Catalytic reductive fractionation (CRF): effects of acidic/alkaline additives Tom Renders,a Sander Van den Bosch,a Steven-Friso Koelewijn,a Thijs Vangeel,a Gil van den Bossche,a Wouter Schutyser,a,b,* Bert Sels a,* a Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium b National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States * E-mail: [email protected], [email protected] Classic biorefinery vs. “Lignin-first” Classic cascade Lignin-first cascade Focus on valorization of carbohydrates, not on lignin STEP STEP 1 1 Focus on valorization of native lignin, prior to sugars Degradation & repolymerization: technical lignins Prevention of degradation & repolymerization Recalcitrant substrate, low monomer yields Reactive substrate, high monomer yields Low added-value, lignin incineration $ $ Increased added value from lignin The CRF-biorefinery Operating conditions 473 – 523 K 40 – 120 bar Lignocellulose e.g. poplar, birch, pine, switchgrass Lignin oil Bio-crude Separation dimers + oligomers monomers Pd/C H2 Catalyst + H2 e.g. Pd/C, Ru/C, Ni/SiO2 Soluble carbohydrates Filtration Carbohydrate pulp Elementary steps Step 1: Solvolytic extraction Step 2: Depolymerization Solvent e.g. MeOH, EtOH, iPrOH, EtGly Process summary: Turning the lignin-first paradigm into reality is enabled by a process termed catalytic reductive fractionation (CRF). Herein, lignin is solvolytically extracted from the biomass matrix (step 1), followed by instant catalytic depolymerization (hydrogenolysis, step 2). The main products resulting from this biorefinery are a depolymerized lignin oil and a carbohydrate enriched pulp. Pitfall: High temperatures (523 K) are required in order to obtain a near complete delignification, which implies a high operating pressure (120 bar). Possible solution: Catalytic additives (H3PO4, NaOH) could possibly assist the solvolytic lignin extraction (step 1) at milder T (473 K) and P (60 bar). Research question: What are the effects of acidic (H3PO4) or alkaline (NaOH) additives on the CRF process? Are these effects beneficial? Effects on lignin Evaluation Effects on pulp 40 80 30 60 20 10 0 0,20g 0,10g 2.50 0,05g Neutral 0 1.25 5.00 0,05g 0 H3PO4 H3PO4 H3PO4 NaOH 40 20 20 20 10 0 0,10g 2.50 NaOH Delignification (% Klason lignin) Neutral 0 0,05g H3PO4 0,10g H3PO4 0,20g H3PO4 1.25 2.50 5.00 Cellulose 0,20g Neutraal 5.00 0 NaOH 250°C 60 40 20 0 [NaOH] / g.L-1 Lignin • Decreased monomer yield • Increased delignification Lower monomer selectivity (cfr. gap) Hampered depolymerization by NaOH Pulp • Partial loss of hemicellulose • Partial loss of cellulose Degradation of released sugars Carbohydrate balance (wt%) Gap Delignification / % 80 Reference, High T Monomer yield / % 40 473 K 40 0 [H3PO4] / g.L-1 NaOH 100 0 60 473 K 50 0,05g 1.25 NaOH 80 523 K NaOH Neutral Pulp • Removal of hemicellulose (alcoholysis) • Effective preservation of cellulose Cleaner cellulosic pulp 0 [H3PO4] / g.L-1 Other 30 Lignin • Increased monomer yield • Increased delignification Higher lignin conversion at milder T Similar outcome as high T reference Neutraal 250°C 0 523 K Hemicellulose NaOH 100 80 60 Reference, High T 473 K H3PO4 100 Reference, High T 100 Delignification / % 50 Carbohydrate balance (wt%) H3PO4 Reference, High T Monomer yield / % Monomer yield (C-mol%) H3PO4 40 20 0 [NaOH] / g.L-1 Neutral 0 0,05g NaOH 0,10g NaOH 0,20g NaOH 523 K (1) Van den Bosch, S.; Schutyser, W.; Sels, B. F. et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 2015, 8, 1748-1763. (2) Renders, T.; Sels, B. F. et al. Influence of acidic (H3PO4) and alkaline (NaOH) additives on the catalytic reductive fractionation of lignocellulose. ACS Catal. 2016, 2055-2066. 1.25 2.50 5.00 473 K Neutraal 250°C 0 523 K
© Copyright 2026 Paperzz