moreeasilydetected when and thatin males,PM,is weighedby J, whichis a correction forsmallsamplesizes,Nf and Nm.As the exposureis experimentally controlled. totalsamplesize increases, J approachesone so that moreweightis givento comparisons based on many hostindividuals (Hedgesand Olkin1985).Thiscorrectionis important Methods becauseestimates of prevalence are ofteninfluenced by host samplesize (Gregoryand Data collection Blackburn1991). Using the above formula,we get positive comparisons whenprevalence is greater in feWe searchedtheliterature fordata on fungal,protocomparisons whenit is greater in zoan or metazoaninfections in females andmalesfrom males,and negative differences in intensity werecomputed thesamenaturalpopulationor fromthesameexperi- males.Similarly, mentalstudy.Specifically, we searchedall issuesof as Parasitologyand theJournalof Parasitologyavailable at the University of Otago, as well as RP's reprint (If- Im)J/lI 328 OIKOS 88:2 (2000) in females Amongcomparisons Again,thedifference betweentheintensity of prevalence, sex differences (If) and thatin males(IT) is corrected forsamplesize. weresymmetrically distributed aroundzero,withalHere,femaleandmalesamplesizesusedin thecompu- mostas manymale-biaseddifferences as therewere tationofJ arethenumbers ofinfected hostindividuals,female-biased ones(Fig. 1). The overallaveragedifferwhereasin comparisonsof prevalencewe used the enceinprevalence between thesexeswasonlyabout1% numbers of individuals examined.Also, differences in and it did notdiffer fromzero(Table 1). In addition, intensity are expressed as a proportion of theintensityno sex bias was observedin anyof thesubsetsof the in females.This procedure was necessary becausethe largerdatasetconsidered here,i.e. sexdifferences were in thestudieswe notinfluenced actualintensities ofinfection recorded or byeitherhostor parasitetaxonomy, thehostshad beennaturally or experimenusedvarygreatly amongsystems (seePoulin1996a).In bywhether a truemeta-analysis, betweenmeanvalues tallyinfected differences (Table 1). formalesand femalesshouldbe adjustedforthevariin intensity Sex differences of infection showeda abilityamongindividuals, i.e. eachdifference shouldbe slightly skewedfrequency distribution; however,this dividedby thepooledstandarddeviationof the two resultsfromtwo strongly male-biasedcomparisons, groups(Hedgesand Olkin1985).This procedure was withall othershavingvaluescloseto zero(Fig.2). The in intensityoverallaveragedifference inintensity used forthesmallsubsetof comparisons between thesexes betweenmalesand femalesforwhichstandarddevia- was relatively verysmall,lessthan1% of theintensity in females(Table 2). We obtainedsimilarresultsin a tionswereavailable. The null hypothesis (i.e. no sex bias in levelsof separateanalysisusingonlythe 12 comparisons that is thatdifferences in prevalence infection) and intensitycouldbe corrected forthepooledstandard deviation of = - 1.78, t = 1.061, are symmetrically arounda meanof zero. the originaldata (mean difference distributed two-tailed t-teststo comparethe P = 0.311).As withcomparisons We used one-group, of prevalence, there standardized ofhostor parasitetaxonomy or modeof comparisonsto the expectedmean of was no effect zero.The use of directional testsinsteadof two-tailed infection on sex differences in intensity of infection testscould be justifiedgivenour specifichypothesis(Table2). (Rice and Gaines 1994).Usingone-tailed testswould and thuswe reportthe not affectour conclusions, resultsof two-tailed tests.Analyseswereperformed of prevalenceand Discussion followingthe log transformation valuesin thecomputations of differences intensity beIn birdsandmammals, malesaretypically moresusceptweensexes;however,untransformed values are retibleto parasiteinfections thanfemales(Poulin1996a, and tables.We presentresultsof portedin all figures Schalkand Forbes 1997),an observation usuallyatanalysesacrosstheentiredata set,as wellas separate tributedto the immunosuppression associatedwith the analysesforsubsetsofthedatain orderto highlight testosterone (Schuursand Verheul1990,Zuk 1990, if any,of thetypeof infection, hosttaxoninfluence, omyand parasitetaxonomy. 20- Ul) C Results We obtained61 comparisons of prevalenceand 31 ofintensity ofinfection between malesand comparisons females(see Appendix1). The majoritywere from naturalinfections. In general,samplesizeswerelarge. For instance, totalsamplesize(malesplusfemales) for prevalencecomparisonsaveraged1351 (range 44and 337 (range60-1160) 18540)fornaturalinfections forexperimental infections. Samplesizesweresmaller forintensity becauseonlyinfected hosts comparisons, wereused,but theywerestillgenerally good (overall average= 203). No hosttaxonwas involvedin a disnumber ofcomparisons. Withrespect proportionate to parasite taxonomy,however,protozoansand nematodeswerebetterrepresented in thedata set than othertaxa (Appendix1). OIKOS 88:2 (2000) 0 15 - I=C) CO 0. E 0 0 10 o E z3 5 0 -65 -55 -45 [i EL2...22 .. -35 -25 -15 -5 5 15 25 35 45 Difference inprevalence distribution of sex differences in parasite Fig. 1. Frequency corrected forsamplesize,in 61 host-parasite prevalence, systemsinvolving hosts.Blackcolumns indicate malearthropod biaseddifferences, and open columnsindicatefemale-biased differences. 329 data fortheentire maleandfemale hosts.Resultsarepresented between inprevalence ofparasiteinfection Table 1. Differences setas wellas forvarioussubsetsof thedata. Data set No. comparisons (no. hostspecies) All data 61 (46) Typeof infection Experimental 11 (8) Natural Hosttaxon Crustaceans 50 (39) Others 7 (7) Decapods Ticks Insects 9 (9) 5 (2) Orthopterans 11 (8) Dipterans 14 (13) Blattarians Coleopterans Odonates Parasitetaxon Protozoans Fungi Helminths Nematodes Others Arthropods Isopods Mites 8 (4) 6 (2) 1 (1) (SD) Mean femaleminusmaleprevalence -1.29 (15.58) t* P 0.647 0.520 0.19 (17.93) 0.035 0.973 2.28 (7.65) 0.892 0.398 2.57 (8.99) 0.639 0.558 1.626 0.135 1.074 0.302 0.739 -1.62 (15.20) - 5.74 (11.76) -12.09 (24.67) -1.79 (13.51) 1.87(4.56) 4.58 (15.97) 0.10 (-) 0.752 0.456 1.291 0.244 0.376 0.718 1.003 0.362 26 (19) -0.81 (12.23) 0.337 16 (11) -6.73 (20.06) 1.342 0.200 2 (2) 7 (7) 7 (7) 3 (3) 19.12(29.85) -7.81 (11.09) 4.56 (6.52) 11.46(16.86) 0.906 0.531 1.863 0.112 1.850 0.114 1.178 0.360 * Fromone-group, two-tailed tests. 1996, Folstad and Karter1992,Zuk and McKean significant sexualbias had an effect sizesimilarto that thepossible in vertebrates 1996).To date,no one had investigated been foundin arthropodhosts.The ofa similar amongarthropods resultspresented existence generalpattern hereare therefore a good indication whichlack testosterone and thatthereis no consistent or otherinvertebrates, sexbiasin parasiteinfections othersteroidhormones.The resultsof the present amongarthropod hostscomparable towhatis observed meta-analysis indicatethatthereis no generalsexbias in mammals or birds. inparasiteinfection Thisabsenceof amongarthropods. In of hostor parasitetaxonomy. bias is independent 20 fromthedata of bias emerged addition,no consistent in whichsexualdifferences in experimental infections, to parasitesshouldbe easierto detect. susceptibility 15 In meta-analyses of thisnature,it is oftentempting en 0 03 effectson various to blame the lack of significant sourcesof error.For instance,the data on natural Cu infections camefromhoststhathad beensampledat E different timesof theyear,and parasiteinfections can 0 show seasonalfluctuations. Also, most studiescon- .0 in bothprevalence tributed and intensity E comparisons ofinfection, suchthatourtwodata setswerenottruly :3 5can independent (Appendix1). Theseand otherfactors generate noisein thedata setor bias theanalysisone wayor theother.However,theapproachusedhereis 0. ofsex-biased thesameas thatusedin surveys infections -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 in vertebrates, fromsimiwhereclearpatterns emerged Difference inintensity lar typesof data (Poulin1996a,McCurdyet al. 1998). The averagesex differences in infection levelsbetween Fig. 2. Frequencydistributionof sex differencesin parasite correctedforsamplesize,in 31 host-parasitesystems male and femalemammalsor birdsreportedin the intensity, are expressedas a than involvingarthropodhosts.The differences literature (Poulin1996a)can be 3-4 timesgreater in females.Black columnsindicate proportionof the intensity the ones presentedhere for male and female male-biaseddifferences, and open columnsindicatefemale-biOur analysishad the powerto detecta ased differences. arthropods. 330 OIKOS 88:2 (2000) as a proportion oftheintensity Table2. Differences in intensity ofparasiteinfection between maleandfemalehosts,expressed in females. Resultsare presented fortheentiredata setas wellas forvarioussubsetsof thedata. Data set No. comparisons (no. hostspecies) Mean femaleminusmaleintensity (SD) t All data 31 (21) -0.50 (2.38) 1.176 0.249 Typeof infection Experimental 8 (5) Natural 23 (17) -1.82 (4.59) -0.05 (0.48) 1.118 0.300 0.488 0.631 5 (5) 5 (2) -0.63 (1.54) -2.34 (5.81) 0.913 0.413 0.900 0.419 7 (5) 4 (3) 7 (3) 3 (3) -0.33 (0.58) -0.04 (0.57) 0.21 (0.39) 0.05(0.26) 1.483 0.138 1.434 0.335 10 (7) -1.27 (4.05) 0.988 0.349 13 (8) 5 (5) 3 (3) -0.04 (0.53) -0.55 (1.59) 0.09 (0.04) 0.257 0.801 0.771 0.484 3.483 0.073 Host taxon Crustaceans Ticks Insects Orthopterans Blattarians Coleopterans Others Parasitetaxon Protozoans Helminths Nematodes Others Arthropods P 0.189 0.899 0.202 0.770 * Fromone-group, -tests. two-tailed Experimental studiesshouldbe moresensitive than The absenceof a universal and consistent sex bias to intrinsic in susceptibility differences to does not mean thatthereis no bias in any specific fieldsurveys host-parasite system.Significant differences between parasitesbetweenmales and females,if theseexist, in exposure. Commales and femalesin prevalenceand/orintensity of becausetheycontrolfordifferences in bined the the of meta-analysis, results experimental werereported infection forsome(9 outof 24 comparitestwas reported) of the studiesdid notsuggestanyclearsexbias. Takenindisons forwhicha statistical includedin our data set. In somecases vidually,however,theycan provideclear patterns comparisons hostspecies.Forexample, andJakobWedekind (six), males were more parasitizedthan females, within whereasthe oppositewas truein othercomparisons sen (1998)foundthatmalecopepodshad significantly and intensity of infection thanfeandJakob- higherprevalence (three).Theauthorsofonlyone(Wedekind in males experimental with infections the larval cestode sen1998)ofthesestudiesattributed differtheobserved solidus. Their Schistocephalus that the study suggests ence to sexualselection;otherauthorseitherdid not immune of is response males somehow weaker than or attributed it to ecological discussthe difference Theseresults andinterpretations mirror causes.It maybe thatthereexistsno generalpattern thatoffemales. thefindings in of otherstudieson bacterialinfections but that the specificbiologyof amongarthropods, arthropods (e.g. Gray1998).Sincethemajority of the hostsand parasites mayproducebiasesonewayor the studiesincludedin our data set involvednaturally otherin somehost-parasite This speciescombinations. infected to usean experimenhosts,itwillbe important withthegenerally interpretation is notconsistent more tal approachin moreinvertebrate-parasite systems to intensesexualselectionpressure actingon malesthan elucidatetheinfluence of sex on infection levels. morestressful on femalesand producing reproductive In addition,therelatively simpleimmunesystem of in males (Clutton-Brock and Parker1992, arthropods strategies andotherinvertebrates (Loker1994)should Owens and Thompson1994). One factorthatmay be amenableto studiesofsexdifferences initsfunctionobscuresex differences in susceptibility to parasites ing.All our conclusions are strictly about sex differin mostinvertebrates, could be size dimorphism: fe- encesin actualparasiticinfections, and notaboutsex malesareoftenlargerthanmalesbecauseoffecundity-differences in immuneresponse.It maybe thatmale drivenselection(see Poulin 1996b for review).The and femaleinvertebrates investdifferentially in defense largersizeoffemales couldresultingreater exposure to againstpathogens becauseofdifferences in sexualselecandprovidemoreresources parasites to incoming para- tion,butthatthisdifferential investment is notreflected a highersusceptibility of malesto in termsof parasiteinfection sites,thusnegating to thesamedegreeas in infection. This maybe a commonphenomenon, since vertebrates becauseof the greatersimplicity of the positivecorrelations between hostsizeand intensity of invertebrate immunesystem. ofhostsex,werereported in many Takenas a whole,ourresults infection, regardless suggest thattheremay studiesthatwe surveyed. be a difference betweenvertebrates and arthropods GIKOS 88:2 (2000) 331 withrespectto some of the consequences of sexual Kuris,A. M., Poinar,G. 0. and Hess, R. T. 1980. Post-larval mortalityof the endoparasiticisopod castratorPortunion selection. We shouldexpectbasic differences between conformis(Epicaridea: Entoniscidae) in the shore crab, thesexesin terms ofbasicparameters suchas mortality Hemigrapsusoregonensis,with a descriptionof the host rates,in bothvertebrates and invertebrates. However, response.- Parasitology80: 211-232. the potentialforendocrine-immune interactions pro- Lackie, J. M. 1972. The course of infectionand growthof dubius(Acanthocephala)in the intermediate Moniliformis in a videsa meansforselectionto act in vertebrates host Periplanetaamericana.- Parasitology64: 95-106. way thatit mightnot be able to achievein inverte- Loker,E. S. 1994. On beinga parasitein an invertebrate host: lackthenegative feedback brates.Invertebrates system a shortsurvivalcourse. - J. Parasitol. 80: 728-747. D. G., Shutler,D., Mullie, A. and Forbes, M. R. betweenthe immunesystemand the expressionof McCurdy, 1998. Sex-biased parasitismof avian hosts: relationsto sexualfeatures and behaviorprovidedby testosterone blood parasite taxon and mating system.- Oikos 82: invertebrates. Thus,higher levelsofparasitic infections 303-312. butnotso Moloo, S. K., Steiger,R. F. and Brun,R. 1973. Trypanosome maybe a generalcostformalevertebrates infectionratesin Glossinaswynnertoni and G. pallidipesin generalformaleinvertebrates. Ikoma, Musoma District,Tanzania. - Parasitology66: - We thankLien Luong forallowingus to Acknowledgements use some of her unpublisheddata. References Alexander,J. and Stimson,W. H. 1988. Sex hormonesand the course of parasiticinfection.- Parasitol. Today 4: 189193. Andres,J. A. and Cordero,A. 1998. Effectsof watermiteson the damselflyCeriagriontenellum.- Ecol. Entomol. 23: 103-109. Beck, J. T. 1979. Population interactionsbetweena parasitic castrator, Probopyruspandalicola (Isopoda: Bopyridae), and one of its freshwater shrimphosts,Palaemonetespaludosus (Decapoda: Caridea). - Parasitology79: 431-449. Born, J. W. 1967. Palaemonetesvulgaris(Crustacea, Decapoda) as host for the juvenile stage of Nectonemaagile (Nematomorpha).- J. Parasitol. 53: 793-794. T. H. and Parker,G. A. 1992. PotentialreproClutton-Brock, ductiverates and the operationof sexual selection.- Q. Rev. Biol. 67: 437-456. Dobrovolny,C. G. and Ackert,J. E. 1934. The lifehistoryof Leidynemaappendiculata(Leidy), a nematode of cockroaches. - Parasitology26: 468-480. Field, L. H. 1969. The biology of Notophryxuslateralis (Isopoda: Epicaridia), parasitic on the euphausiid Ne- J. Parasitol. 55: 1271-1277. matoscelisdifficilis. Fincher,G. T., Stewart,T. B. and Davis, R. 1969. Beetle intermediate hostsforswinespiruridsin southernGeorgia. - J. Parasitol. 55: 355-358. Folstad, I. and Karter,A. J. 1992. Parasites,brightmales,and the immunocompetence handicap. - Am. Nat. 139: 603622. in susceptibility of house Gray, D. A. 1998. Sex differences to experimental infectionwith crickets,Achetadomesticus, Serratialiquefaciens.- J. Invert.Pathol. 71: 288-289. Gregory,R. D. and Blackburn,T. M. 1991. Parasite prevalenceand host sample size. - Parasitol.Today 7: 316-318. Grossman, C. J. 1985. Interactionsbetween the gonadal steroidsand the immunesystem.- Science 227: 257-261. Harvey, P. H. and Pagel, M. D. 1991. The comparative method in evolutionarybiology. - Oxford Univ. Press, Oxford. Hedges, L. V. and Olkin, I. 1985. Statisticalmethods for meta-analysis.- Academic Press,San Diego, CA. Irvin,A. D., Boarer, C. D. H., Dobbelaere, D. A. E. et al. 1981. MonitoringTheileriaparva infectionin adult Rhipiticks.- Parasitology82: 137-147. cephalusappendiculatus Keymer,A. 1982. The dynamics of infectionof Tribolium confusumby Hymenolepisdiminuta:the influenceof exposure timeand host density.- Parasitology84: 157-166. Kitron,U. D. 1980. The patternof infestationof the beachhopper amphipod Orchestoideacorniculata,by a parasitic mite. - Parasitology81: 235-249. 332 259-267. Moloo, S. K., Gettinby,G., Olubayo, R. 0. et al. 1993. A comparisonof AfricanBuffalo,N'Dama and Boran cattle as reservoirsof Trypanosomavivax for different Glossina species. - Parasitology106: 277-282. Owens,I. P. F. and Thompson,D. B. A. 1994. Sex differences, sex ratios and sex roles. - Proc. R. Soc. Lond. B 258: 93-99. Poulin, R. 1996a. Sexual inequalitiesin helminthinfections:a cost of beinga male? - Am. Nat. 147: 287-295. Poulin, R. 1996b. Sexual size dimorphismand transitionto parasitismin copepods. - Evolution50: 2520-2523. Promislow,D. E. L. 1992. Costs of sexual selectionin natural populations of mammals. - Proc. R. Soc. Lond. B 247: 203-210. Promislow,D. E. L., Montgomerie,R. and Martin, T. E. 1992. Mortalitycosts of sexual dimorphismin birds. Proc. R. Soc. Lond. B 250: 143-150. Purnell,R. E., Brown,C. G. D., Cunningham,M. P. et al. 1973. East Coast fever:correlationbetweenthe morpholof Theileriaparva developingin its tick ogy and infectivity vector.- Parasitology66: 539-544. Purnell,R. E., Young, A. S., Payne,R. C. and Mwangi,J. M. 1975. Developmentof Theileriamutans(Aitong)in the tick Amblyommavariegatumcompared to that of T. parva (Muguga) in Rhipicephalusappendiculatus.- J. Parasitol. 61: 725-729. Rice, W. R. and Gaines, S. D. 1994. 'Heads I win, tail you lose': testingdirectionalalternativehypothesesin ecological and evolutionaryresearch. - Trends Ecol. Evol. 9: 235-237. Rogers, A., Kenyanjui,E. N. and Wiggwah,A. K. 1972. A high infectionrate of Trypanosomabrucei subgroup in Glossinafuscipes.- Parasitology65: 143-146. Schalk,G. and Forbes, M. R. 1997. Male biases in parasitism of mammals:effectsof studytype,host age, and parasite taxon. - Oikos 78: 67-74. Schlein,Y., Polacheck,I. and Yuval, B. 1985. Mycoses,bacterial infectionsand antibacterialactivityin sandflies(Psychodidae) and theirpossible role in the transmissionof leishmaniasis.- Parasitology90: 57-66. Schuurs,A. H. W. M. and Verheul,H. A. M. 1990. Effectsof gender and sex steroids on the immuneresponse. - J. SteroidBiochem.35: 157-172. Seidenberg,A. J. 1973. Ecology of the acanthocephalan, dirus(van Cleave, 1931), in its intermediAcanthocephalus ate host,Asellus intermedius Forbes (Crustacea: Isopoda). - J. Parasitol. 59: 957-962. Stark, G. T. C. 1965. Diplocotyle(Eucestoda), a parasite of Gammaruszaddachi in the estuaryof the YorkshireEsk, Britain.- Parasitology55: 415-420. Stromberg,P. C., Toussant, M. J. and Dubey, J. P. 1978. Populationbiologyof Paragonimuskellicottimetacercariae in centralOhio. - Parasitology77: 13-18. Thomas, F., Renaud, F., Derothe,J. M. et al. 1995. Assortativepairingin Gammarusinsensibilis (Amphipoda)infected by a trematodeparasite.- Oecologia 104: 259-264. OIKOS 88:2 (2000) Tsai,Y.-H. and Cahill,K. M. 1970.ParasitesoftheGerman (Flagellata incertaesedis) and its incidencein a population of Undinulavulgarisvar. major (Crustacea Copepoda). Parasitol.56: 375-377. Parasitology53: 293-296. vanWyk,P. M. 1982.Inhibition ofthegrowth andreproduc- Young, A. S., Purnell,R. E., Kimber,C. D. and Payne,R. C. tionoftheporcellanid crabPachycheles rudisbythebopy1975. Correlationbetweenthe morphologyand infectivity rid isopod, Aporobopyrusmuguensis.- Parasitology85: of Theilerialawrenceidevelopingin the tick Rhipicephalus 459-473. appendiculatus.- Parasitology71: 27-34. Ward,D. F., Thomas,F. and Poulin,R. 1998.Fluctuating Young, A. S., Grootenhuis,J. G., Leitch,B. L. and Schein,E. and parasitism in sixNew Zealandinsects.asymmetry 1980. The developmentof Theileria= CytauxzoontauroActaOecol. 19: 409-412. tragi(Martin and Brocklesby,1960) fromeland in its tick Ward,P. I. 1986.A comparative bestudyof thebreeding vector Rhipicephalusappendiculatus.- Parasitology 81: haviourof a streamand a pondpopulation of Gammarus 129-144. pulex (Amphipoda). - Oikos 46: 29-36. Zuk, M. 1987. Seasonal and individualvariationin gregarine and Wedekind, C. P. J. 1998.Male-biased Jakobsen, susceptiparasite levels in the fieldcricketsGryllusveletisand G. bilityto helminth infection: an experimental testwitha - Ecol. Entomol. 12: 341-348. pennsylvanicus. copepod. - Oikos 81: 458-462. Welch,H. E. 1959.Taxonomy, lifecycle,development, and Zuk, M. 1990. Reproductivestrategiesand disease susceptibility:an evolutionaryviewpoint.- Parasitol.Today 6: 231habitsoftwonewspeciesofAllantonematidae (Nematoda) 233. in drosophilid parasitic flies.- Parasitology 49: 83-103. interactionsand E. L. 1978.Comparative Wenner, biologyof fourspeciesof Zuk, M. 1996. Disease, endocrine-immune sexual selection.- Ecology 77: 1037-1042. andcrangonid fromthecontinenglyphocrangonid shrimp in parasitic tal slopeofthemiddleAtlantic Bight.- Can. J.Zool. 56: Zuk, M. and McKean, K. A. 1996. Sex differences infections:patternsand processes.- Int. J. Parasitol. 26: 1052-1060. J. H. 1963.A newrecordof Ellobiopsis chattoni Wickstead, 1009-1024. cockroach(BlattellagermanicaL.) in New York City. - J. Appendix1. Data on femaleand male infectionlevelsused in the analyses. Host taxon Parasite taxon Prevalenceof infection decapod nematomorph decapod trematode decapod isopod decapod isopod decapod isopod decapod isopod decapod isopod decapod isopod decapod isopod amphipod acanthocephalan cestode amphipod amphipod trematode amphipod mite copepod protozoan copepod cestode isopod acanthocephalan tick protozoan tick protozoan tick protozoan tick protozoan tick protozoan orthopteran protozoan orthopteran protozoan orthopteran protozoan orthopteran protozoan orthopteran protozoan orthopteran protozoan orthopteran protozoan orthopteran protozoan orthopteran nematode orthopteran nematode orthopteran mite blattarian protozoan blattarian protozoan blattarian protozoan blattarian protozoan blattarian nematode blattarian nematode blattarian nematode blattarian nematode coleopteran nematode OIKOS 88:2 (2000) Type of study* Female infection Male infection Sample size Source** N N N N N N N N N N N N N N E N E E E E E N N N N N N N N N N N N N N N N N N N N 1.12 57.14 62.85 35.20 0.28 69.90 33.33 0.92 1.47 2.70 3.50 46.45 62.32 30.14 40.00 27.00 38.00 11.63 88.20 10.00 31.29 56.25 17.07 46.62 13.64 38.71 53.33 36.28 51.72 15.39 15.39 83.33 27.27 90.91 45.46 31.82 54.17 68.97 87.50 97.73 19.20 1.84 67.85 46.15 33.90 0.30 61.15 26.67 1.43 2.33 4.16 3.90 58.85 58.86 30.56 70.00 26.10 26.80 1.51 91.40 20.00 26.70 66.67 48.88 51.39 23.08 44.00 57.90 30.00 53.57 77.42 57.58 52.00 21.88 96.88 46.88 25.00 87.10 61.11 79.50 100.00 16.60 2500 647 471 4327 18540 2868 51 397 333 4451 870 940 1183 765 182 5340 500 944 138 60 1160 58 264 349 83 87 64 132 57 44 46 49 76 76 76 76 79 65 178 76 156 1 2 3 4 5 6 7 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 20 22 22 22 22 20 20 22 23 23 23 23 22 22 24 23 25 333 Appendix1. (Continued) Source** Hosttaxon Parasitetaxon Typeof study* Femaleinfection Male infection Samplesizet coleopteran coleopteran coleopteran coleopteran coleopteran dipteran dipteran dipteran dipteran dipteran dipteran dipteran dipteran dipteran dipteran nematode nematode nematode nematode nematode protozoan protozoan protozoan protozoan protozoan protozoan protozoan protozoan fungus fungus N N N N N E E E N N N E E N N 2.50 0.50 3.80 3.80 39.20 52.10 49.30 72.05 9.10 5.97 16.90 47.85 4.20 73.00 80.00 7.60 0.40 2.20 0.80 30.20 40.95 61.80 34.50 9.50 4.23 14.10 65.05 4.00 32.60 82.00 156 1214 1214 1214 1214 149 141 148 623 394 6344 142 146 176 100 25 25 25 25 25 26 26 26 27 28 27 26 26 29 29 dipteran dipteran dipteran odonate nematode nematode nematode mite N N N N 21.68 1.85 6.23 98.20 19.86 2.08 4.09 98.10 1347 570 4569 1847 30 30 30 31 of infection Intensity N trematode decapod N decapod isopod N decapod isopod E copepod cestode acanthocephalan N isopod E tick protozoan E protozoan tick protozoan E tick E tick protozoan protozoan E tick N orthopteran protozoan N orthopteran protozoan N orthopteran protozoan N orthopteran protozoan N orthopteran protozoan N orthopteran nematode N orthopteran nematode N blattarian nematode N blattarian nematode N blattarian nematode blattarian acanthocephalan E N coleopteran nematode N coleopteran nematode N coleopteran nematode N coleopteran nematode N coleopteran nematode N coleopteran nematode E coleopteran cestode N nematode dipteran N nematode dipteran N mite odonate 2.90 1.55 1.08 0.50 3.39 1.12 21.45 3.98 17.10 1.67 2.32 10.68 8.98 2.48 19.67 7.00 12.00 1.71 5.10 1.97 12.36 17.50 1.00 3.00 6.90 5.20 6.50 2.09 1.91 2.21 35.60 3.10 1.38 1.04 2.20 2.85 15.51 9.20 2.08 14.43 2.00 3.92 3.07 15.63 3.43 17.82 14.63 15.26 2.32 3.80 1.94 7.10 11.40 1.00 1.00 3.00 8.10 2.70 1.84 2.38 1.62 31.40 412 250 54 81 1417 63 338 162 124 9 35 46 35 30 37 26 21 53 148 42 141 420 28 5 37 28 8 120 22 279 1813 dipteran nematode N 2.33 3.36 799 30 2 3 5 13 14 16 19 15 17 18 22 22 22 22 20 20 20 22 24 22 32 25 25 25 25 25 25 33 30 30 31 * E, experimental N, naturalinfection. infection; forintensity, totalnumber ofinfected hostsin naturalinfections, or total ofhostsexamined; totalnumber t For prevalence, in experimental number of hostsexposedto infection studies. **Sources:1, Born1967;2, Stromberg et al. 1978;3, Kuriset al. 1980;4, van Wyk1982;5, Field 1969;6, Beck 1979;7, Wenner1978;8, Ward1986;9, Stark1965;10,Thomaset al. 1995;11,Kitron1980;12,Wickstead and 1963;13,Wedekind etal. 1973;16,Youngetal. 1975;17,Youngetal. 1980;18,Purnell etal. 1975; Jakobsen 1973;15,Purnell 1998;14,Seidenberg 19,Irvinetal. 1981;20,LuongandZuk unpubl.;21,Zuk 1987;22,Wardetal. 1998;23,Tsai andCahill1970;24,Dobrovolny andAckert1934;25,Fincher et al. 1969;26,Moloo et al. 1993;27,Moloo et al. 1973;28,Rogerset al. 1972;29,Schleinetal. 1985;30,Welch1959;31,Andresand Cordero1998;32,Lackie1972;33,Keymer1982. 334 OIKOS 88:2 (2000)
© Copyright 2026 Paperzz