Clines, species and eucalypts: an evolutionary perspective James Holman Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy Australian School of Environmental Science, Griffith University October 2002 Summary Summary Two eucalypt clines were examined using morphological, ecophysiological and molecular analyses. The species complexes examined were an ironbark complex (Eucalyptus melanophloia x E. whitei) and a box complex (E. brownii x E. populnea). Both of these complexes demonstrate continuous morphological variation across their clines. The origin of these morphological clines has previously been interpreted as the product of secondary contact between allopatric species. In this study, an analysis of morphological variation across the clines did not identify an increase in trait variance in the intermediate populations, which suggests that previous theories concerning the origin of these clines may not be valid. Genetic structuring in nuclear and chloroplast DNA was examined across the clines to investigate whether the morphological clines were the product of secondary contact between two independent evolutionary lineages, or whether the clines represent a single evolutionary lineage that has undergone primary differentiation. The microsatellite analyses indicated that there was little genetic structuring across either cline, and that there were only low levels of population differentiation. The lack of hierarchical structuring in the distribution of nuclear genetic variation suggests that these clines are unlikely to be the product of recent gene flow between two formerly allopatric species/populations. A nested clade analysis of the JLA+ region of the cpDNA provides additional evidence to reject the null hypothesis that the morphospecies classifications represent distinct evolutionary lineages. Instead the analyses indicate that each cline represents a single cohesion species and a single evolutionary lineage. The phylogeographic distribution of cpDNA haplotypes is likely to have resulted from restricted seed mediated gene flow with isolation by distance. A more cogent explanation for the clines, based on the genetic data, is that they have arisen through the process of continuous morphological diversification that has been promoted by a directional selection gradient. I Summary Drought experiments were conducted in the glasshouse to investigate whether differences in physiological performance under water stress helps to explain the maintenance of the ironbark cline. Under increasing water stress, the morphotypes showed differences in their ability to maintain water status and photosynthetic rates, yet there was no obvious pattern to these differences across the cline. Physiological differences are therefore inadequate to explain the maintenance of the ironbark cline and highlight the compensatory role that morphological variation may play in alleviating water stress. The value of adopting the cohesion species concept and a hypothesis-testing framework to assess species status is demonstrated in this study. This framework provided a statistical approach to distinguish independent evolutionary lineages from interspecific populations and provides evidence to refute the current species status of the species complexes studied. Eucalypt classification is predominantly based on morphology, which results in taxonomic classification that may not reflect genealogical relationships. This is due to the disparity between morphological and phylogenetic relationships. I therefore suggest that current presumptions regarding the prevalence and importance of hybridisation within the genus may reflect taxonomic classification. An accurate assessment of the prevalence and importance of hybridisation requires species classification to be based on genealogical relationships. II Acknowledgements Acknowledgements Special thanks to Jane Hughes for giving me a perfect balance between independence and guidance. Jane, thank you for always making time for me. You always went out of you way to ensure that you were available to help and it never ceased to amaze me how quickly and thoroughly you could return your comments and suggestions when asked. I am grateful that you were part of this project. Rod Fensham has also been instrumental in providing direction and support for this project. For the past 6 years you have not only been a great teacher but also a good friend. I have enjoyed working with someone who is so enthusiastic about his work, an ethic that has put me good stead for this project and for what should follow. Our field trips have been a lot of fun and also provided me with a great PhD project. Raelene, I promise I will now spend a little less time at the computer, and a little more time with you. In hindsight those really early morning glasshouse experiments and long days in the field weren’t so bad were they? Thanks to the GU genetic geeks, past and present, for making the endless hours spent in the lab a hell of a lot more pleasurable. Jing Ma, your patience, happiness and helpfulness were invaluable. Thanks Rachel King aka “Stats guru” for helping me get my head around some of the statistical issues and for being my eucalypt buddy. Rod Eastwood thanks for your help with the NCA. IP 132.234.Mark.Ponniah, it was great fun whinging in cyberspace despite the technical setbacks…Houston we have a problem!! The Queensland Herbarium is thanked for its continued support throughout the project. John Thompson and Tony Bean provided useful field notes and species information. III Acknowledgements Thanks to my enthusiastic field assistants Raelene Sambrook, Louise Holman, Michael King, Bernie Rasmussan and Barry Higgins for their considerable contributions of time and effort in sampling and physiological experiments. Finally, I would like to thank my parents for providing help, support and enthusiasm throughout this project. Mum thanks for your help in the glasshouse and for the weekly delicious focaccia. Dad thanks for reading all my drafts and for trying to understand what I was doing. IV Declaration Declaration This work has not previously been submitted for a degree or diploma at this or any other university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person except as acknowledged in the text. James Holman V Table of Contents Table of Contents LIST OF FIGURES .................................................................................................... X LIST OF TABLES ................................................................................................. XIII 1.0 GENERAL INTRODUCTION.......................................................................1 1.1 CLINAL VARIATION .........................................................................................1 1.2 PHYLOGEOGRAPHY AND COHESION SPECIES ...................................................2 1.3 PRIMARY DIFFERENTIATION ............................................................................3 1.3.1 Selection.................................................................................................3 1.3.2 Genetic drift ...........................................................................................5 1.3.3 Gene flow...............................................................................................5 1.3.4 Clinal patterns under primary differentiation ........................................6 1.4 SECONDARY CONTACT ....................................................................................8 1.4.1 Clinal patterns under secondary contact ................................................8 1.5 CLINES THROUGH MORPHOLOGICAL PLASTICITY ..........................................10 1.6 THESIS OBJECTIVES .......................................................................................11 2.0 STUDY AREA AND SPECIES ....................................................................12 2.1 IRONBARK CLINE: E. MELANOPHLOIA X E. WHITEI COMPLEX .........................12 2.2 BOX CLINE: E. BROWNII X E. POPULNEA COMPLEX ........................................16 3.0 MORPHOLOGICAL VARIATION............................................................19 3.1 INTRODUCTION .............................................................................................19 3.2 OBJECTIVES ..................................................................................................22 3.3 METHODS......................................................................................................23 3.3.1 Sampling ..............................................................................................23 3.3.2 Measurements ......................................................................................25 3.3.2.1 Foliar morphology ...........................................................................25 3.3.2.2 Seedling Morphology: E. melanophloia & E. whitei only...............26 3.3.2.3 Fruit Morphology: E. melanophloia & E. whitei only.....................26 3.3.3 Analysis................................................................................................27 3.3.3.1 True Breeding ..................................................................................28 3.3.3.2 Trait variance ...................................................................................28 VI Table of Contents 3.4 RESULTS .......................................................................................................29 3.4.1 3.4.1.1 Mature Leaf characteristics..............................................................29 3.4.1.2 Fruit Characteristics .........................................................................35 3.4.1.3 Seedling Leaf Characteristics ..........................................................36 3.4.1.4 True breeding ...................................................................................40 3.4.2 3.5 Box complex: E. populnea x E. brownii (north-south transect) ..........42 DISCUSSION ..................................................................................................48 3.5.1 4.0 Ironbark complex: E. melanophloia & E. whitei (east-west transect) 29 Primary differentiation vs. Secondary contact.....................................49 ECOPHYSIOLOGY......................................................................................51 4.1 INTRODUCTION .............................................................................................51 4.2 OBJECTIVES ..................................................................................................53 4.3 METHODS......................................................................................................54 4.3.1 Geology and rainfall of study area.......................................................54 4.3.2 Field experiments.................................................................................54 4.3.2.1 Soil Moisture....................................................................................56 4.3.2.2 Water relations .................................................................................56 4.3.3 4.4 Glasshouse ...........................................................................................57 4.3.3.1 Water relations .................................................................................58 4.3.3.2 Chlorophyll fluorescence .................................................................59 RESULTS .......................................................................................................60 4.4.1 Field .....................................................................................................60 4.4.2 Glasshouse ...........................................................................................65 4.5 4.4.2.1 Water Potential.................................................................................65 4.4.2.2 Chlorophyll Fluorescence ................................................................66 DISCUSSION ..................................................................................................71 4.5.1 Water relations .....................................................................................71 4.5.2 Chlorophyll Fluorescence ....................................................................71 4.5.3 Adaptation, Persistence and Distribution.............................................73 5.0 GENETIC VARIATION...............................................................................76 5.1 INTRODUCTION .............................................................................................76 5.1.1 Population structuring ..........................................................................77 VII Table of Contents 5.1.1.1 Contemporary structuring ................................................................77 5.1.1.2 Historical structuring .......................................................................80 5.2 OBJECTIVES ..................................................................................................83 5.3 METHODS......................................................................................................84 5.3.1 Sampling ..............................................................................................84 5.3.2 DNA extraction ....................................................................................85 5.3.3 Microsatellite Protocol.........................................................................85 5.3.4 cpDNA Protocol...................................................................................87 5.3.4.1 DNA sequencing ..............................................................................87 5.3.4.2 Outgroup heteroduplex analysis using temperature gradient gel electrophoresis (TGGE) ...................................................................................87 5.3.5 5.3.5.1 Microsatellite analysis .....................................................................89 5.3.5.2 cpDNA analysis ...............................................................................90 5.4 RESULTS .......................................................................................................92 5.4.1 E. melanophloia x E. whitei.................................................................92 5.4.1.1 Microsatellite results........................................................................92 5.4.1.2 Chloroplast results ...........................................................................97 5.4.2 5.5 Statistical analysis................................................................................89 E. populnea x E. brownii ...................................................................103 5.4.2.1 Microsatellite results......................................................................103 5.4.2.2 Chloroplast results .........................................................................108 DISCUSSION ................................................................................................115 5.5.1 Deviations from Hardy-Weinberg equilibrium..................................115 5.5.2 Pollen versus seed mediated gene flow .............................................118 5.5.3 Contemporary Population Structuring ...............................................118 5.5.4 Historical and phylogeographic interpretation...................................119 6.0 GENERAL DISCUSSION ..........................................................................122 7.0 REFERENCES.............................................................................................125 8.0 APPENDIX...................................................................................................137 8.1 DISTRIBUTION MAPS AND CLIMATIC ENVELOPE METHODOLOGY ...............137 8.1.1 Distribution Maps ..............................................................................137 8.1.2 Climatic Envelope methodology........................................................138 VIII Table of Contents 8.2 P-VALUE FOR LINKAGE DISEQUILIBRIUM BETWEEN LOCI.............................139 8.2.1 Ironbark Complex ..............................................................................139 8.2.2 Box Complex .....................................................................................139 8.3 IRONBARK CPDNA SEQUENCES ..................................................................140 8.4 IRONBARK CPDNA HAPLOTYPE NETWORK WITH NESTING (INDEL INCLUDED) ....................................................................................................................143 8.5 RESULTS OF NESTED CLADE ANALYSIS FOR THE IRONBARK COMPLEX WITH INDELS INCLUDED. ...............................................................................................144 8.6 IRONBARK NESTED CLADE INTERPRETATION WITH INDELS INCLUDED......145 8.7 BOXES CPDNA SEQUENCES........................................................................146 8.8 BOX CPDNA HAPLOTYPE NETWORK WITH NESTING WITH INDELS INCLUDED ....................................................................................................................151 8.9 RESULTS OF NESTED CLADE ANALYSIS FOR THE BOX COMPLEX INDELS INCLUDED. ..............................................................................................................152 8.10 BOX NESTED CLADE INTERPRETATION WITH INDELS INCLUDED. ..............153 IX List of Figures List of Figures Figure 1-1 Morphological cline parallel to environmental gradient .......................7 Figure 1-2 Trait variance across the cline formed through primary differentiation.......................................................................................................7 Figure 1-3 Increased quantitative trait variance due to secondary contact ...........8 Figure 2-1 Ironbark species distribution .................................................................13 Figure 2-2 Clinal transition from E. whitei (left) to E. melanophloia (right)........14 Figure 2-3 MDS of annual rainfall (R) and mean annual temperature (T) for E. melanophloia and E. whitei ................................................................................ ..15 Figure 2-4 Distribution of E. brownii and E. populnea...........................................17 Figure 2-5 Clinal transition from E. brownii (left) to E. populnea (right) ............17 Figure 2-6 MDS of annual rainfall (R) and mean annual temperature (T) for E. brownii and E. populnea..................................................................................... ..18 Figure 3-1 Sampling sites across both species complexes.......................................24 Figure 3-2 Leaf traits measured. ..............................................................................25 Figure 3-3 Fruit traits measured ..............................................................................26 Figure 3-4 Variation in mature leaf length and width (from west to east across the ironbark complex.........................................................................................29 Figure 3-5 Variation in apex and basal leaf angles from west to east across the ironbark complex ...............................................................................................30 Figure 3-6 Variation in petiole length from west to east across the ironbark complex. ..............................................................................................................30 Figure 3-7 Variation in node l and node 2 lengths from west to east across the ironbark complex ...............................................................................................31 Figure 3-8 UPGMA dendrogram of site average foliar characteristics................32 Figure 3-9 Two-dimensional MDS plot of mature foliar characteristics. Vector direction indicates the how the traits differentiate the morphotypes. ..........33 Figure 3-10 CV of petiole length across the study area ..........................................34 Figure 3-11 CV of N1 length across the study area ................................................35 Figure 3-12 UPGMA of site average fruit characteristics......................................35 X List of Figures Figure 3-13 Variation in seedling leaf length and width across the east west transect................................................................................................................36 Figure 3-14 Variation in petiole length across the east west transect ...................37 Figure 3-15 Variation in apex and basal leaf angles across the east west transect. ..............................................................................................................................37 Figure 3-16 Variation in node l and node 2 lengths across the east west transect ..............................................................................................................................38 Figure 3-17 UPGMA of seedling site average foliar characteristics .....................38 Figure 3-18 Two-dimensional MDS plot of seedling foliar characteristics. .........39 Figure 3-19 Correlation between parent and offspring leaf width........................40 Figure 3-20 Correlation between parent and offspring leaf width to length ratio ..............................................................................................................................40 Figure 3-21 Correlation between parent and offspring basal angle......................41 Figure 3-22 Correlation between parent and offspring petiole length..................41 Figure 3-23 Variation in mature leaf length and width across the north-south transect................................................................................................................43 Figure 3-24 Variation in apex and basal leaf angles across the north-south transect................................................................................................................43 Figure 3-25 Variation in petiole length across the north-south transect ..............44 Figure 3-26 UPGMA of site average foliar characteristics. ...................................44 Figure 3-27 Two-dimensional MDS plot of mature foliar characteristics............45 Figure 3-28 CV of leaf W:L from north to south across the box complex ...........47 Figure 3-29 CV of leaf Dmax: L from north to south across the box complex.......47 Figure 3-30 CV of leaf apex angle from north to south across the box complex .48 Figure 4-1 Sampling sites across ironbark complex. Rain stations (aI, III, III). ..............................................................................................................................55 Figure 4-2 Average monthly rainfall at rain stations (I, II, III) across cline........55 Figure 4-3 September soil moisture content............................................................61 Figure 4-4 December soil moisture content.. ...........................................................62 Figure 4-5 Field water potentials. Box plot of predawn water potential obtained across the study area in September. .................................................................63 XI List of Figures Figure 4-6 Field water potentials. Box plot of predawn water potential obtained across the study area in December. ..................................................................64 Figure 4-7 Monthly rainfall relative to long-term average at the rain stations.. .64 Figure 4-8 Predawn water potential versus Field water capacity (FWC) ............66 Figure 4-9 Minimum fluorescence versus field water capacity.. ...........................67 Figure 4-10 Maximum fluorescence versus field water capacity...........................68 Figure 4-11 Maximum photochemical efficiency versus field water capacity......69 Figure 4-12 Daily Maximum Electron Transport Rate regression curves versus Photosynthetic Photon Flux Density (PPFD) ..................................................70 Figure 5-1 Haplotype type network under primary differentiation and secondary contact. ................................................................................................................83 Figure 5-2 Sampling across the ironbark complex .................................................84 Figure 5-3 Sampling across the box complex ..........................................................85 Figure 5-4 MDS plot of RST values for microsatellite data from the ironbark complex. ..............................................................................................................95 Figure 5-5 MDS plot of FST values for microsatellite data from the ironbark complex. ..............................................................................................................96 Figure 5-6 Spatial distribution of cpDNA haplotypes across the ironbark complex. ..............................................................................................................99 Figure 5-7 (Left) Haplotype network for the ironbark complex. ........................101 Figure 5-8 MDS plot of RST values for microsatellite data for the box complex. ............................................................................................................................106 Figure 5-9 MDS plot of FST values for microsatellite data from the box complex. ............................................................................................................................107 Figure 5-10 Spatial distribution of cpDNA haplotypes across box complex. .....111 Figure 5-11 Haplotype network for the box complex. ..........................................113 XII List of Tables List of Tables Table 3-1 Adult leaf trait dimensions for UPGMA groups. See Fig 3-2 for leaf traits. ...................................................................................................................32 Table 3-2 Principal Axis Correlation (PCC) of tree average foliar characters in the 2D ordination space. ....................................................................................33 Table 3-3 R2 and P-values for the regression of trait CV with distance from cline geographic mid-point and distance from site 1, the most westerly site.........34 Table 3-4 Principal Axis Correlation (PCC) of site average foliar characters in the 2D ordination space. ....................................................................................39 Table 3-5 Average dimensions for UPGMA groups ...............................................45 Table 3-6 Principal Axis Correlation (PCC) of tree average foliar characters in the 2D ordination space. ....................................................................................46 Table 3-7 R2 and P-values for regression of trait CV with distance from cline geographic mid-point and also distance from site 1, the most northern site.. ..............................................................................................................................46 Table 5-1 Primer designation, type of repeat and optimised annealing temperature ........................................................................................................86 Table 5-2 Levels of genetic variation at 5 Embra microsatellite from 7 populations across the ironbark complex. .......................................................93 Table 5-3 Weir & Cockerham (1984) estimation of FIT, FST and FIS for the ironbark complex. ..............................................................................................94 Table 5-4 Pairwise estimates of multilocus RST and FST between populations across the ironbark complex. ............................................................................94 Table 5-5 Analysis of molecular variance for ironbark complex. The three regions are: west, intermediate and east..........................................................96 Table 5-6 List of JLa+ haplotypes for the ironbark complex when INDELs are included in the analysis......................................................................................98 Table 5-7 Haplotype distribution across the ironbark complex............................98 Table 5-8 Haplotype distribution across the ironbark populations when INDEL mutations are excluded from the analysis. ......................................................99 XIII List of Tables Table 5-9 Analysis of molecular variance for ironbark complex ........................100 Table 5-10 The permutational chi-squared probabilities for geographical structure of the clades identified in Fig. 5-7 for the ironbark complex ......101 Table 5-11 Results of nested clade analysis for the ironbark complex ...............102 Table 5-12 Levels of genetic variation at 5 Embra microsatellite for the box complex. ............................................................................................................104 Table 5-13 Weir & Cockerham (1984) estimation of FIT, FST and FIS for the box complex. ............................................................................................................105 Table 5-14 Pairwise estimates of multilocus RST and FST between box populations........................................................................................................105 Table 5-15 Analysis of molecular variance for the box complex. The three regions are: northern, intermediate and southern........................................107 Table 5-16 List of JLa+ haplotypes for the box complex when INDELs were included in the analysis....................................................................................109 Table 5-17 Distribution of cpDNA haplotypes across box populations ..............110 Table 5-18 List of revised JLa+ haplotypes for the box complex when INDELs were excluded from the analysis.....................................................................110 Table 5-19 Analysis of cpDNA molecular variance for the box complex ...........111 Table 5-20 The exact permutation contingency test probabilities for geographical structure of the clades identified in Fig. 5-11 for the box complex. ............113 Table 5-21 Results of nested clade analysis for the box complex ........................114 XIV
© Copyright 2026 Paperzz