Revista Brasileira de Física, Vol. 10, NP 2, 1980 Some Comments on the Hydrogen Atom in a Spherical Enclosure* V. C. AGUILERA-NAVARRO, E. LEY KOO** and A. H. ZIMERMAN Instituto de Física Tedrica, São Paulo Recebido ein 22 de novembro de 1979 We discuss some p r o p e r t i e s o f t h e ground s t a t e energy s o l u - t i o n s f o r t h e hydrogen atom i n a s p h e r i c a l enclosure. We consider a l s o the a p p l i c a t i o n o f the many-point Padé approximants t o t h i s k i n d of systems i n s ide a box. Discutimos algumas propriedades das soluções que correspon- dem ao estado fundamental de um átomo de h i d r o g ê n i o d e n t r o de uma c a i x a e s f é r i c a . Consideramos também a a p l icação dos aproximantes de Padé de muitos pontos para e s t e t i p o de sistemas d e n t r o de uma c a i x a . The hydrogen atom w i t h i n a s p h e r i c a l box w i t h u n p e n e t r a b l e w a l l s has been i n v e s t i g a t e d i n many o c ~ a s i o n s ~ -More ~ . recently i t has been a l s o considered the hydrogen atom w i t h i n s p h e r i c a l boxes w i t h pe- 5 n e t r a b l e wal l s . The a p p l i c a t i o r i o f the Rayleigh -schr;dinger theory t o the hydrogen atom i n a s p h e r i c a l box has sed6-9 and, in particular, also the ground- state energy up t o perturbation been discus- the f i f t h o r - der i n e 2 has been o b t a i n e d l O , namely, * ** Work supported by FINEP, Rio de Janeiro, under c o n t r a c t 522/CT. On leave o f absence from I n s t i t u t o de ~ i s i c a ,U n i v e r s i t y w i t h f i n a n t i a l support o f FAPESP, B r a s i l . of Mexico i n atomic u n i t s . guedll R i s t h e r a d i u s of the s p h e r i c a l box. I t t h a t t h i s formula can be very u s e f u l f o r t h e has been a r - obtent ion of the ground- state energy f o r s u f f i c i e n t l y m a l l R, where t h e p r e v i o u s c a l c u lations3 have presented numerical e r r o r s ( f o r R f 1.4 a . u . ) ; therefore t h e p e r t u r b a t i o n expansion would be u s e f u l f o r t h e H atom s u b j e c t t o h i g h pressure. Ley-Koo and ~ u b i n s t e i n ' have a l s o improved c a l c u l a t i o n s by de Groot and Ten seldam3 even f o r small s t a t e energy o f t h e hydrogen atom i n s p h e r i c a l box the numer i c a l R, f o r t h e ground with unpenetrable walls. The hydrogen atom enclosed i n a s p h e r i c a l box has a l s o been s t u d i e d i n an a ~ p l i c a t i o no f a v a r i a t i o n a l approach t o p e r t u r b a t i o n theo r y 12. I n s e c t i o n 2, we discuss some p r o p e r t i e s o f the t h e hydrogen atom w i t h i n a s p h e r i c a l boi< and i n s e c t i o n solutions o f 3 we discuss t h e a p p l i c a t i o n o f t h e many-point Padé approximants t o t h i s k i n d o f problem. 2. PROPERTIES OF THE SOLUTIONS The r a d i a l equation f o r the s - s t a t e reads 5 ao =?T2/me2 being t h e Bohr r a d i u s . The s o l u t i o n t o Eq. (2) is where M ( a , b , z ) i s a Kummer o r c o n f l u e n t hypergeometric f u n c t i o n . For l a r ge r and small 6, w i t h V = 1+B, i t behaves l i k e 1 3 As f o r r = R, = 0, the erpression (5) gives, by keeping o n l y terms i n fir s t o r d e r i n 6, and, t h e r e f o r e , i n t r o d u c i n g t h i s v a l u e o f 6 i n (3) , we have f o r t h e e- nergy t h a t ( T h i s expression i s very s i m i l a r t o t h a t one c o n j e c t u r e d by wigner6, b u t i t i s val i d only f o r large R ) . The second term i n expression (7) decays e x p o n e n t i a l l y R and e x p l a i n s why w i t h n o t so l a r g e R, l i k e R reach t h e v a l u e -0.5 - 5 or 6ao, we ( i n u n i t s o f e2/a0), as t h e exact numerical with already calcu- l a t i o n s heve i n d i c a t e d (see Table I ) . L e t us observe t h a t which f o r s m 1 1 B gives M(-B, 2, Z R / W ~ ) = i - 6 -1 k=O ' (ZR/W~) k(k + l)! Now,. t h e c o n d i t i o n M(R) = 0, c ~ i v e s ~ I t i s n o t d i f f i c u l t t o see t h a t expression (7) with (6) f,or l a r g e R. i s c-~sistent I n order t o study t h e s o l u t i o n around E=O, rewrite $V(x) o f Eq. (4) it is useful t o i n t h e form where and so on. We see t h a t f o r E=O, t h e r a d i u s R o f our box corresponds to t h e zero o f the Bessel f u n c t i o n o f t h e r i g h t hand s i d e o f expression (10). As t h e f i r s t zero occurs a t 3.8317, = 1.8353400 Eq. 2 . we o b t a i n t h e known v a l u e R,, = I t i s easy t o se= t h a t expression (10) i s a solution o f (2) f o r E=O. 3. APPLICATION OF THE MANY-POINT PADÉ APPROXIMANTS The purpose o f t h i s s e c t i o n i s t o discuss t h e a p p l i c a t i o n o f the many-poirit Padê-approximants t o systems i n s i d e a box. observed i n Ref. It has been (10) t h a t i f we c o n s t r u c t the one- point Padê a p p r o x i - mants14 w i t h t h e h e l p o f expression ( I ) , then we o b t a i n v e r y bad r e s u l t s f o r the ground- state energy, f o r s u f f i c i e n t l y l a r g e R. But we can consi- der t h e two- point Padê approximants14 by means o f * t h e use o f the beha- v i o u r given i n expression (1) around R = O and t h e behaviour around R-, given i n expression (7). Ir t a b l e I, we reproduce ~ r 4 / 2 1aod ~ [ 5 / 3 ] w h i c h have been o b t a i n e d by consider;ng for the f u n c t i o n S ( R ) = R ~ E ( R ) For comparison, we a l s o reproduce the exact nu- . two- point Padé approximants m e r i c a l values f o r E(R) as g i v e n i n Ref.5 and t h e p e r t u r b a t i v e valuesobt a i n e d from expression ( I ) . We see t h a t f o r R 6 3ao, the p e r t u r b a t i o n expansion (1) g i - ves very good r e s u l t s compared t o t h e exact ones, w h i l e f o r l a r g e r R the two- point Padê approximants g i v e a somewhat b e t t e r tendency ( f o r R + = , t h e p e r t u r b a t i v e expansion diverges, w h i l e t h e two- point Padé mants tend t o the exact r e s u l t - 0.5, by c o n s t r u c t i o n ) approxi- . The two- point ~ a d éapproximant f o r t h e ground- state energy o f t h e hydrogen atom i n s i d e a s p h e r i c a l box o f r a d i u s R w r i t e s i n atomic u n i t s . This formula reproduces reasonably w e l l (Table I) ground- state energy o f the H atom over t h e e n t i r e range o f values thc f o r R. E v i d e n t l y , i f we want a b e t t e r f i t t i n g , we can use a t h r e e - p o i n t Padé ap Table 1 - R i s given i n u n i t s o f ao. The energies are given i n u n i t s o f proximant14, which uses a l s o an expansion o f E(R) around some o t h e r p o i n t besides t h e ones used. For instance, w i t h t h e h e l p o f expression can o b t a i n t h e expansion o f E(R) around R = Ro, where E(R,) (91, we = 0. The pressure c a l c u l a t e d w i t h t h e h e l p o f the p e r t u r b a t i v e expansion (11, Eq. c o i n c i d e s w i t h i n few percent w i t h t h e exact one f o r R 6 3ao. For t h e h y p e r f i n e s p l i t t i , n g constant A, t h e p e r t u r b a t i v e expans i o n g i v e s r e s u l t s which a r e comparable w i t h t h e exact ones for R within 2a0. For l a r g e r values o f R, the p e r t u r b a t i v e expansion for 10% A g i v e s very bad r e s u l t s , w h i l e t h e two- points ~ a d éapproxirnants ~ [ 4 / 1] c o n s t r u c t e d from the behaviour o f A around R = O and R = -,gives results which a r e comparable t o the exact ones w i t h i n 10%. Recently 15,16 , exact numerical c a l c u l a t i o n s have been done f o r t h e energy l e v e l s o f quantum o s c i l a t o r systems i n s i d e a box. We show t h a t p e r t u r b a t i v e expansions 1 i ke expression ( I ) a r e v e r y easy can to be o b t a i n e d and a r e very useful f o r t h i s k i n d o f problems.Specially when, w i t h t h e h e l p o f the behaviour o f E ( R ) f o r l a r g e R also,we c o n s t r u c t t h e two- point Padé approximants. I n t h i s way we o b t a i n i n t e r p o l a t i n g l a e s i m i l a r t o expression (12) which reproduce very w e l l t h e formu- energy l e - v e l s f o r t h e e n t i r e range o f values o f R. Other problems o f systems i n s i d e a box a r e being t r e a t e d by t h e very same methods. REFERENCES 1. A. Michels, J. de Boer and A. B i j l , 2. A. Sommerfeld and H. Welker, 3. S.R. de Groot and C.A. Physica 4 , 981 (1937). Ann. Physik 32, 56 (1938). Ten Seldam, Physica 12, 669 (1946). 4. D. Suryanarayana and J.A. Weil, J.Chem.Phys. 6 4 , 510 (1976). 5. E. Ley-Koo and S. Rubinstein, J.Chem.Phys.,to be published. 6. E.P. Wigner, Phys. Rev. 94, 77 (1954). 7. R.E. Trees, Phys. Rev. 8. B.F. Gray, J. Chem. Phys. 36, 1801 (1962). 9. B.F. Gray, J. Chem. Phys. 55, 2848 (1971). 102, 1553 (1954). 10. V.C.Aguilera-Navarro, W.M. K l o e t and A.H. Zimerman, Rev. Bras. F i s . 1, 55 (1971). 11. B.F. Gray and I . Gonda, J.Chem.Phys. 12. L.S. Cederbaum and K. ~ch&hamer, Phys. Rev. A 1 2 , 2257 (1975). 13. M. Abramowi t z and I .A. Dover Pub. Inc., 14. G.A. 6 2 , 2007 (1975). Stegun , Handbck of Mathernati cal FunctZons , 508'. Essentials of Pude approdmants, Academic Press, New New York, p. Baker Jr., York, 1975. 15. A. C o n s o r t i n i and B.R. Frieden, Nuovo C i m . 35, 153 (1976). 16. F.C. - Rotbart, J. Phys. A,: Math. Gen. 21, 2363 (1978).
© Copyright 2026 Paperzz