CSDCEO Marian Small decembre 2015 Ordre du jour • Some “leftover issues” • Discussing how your lessons went • Answering questions based on the last session or your lessons • Thinking more about classroom diagnostics • Planning lesssons Some issues to clarify • The model we used is not a rule; it’s an idea and a useful approach. • It is not for EVERY lesson, but for many lessons and certainly for concept lessons. • It is important to teach concept lessons. Some issues to clarify • Concept lessons can happen early in a topic or later in the topic. For example • Early in trigonometry For example • Objectif: • When angles are similar, the ratios: opposite/hypotenuse, adjacent/hypotenuse and opposite/adjacent are the same. • They are different if triangles are not similar. Exploration Exploration • Calculate the three side lengths for each of the triangles. Exploration • Do the same with triangles with a 50° angle. Exploration • What do you notice? Consolidation • In which triangle were the opposites bigger? Why does that make sense? • In which triangles were the adjacents bigger? Why does that make sense? Definitions • You have to just tell them the definitions for sine, cosine and tangent, either before or after the consolidation. Or • Objectif: Sines of angles change faster near 0° than 90°. Cosines are the opposite. Exploration You look at the sines and cosines for various angles. • How much does the sine change if the angle increases by 1°? • How much does the cosine change in those situations? Some info • Sin 0 • Sin 1 • Sin 2 0 sin 80 0.985 0.017 sin 81 0.988 0.035 sin 82 0.990 Consolidate • What did you notice? • If you double angles, do you double sines? • How many degrees might an angle change for the sine to double? Etc. Or consider ÷ of fract • Objectif: a/b ÷ c/d means how many sets of c/d fit in a/b. You can answer by getting a common denominator and figuring out how many of numerator 2 fits in numerator 1 (e.g. 3/4 ÷ 3/8 = 6/8 ÷ 3/8 = 6÷ 3) Mise en train • Why would you figure out 24 ÷ 4 to figure out how many 4s there are in 24? • What do you think 12/15 ÷ 4/15 means? Exploration Use your fraction tower to answer these questions. • How many of fraction 2 fits into fraction 1 each time? Exploration • Fraction 2 Fraction 1 3/8 6/8 3/10 6/10 3/5 6/5 Exploration • Fraction 2 Fraction 1 2/5 7/10 2/9 1/3 3/10 2/5 Consolidation • What would the answer to 4/[] ÷ 2/[] be? Why? • Does the denominator matter? Consolidation • What would the answer to 5/[] ÷ 2/[] be? Why? • Does the denominator matter? Consolidation • How is solving 13/4 ÷ 2/4 like solving how many pairs of socks are there if you have 13 socks? • How are the answers to 4/5 ÷ 2/5 and 2/5 ÷ 4/5 related? How did your lessons go? • Sit with other teachers at your grade level. • Talk about the strengths and weaknesses of the lesson you tried. • Talk, as a group, about how to change it before someone else tries it. Questions you have • It would be nice if you raised some question related to what we did last time that you want an answer to. • Then you’ll ask it and together we will try to answer. Task 1 3 compréhension (or just better) questions than connaissance • Grade 7 • Grade 8 • Grade 9 • Grade 10 Subtracting (entiers) Multiplying fractions Proportional Thinking Quadratic Equations/Formula Subtracting entiers • You subtracted two integers and the answer was –5. • What could they have been if both were positive? • What could they have been if both were negative? Subtracting entiers • Explain why 4 – (–3) is not the same answer as –3 – 4 without just saying a rule or what the answers are. Subtracting entiers • If you know that [] – * = –4, then what is [] – (* +4)? Multiplying fractions • You multiply 3/5 by another fraction. The answer is more than 3/5, but less than 1. • What could the other fraction be? Multiplying fractions • Draw a picture to show why 2/3 x 4/7 = 4/3 x 2/7. Multiplying fractions • Why does 5/3 x a/b have to be more than a/b? Proportional thinking • If 14/30 = 3/[], how do you know [] has to be more than than 6 WITHOUT SOLVING? Proportional thinking • Why might you solve 2/3 = 14/x differently than 3/6 = 137/x? Proportional thinking • You have a recipe that uses 2 ¼ cups of flour for every ¾ cup of sugar. • You fill an unmarked cup with sugar. • How much flour should you put in? Quadratic equations • How do you know that x have roots? 2+ 8 = 0 cannot Quadratic equations • Write a quadratic equation that you can quickly tell has no solutions. • Write another one that you can quickly tell has only one solution. Quadratic equations • Suppose you know that the discriminant of x2 + bx + c = 38. How far apart are the roots? Task 2 • Objectifs for: • Grade 7 Subtracting (entiers) • Grade 8 Multiplying fractions • Grade 9 Proportional Thinking • Grade 10 Quadratic Equations/Formula Teacher diagnostics Choose one of these topics: • Grade 7 • Grade 8 • Grade 9 • Grade 10 Area of trapezoid Multiplying/dividing integers Proportional reasoning Systems of linear equations Now • Make a list of three conaissance and three compréhension questions you could ask to see if students are for the topic. • Create a diagnostic. • We will share. My example I will use a different topic. algebraic expressions and equations in Grade 9 My three skills • Evaluating expressions • Simplifying expressions • Solving very simple equations My three ideas • Any equation or expression describes a variety of “similar” situations. • Equations describe relationships or generalizations • Some equations can be solved but some cannot. Evaluating expressions • What is the value of 3x – 2y + 8 if x = –3 and y = –4? • How does the value change if x = –2? If I wanted more concept • The expression 3x – 8 is worth 30 more for one value of x than another. What might the two values have been? Simplifying expressions • Simplify: 2 –3x + 4x + 5 • Simplify: 4(2x – 8) • Simplify: 3x – 8 – (2x – 5) Solving very simple equations Show your work in solving each equation: • 3x – 2 = –4x + 12 • 4x + 3 = –8x – 9 My three ideas • Any equation or expression describes a variety of “similar” situations. • Equations describe relationships or generalizations • Some equations can be solved but some cannot. Any equation describes a variety of situations • Write two different stories that go with this equation: 3x – 8 = 12. Equations describe relationships How can you use algebra to say that: • the value of y is 1 less than the value of x? • the value of y is 3 more than double the value of x? Equations describe generalizations How can you use algebra to say: • multiplying by 2/3 is the same as dividing by 3 and then multiplying by 2? • You can multiply the sum of two numbers by 5 by multiplying each one by 5 and adding them. Can you solve these equations? • 3x + 5 = 2x – 8 • 3x + 5 = 2x + 6 + x – 1 Now • It’s your turn. Your diagnostic • Make a list of three ideas and three skills you think kids need to be ready for the topic. • Create a diagnostic. • We will share. Creating new lessons • The first and maybe biggest issue is: • What will be your objectif? Our focus should be • Objectifs that are about ideas, not just about skills • That are not contenus, but are related to the contenus Quadratics • Une même régularité ou généralisation peut être représentée d’une variété de manières équivalentes. Chacune de ces représentations peut permettre de mieux comprendre certaines caractéristiques de cette régularité ou de cette généralisation. Quadratics • Je comprends le rôle des paramètres a, h et k dans les relations y = a (x– h)2 + k et leur effet dans un graphique. Linear • Je comprends comment le changement de la condition initiale d’une situation linéaire affecte le graphique, la table de valeurs et l’équation. Views of solids • Je comprends que lorsque je connais seulement deux plans de vues d'un solide, il y a beaucoup de possibilités de construction d’un solide, mais moins que quand on connaît un seul plan de vue et plus que quand on connaît trois plans de vues. Percentage • Je peux expliquer la raison pour laquelle si on connaît seulement le %, on connaît la relation qui existe, mais pas les valeurs exactes. Solving equations • Je comprends que je peux résoudre une équation linéaire complexe sous une forme plus simple mais équivalente. Multiple representations • Une même régularité ou généralisation peut être représentée d’une variété de manières équivalentes. Chacune de ces représentations peut permettre de mieux comprendre certaines caractéristiques de cette régularité ou de cette généralisation. So now you try • Choose a topic. • List two or three important objectives. Once you have that • After figuring out the objectif, you want to think of a problem with its consolidation that will lead there. • Only later will we work on the mise en train. So let’s start with, e.g. • Views of solids Exploration • Cacher un solide mystère sous une boîte, montrer et dessiner au tableau la vue de face du solide, ensuite laisser les élèves construire un solide possible (il y a une infinité de possibilités) • vue du haut du solide, ensuite laisser les élèves réarranger leur solide (il y a moins de possibilités) Exploration • Vue de côté droite, ensuite laisser les élèves réarranger leur solide (il y a une possibilité) Consolidation • Est-ce que les vues de face et de derrière sont pareilles? Devaient-elles être pareilles? • Est-ce que les vues de côtés droite et gauche sont pareilles? Devaient-elles être pareilles? Consolidation • Est-ce que les vues du haut et de bas sont pareilles? Devaien-telles être pareilles? • Quand tu regardes à la vue du haut, peux- tu connaître sans faute à quoi ressemble la vue des côtés ou la vue de face et de derrière? Explique. Consolidation • Pourquoi avons-nous tant de possibilités? • Combien de plan du vue aurions-nous besoin pour que tout le monde finisse avec le même objet? Mise en train • Montrer un arrangement 3 x 3 de cubes emboîtables. Dites que cela représente la vue du haut d’un objet. • À quoi peut ressembler cet objet? • Cet objet contient combien de cubes? • Est-ce que la vue du côté est la même? Solving systems of equations • Getting a simpler form Exploration • Adam dit que chaque équation avec des fractions a la même solution qu’une autre équation sans fractions. • Son exemple était celuici : 2/3x – ¼ = x/5 28x – 15 = 0 • Es tu d’accord avec lui? Explique. Consolidation • Comment sais-tu que les deux équations ont la même solution? • Peut-on dire que les deux équations sont équivalentes? Explique Consolidation • Que pourrait être la première étape pour simplifier l’équation avec des fractions? Explique Mise en train • Faire un pense-parle-partage, • Explique ce que tu ferais pour simplifier ½ – 3/4 ? Simplifie. • Que pourrait être la première étape pour simplifier ¾ x = ½. Simplifie. There are more • There are more lessons to look at in the google doc: • https://docs.google.com/document/d/ 157w_brtwXRjH5YPEBQyxMgFGgC3jmAb GCVHX7Y8NgOs/edit?ts=564a0e41 . Your job • To create more lessons with strong objectifs and strong consolidations based on good problems. I am here • To help, but most of your feedback will come from your colleagues. Other questions • What other questions do you have? Download • www.onetwoinfinity.ca • CSDCEO2
© Copyright 2026 Paperzz