ECSE-2500 Engineering Probability HW#17 Solutions Due 11/13/14 1. (11 points) Let X and Y be discrete RV’s with joint PMF pX,Y x, y and marginal PMF’s pX x and pY y as given in the following table: pX,Y x, y x 1 0 −1 pY y −1 0.06 0.14 0.10 0.30 y 0 0.04 0.05 0.03 0.12 1 0.35 0.21 0.02 0.58 pX x 0.45 0.40 0.15 1.a. (4 points) Compute the conditional PMF of Y given X, pY y x to 3 decimal places. Then show that for each x SX we have p y x 1. ySY Y Clearly show your work. Solution Using the formula pY y x pY y x 1 x 0 −1 pXY x, y , we have pX x −1 y 0 1 0.06 0.133 0.45 0.14 0.350 0.40 0.10 0.667 0.15 0.04 0.088 0.45 0.05 0.125 0.40 0.03 0.200 0.15 0.35 0.777 0.45 0.21 0.525 0.40 0.02 0.133 0.15 p y x Y pX x 1.000 0.45 1.000 0.40 1.000 0.15 ySY Page 1 of 3 ECSE-2500 Engineering Probability HW#17 Solutions Due 11/13/14 1.b. (4 points) Compute the conditional PMF of X given Y, pXx y to 3 decimal places. Then show that for each y SY we have p x y 1. xSX X Clearly show your work. Solution Using the formula pXx y pXx y 1 x 0 −1 p x y xSX X pY y pXY x, y , we have pY y −1 y 0 1 0.06 0.200 0.30 0.14 0.467 0.30 0.10 0.333 0.30 0.04 0.333 0.12 0.05 0.417 0.12 0.03 0.250 0.12 0.35 0.603 0.58 0.21 0.362 0.58 0.02 0.034 0.58 1.000 1.000 0.999 0.30 0.12 0.58 pX x 0.45 0.40 0.15 The last one adds to 0.999 due to rounding error. 1.c. (3 points) Using your results from part b, show clearly whether X and Y are independent. Solution From the table in part b, we see pXx y pX x for each pair x, y SX SY . For example, 0.2 pX 1 1 pX 1 0.45. Page 2 of 3 ECSE-2500 Engineering Probability HW#17 Solutions Due 11/13/14 2. (8 points) Consider two continuous random variables X and Y with joint PDF f X,Y x, y 20 x 0, y 0, x y 1 elsewhere 2.a. (4 points) Draw a picture of the region where f X,Yx, y is non-zero. Compute the marginal PDF of X and the marginal PDF of Y. Show your work. Be very clear about your regions. Solution y 1 2 0 f X x 1 x 1 x 2dy 2 y 1 x 0 2 2x for 0 x 1 0 fY y 1 y 2dx 2x 1 y 0 2 2 y for 0 y 1 0 2.b. (4 points) Now compute the conditional PDF of Y given X, fY y x, and show that for every x with f X x 0, we have f y xdy 1. Y Clearly show your work. Be very clear about your regions. Solution fY y x f X,Yx, y 2 1 for x 0, y 0, x y 1 f X x 2 2x 1 x and zero elsewhere. 1 x f y xdy Y 0 1 x 1 dy 1 1dy 1 1 x 1 1 x 1 x 0 1 x for 0 x 1. Page 3 of 3
© Copyright 2026 Paperzz