Compositional-turnover modelling: an applied perspective Simon Ferrier Tom Harwood, Karel Mokany, Kristen Williams, Andrew Hoskins, Renee Catullo Glenn Manion (NSW OEH), Dan Rosauer (ANU) CSIRO LAND & WATER FLAGSHIP A long time ago ... Ferrier (1984) The status of the Rufous Scrub-bird: habitat, geographical variation & abundance. PhD Thesis. Ferrier et al (2002) Biodiversity & Conservation Regional conservation planning in north-east NSW forests throughout the 1990s Modelled species distributions & vegetation communities Protection targets Conservation prioritisation (irreplaceability analysis) Timber resource assessment Ferrier, S et al (2000) Biological Conservation 93: 303-325 Negotiation & selection of new reserves Innovations in SDM application during that period - incorporating geographical space Ferrier et al (2002) Biodiversity & Conservation Innovations in SDM application during that period - “stacked” predict-then-assemble approaches Ferrier et al (2002) Biodiversity & Conservation Late 1990s onwards: focus shifted to whole-landscape decision-making processes Ferrier, S & Wintle, B (2009) Quantitative approaches to spatial conservation prioritisation: matching the solution to the need. In Spatial Conservation Prioritisation. OUP Late 1990s onwards: focus shifted to whole-landscape decision-making processes Richmond-Tweed Catchments: Key Habitats & Corridors Project Hunter Central-Rivers CMA: Planning for protection & restoration of river / stream biodiversity Turak, Ferrier, et al (2011) Freshwater Biology 56: 39-56 Whole-landscape modelling of biodiversity persistence as a foundation for multiple forms of higher-level assessment Ferrier, S & Drielsma, M (2012) Diversity & Distributions 16: 386-492 Resulted in further innovations in species modelling – e.g. linking SDMs to dynamic metapopulation models Drielsma, M & Ferrier, S (2009) Biological Conservation 142: 529-540 But what about “the other 99%” of compositional diversity? Moritz et al (2001) Proc Ret Soc Moritz al B (2001) Ferrier & Watson (1997) www.environment.gov.au/archive/biodiversity/ publications/technical/surrogates/ Ferrier et al (2002) Biodiversity & Conservation Spectrum of distributional modelling strategies Ferrier & Guisan (2006) Journal of Applied Ecology • interested in individual species of particular concern • reasonable number of records per species Individual species distribution (niche) modelling “Predict first, assemble later” techniques Simultaneous multi-response modelling of multiple species “Assemble first, predict later” techniques Macroecological modelling of collective biodiversity properties (richness, compositional turnover etc) • interested in biodiversity as a whole • huge number of species, each with few (or no) records Modelling of compositional turnover (dissimilarity) across space Location B Compositional dissimilarity (beta diversity) between locations A and B = f (differences in abiotic environment, biogeographic isolation, etc) Location A Local species richness (alpha diversity) at location A = f (abiotic environment, biogeographic history, human disturbance, etc) Statistical modelling of compositional turnover e.g. generalised dissimilarity modelling (GDM) Ferrier, S et al (2007) Diversity & Distributions Biological survey data Compositional dissimilarity dij = 1 − e −η Ecological distance η = α + Environmental predictor A Environmental ∑ Environmental predictor C f (predictor A) p =1 predictor A f (predictor B) predictor B n predictor B f p ( x pi ) − f p ( x pj ) Flexibility in types of response and predictor variables Site i Site j Response: Dissimilarity in species composition or Phylogenetic dissimilarity or Intraspecific genetic distance or Metagenomic distance e.g. C d ij = 1 − Predictors: Multiple environmental gradients and / or Geographic separation and / or Biogeographic isolation Ferrier, S et al (2007) Diversity & Distributions A B e.g. 2A 2A + B + C Modelling dissimilarity in species composition 77,000 records of 2,700 land-snail species Generalised dissimilarity modelling (GDM) 4.00 3.50 Spatial pattern in compositional turnover f(rprecmean) 3.00 2.50 2.00 1.50 1.00 0.50 0.00 -0.002 -0.001 0 0.001 0.002 rprecmean 4.00 3.50 f(bio18) 3.00 2.50 2.00 1.50 1.00 0.50 Remotely derived environmental variables: climate, terrain, soils, geographic isolation etc 0.00 500 1,000 1,500 2,00 bio18 4.00 3.50 f(megagi) 3.00 2.50 2.00 1.50 1.00 0.50 0.00 0 0.1 0.2 0.3 0.4 0.5 0.6 megagi 4.00 3.50 f(slope) 3.00 2.50 2.00 1.50 1.00 0.50 0.00 0 5 10 15 20 25 30 35 slope etc ... etc ... Funded by Aust. Department of Environment Modelling phylogenetic dissimilarity Rosauer, D et al (2013) Ecography Modelling intraspecific genetic variation Modelling intraspecific genetic variation Perspective on potential roles of GDM, circa 2007 Individual species extrapolation Constrained environmental classification Biological survey data Generalised dissimilarity modelling Visualisation of spatial pattern in community composition Conservation assessment Environmental predictors Climate-change vulnerability assessment Survey gap analysis Ferrier, S et al (2007) Diversity & Distributions Perspective on potential roles of GDM, circa 2007 Individual species extrapolation Constrained environmental classification Biological survey data Generalised dissimilarity modelling Visualisation of spatial pattern in community composition Conservation assessment Environmental predictors Climate-change vulnerability assessment Survey gap analysis Ferrier, S et al (2007) Diversity & Distributions Visualisation and classification of spatial pattern in compositional turnover Ferrier, S et al (2007) Diversity & Distributions Visualisation and classification of spatial pattern in compositional turnover A Lowland, low gradient streams B C Lowland hill-country streams D E Lowland rivers & streams - dry climates F G H I Mid-elevation streams - dry climates Mid-elevation rivers & streams - wet climates J K L M Mid-elevation rivers & streams - glacially influenced Glacial rivers N O P High elevation streams – non-glacial Q R S T 0.6 0.3 0.2 Environmental distance Leathwick, JR et al (2011) Freshwater Biology 56: 21-38 0.1 0.0 High elevation streams – glacial Perspective on potential roles of GDM, circa 2007 Individual species extrapolation Constrained environmental classification Biological survey data Generalised dissimilarity modelling Visualisation of spatial pattern in community composition Conservation assessment Environmental predictors Climate-change vulnerability assessment Survey gap analysis Ferrier, S et al (2007) Diversity & Distributions Predictively mapping distributions of individual species? Ferrier, S et al (2007) Diversity & Distributions Elith, J et al (2006) Ecography Predictively mapping distributions of individual species – potential to simulate unknown species? A B Number of species 0 - 50 50 - 100 100 - 150 150 - 200 200 - 220 Limited survey data Environmental variables Number of species site 1 0 1 species 1 1 1 1 0 0 1 1 1 Statistical models 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 site site site DynamicFOAM 0 - 300 300 - 600 600 - 900 900 - 1200 1200 - 1350 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 400 Observed gamma-diversity 1 0 0 1 1 0 1 0 0 0 1 1:1 300 200 100 Predicted composition site species 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 100 200 300 Predicted gamma-diversity 400 Perspective on potential roles of GDM, circa 2007 Individual species extrapolation Constrained environmental classification Biological survey data Generalised dissimilarity modelling Visualisation of spatial pattern in community composition Conservation assessment Environmental predictors Climate-change vulnerability assessment Survey gap analysis Ferrier, S et al (2007) Diversity & Distributions Conservation assessment – national/continental scale Conservation assessment – global scale Ferrier et al (2004) BioScience Perspective on potential roles of GDM, circa 2007 Individual species extrapolation Constrained environmental classification Biological survey data Generalised dissimilarity modelling Visualisation of spatial pattern in community composition Conservation assessment Environmental predictors Climate-change vulnerability assessment Survey gap analysis Ferrier, S et al (2007) Diversity & Distributions Projecting potential impacts of climate change – correlative space-for-time substitution Potential change in plant community composition (2030 A1FI scenario) Projecting potential impacts of climate change – correlative space-for-time substitution Projecting potential impacts of climate change – semi-mechanistic modelling a b c d Using paleo-ecological data to test the predictive performance of projections A largely unforeseen use – testing fundamental hypotheses around drivers of beta-diversity patterns
© Copyright 2026 Paperzz