Some Comments on the Hydrogen Atom in a Spherical Enclosure*

Revista Brasileira de Física, Vol. 10, NP 2, 1980
Some Comments on the Hydrogen Atom in a Spherical
Enclosure*
V. C. AGUILERA-NAVARRO, E. LEY KOO** and A. H. ZIMERMAN
Instituto de Física Tedrica, São Paulo
Recebido
ein 22 de novembro de 1979
We discuss some p r o p e r t i e s
o f t h e ground s t a t e energy s o l u -
t i o n s f o r t h e hydrogen atom i n a s p h e r i c a l enclosure. We
consider a l s o
the a p p l i c a t i o n o f the many-point Padé approximants t o t h i s k i n d of systems i n s ide a box.
Discutimos algumas propriedades das soluções que
correspon-
dem ao estado fundamental de um átomo de h i d r o g ê n i o d e n t r o de uma c a i x a
e s f é r i c a . Consideramos também a a p l icação dos aproximantes de
Padé
de
muitos pontos para e s t e t i p o de sistemas d e n t r o de uma c a i x a .
The hydrogen atom w i t h i n a s p h e r i c a l box w i t h u n p e n e t r a b l e
w a l l s has been i n v e s t i g a t e d i n many o c ~ a s i o n s ~ -More
~ . recently
i t has
been a l s o considered the hydrogen atom w i t h i n s p h e r i c a l boxes w i t h
pe-
5
n e t r a b l e wal l s .
The a p p l i c a t i o r i o f the Rayleigh -schr;dinger
theory t o the hydrogen atom i n a s p h e r i c a l box has
sed6-9 and,
in particular,
also
the ground- state energy up t o
perturbation
been
discus-
the f i f t h o r -
der i n e 2 has been o b t a i n e d l O , namely,
*
**
Work supported by FINEP, Rio de Janeiro, under c o n t r a c t 522/CT.
On leave o f absence from I n s t i t u t o de ~ i s i c a ,U n i v e r s i t y
w i t h f i n a n t i a l support o f FAPESP, B r a s i l .
of
Mexico
i n atomic u n i t s .
guedll
R
i s t h e r a d i u s of the s p h e r i c a l box. I t
t h a t t h i s formula can be very u s e f u l f o r t h e
has
been a r -
obtent ion of
the
ground- state energy f o r s u f f i c i e n t l y m a l l R, where t h e p r e v i o u s c a l c u lations3
have presented numerical e r r o r s ( f o r
R
f
1.4 a . u . ) ;
therefore
t h e p e r t u r b a t i o n expansion would be u s e f u l f o r t h e H atom s u b j e c t t o h i g h
pressure.
Ley-Koo and ~ u b i n s t e i n ' have a l s o improved
c a l c u l a t i o n s by de Groot and Ten seldam3 even f o r small
s t a t e energy o f t h e hydrogen atom i n s p h e r i c a l
box
the
numer i c a l
R, f o r
t h e ground
with unpenetrable
walls.
The hydrogen atom enclosed i n a s p h e r i c a l box has a l s o been
s t u d i e d i n an a ~ p l i c a t i o no f a v a r i a t i o n a l approach t o p e r t u r b a t i o n theo r y 12.
I n s e c t i o n 2, we discuss some p r o p e r t i e s o f the
t h e hydrogen atom w i t h i n a s p h e r i c a l boi< and i n s e c t i o n
solutions o f
3 we discuss t h e
a p p l i c a t i o n o f t h e many-point Padé approximants t o t h i s k i n d o f problem.
2. PROPERTIES OF THE SOLUTIONS
The r a d i a l equation f o r the s - s t a t e reads 5
ao
=?T2/me2 being
t h e Bohr r a d i u s . The s o l u t i o n t o Eq. (2)
is
where M ( a , b , z ) i s a Kummer o r c o n f l u e n t hypergeometric f u n c t i o n . For l a r ge
r
and small 6, w i t h
V
=
1+B,
i t behaves l i k e 1 3
As f o r r = R,
= 0,
the erpression
(5)
gives,
by
keeping
o n l y terms i n fir s t o r d e r i n 6,
and, t h e r e f o r e , i n t r o d u c i n g t h i s v a l u e o f
6 i n (3) , we have f o r t h e e-
nergy t h a t
( T h i s expression i s very s i m i l a r t o t h a t one c o n j e c t u r e d by wigner6, b u t
i t i s val i d only f o r large R ) .
The second term i n expression (7) decays e x p o n e n t i a l l y
R and e x p l a i n s why w i t h n o t so l a r g e R, l i k e R
reach t h e v a l u e -0.5
- 5 or
6ao,
we
( i n u n i t s o f e2/a0), as t h e exact numerical
with
already
calcu-
l a t i o n s heve i n d i c a t e d (see Table I ) .
L e t us observe t h a t
which f o r s m 1 1 B gives
M(-B, 2, Z R / W ~ ) = i
-
6
-1
k=O
'
(ZR/W~)
k(k
+
l)!
Now,. t h e c o n d i t i o n M(R) = 0, c ~ i v e s ~
I t i s n o t d i f f i c u l t t o see t h a t expression (7)
with
(6)
f,or l a r g e R.
i s c-~sistent
I n order t o study t h e s o l u t i o n around E=O,
rewrite
$V(x)
o f Eq.
(4)
it
is
useful t o
i n t h e form
where
and so on.
We see t h a t f o r E=O, t h e r a d i u s R o f our box corresponds
to
t h e zero o f the Bessel f u n c t i o n o f t h e r i g h t hand s i d e o f expression (10).
As t h e f i r s t zero occurs a t 3.8317,
= 1.8353400
Eq.
2
.
we o b t a i n t h e
known
v a l u e R,, =
I t i s easy t o se= t h a t expression (10) i s a
solution o f
(2) f o r E=O.
3. APPLICATION OF THE MANY-POINT PADÉ APPROXIMANTS
The purpose o f t h i s s e c t i o n i s t o discuss t h e a p p l i c a t i o n o f
the many-poirit Padê-approximants t o systems i n s i d e a box.
observed i n Ref.
It
has been
(10) t h a t i f we c o n s t r u c t the one- point Padê a p p r o x i
-
mants14 w i t h t h e h e l p o f expression ( I ) , then we o b t a i n v e r y bad r e s u l t s
f o r the ground- state energy,
f o r s u f f i c i e n t l y l a r g e R. But we can consi-
der t h e two- point Padê approximants14 by means o f * t h e use o f
the
beha-
v i o u r given i n expression (1) around R = O and t h e behaviour around R-,
given i n expression
(7). Ir t a b l e I, we reproduce ~ r 4 / 2 1aod ~ [ 5 / 3 ] w h i c h
have been o b t a i n e d by consider;ng
for
the
f u n c t i o n S ( R ) = R ~ E ( R ) For comparison, we a l s o reproduce the exact
nu-
.
two- point Padé approximants
m e r i c a l values f o r E(R) as g i v e n i n Ref.5 and t h e p e r t u r b a t i v e valuesobt a i n e d from expression ( I ) .
We see t h a t f o r R 6 3ao, the p e r t u r b a t i o n expansion
(1) g i -
ves very good r e s u l t s compared t o t h e exact ones, w h i l e f o r l a r g e r R the
two- point Padê approximants g i v e a somewhat b e t t e r tendency ( f o r R + = ,
t h e p e r t u r b a t i v e expansion diverges, w h i l e t h e two- point Padé
mants tend t o the exact r e s u l t
-
0.5,
by c o n s t r u c t i o n )
approxi-
.
The two- point ~ a d éapproximant f o r t h e ground- state
energy
o f t h e hydrogen atom i n s i d e a s p h e r i c a l box o f r a d i u s R w r i t e s
i n atomic u n i t s . This formula reproduces reasonably w e l l (Table I)
ground- state energy o f the H atom over t h e e n t i r e range o f values
thc
f o r R.
E v i d e n t l y , i f we want a b e t t e r f i t t i n g , we can use a t h r e e - p o i n t Padé ap
Table 1
-
R i s given i n u n i t s o f ao. The energies are given i n u n i t s o f
proximant14, which uses a l s o an expansion o f E(R) around some o t h e r p o i n t
besides t h e ones used. For instance, w i t h t h e h e l p o f expression
can o b t a i n t h e expansion o f E(R) around R = Ro, where E(R,)
(91, we
= 0.
The pressure c a l c u l a t e d w i t h t h e h e l p o f the p e r t u r b a t i v e expansion
(11,
Eq.
c o i n c i d e s w i t h i n few percent w i t h t h e
exact
one f o r
R 6 3ao. For t h e h y p e r f i n e s p l i t t i , n g constant A, t h e p e r t u r b a t i v e expans i o n g i v e s r e s u l t s which a r e comparable w i t h t h e exact ones
for R
within
2a0. For l a r g e r values o f R, the p e r t u r b a t i v e expansion
for
10%
A
g i v e s very bad r e s u l t s , w h i l e t h e two- points ~ a d éapproxirnants
~ [ 4 / 1]
c o n s t r u c t e d from the behaviour o f A around R = O and R = -,gives
results
which a r e comparable t o the exact ones w i t h i n 10%.
Recently
15,16
,
exact numerical c a l c u l a t i o n s have
been
done
f o r t h e energy l e v e l s o f quantum o s c i l a t o r systems i n s i d e a box. We
show t h a t p e r t u r b a t i v e expansions 1 i ke expression ( I ) a r e v e r y
easy
can
to
be o b t a i n e d and a r e very useful f o r t h i s k i n d o f problems.Specially when,
w i t h t h e h e l p o f the behaviour o f E ( R ) f o r l a r g e R also,we c o n s t r u c t t h e
two- point Padé approximants.
I n t h i s way we o b t a i n i n t e r p o l a t i n g
l a e s i m i l a r t o expression (12) which reproduce very w e l l t h e
formu-
energy l e -
v e l s f o r t h e e n t i r e range o f values o f R.
Other problems o f systems i n s i d e a box a r e being
t r e a t e d by
t h e very same methods.
REFERENCES
1. A. Michels, J. de Boer and A. B i j l ,
2. A. Sommerfeld and H. Welker,
3. S.R.
de Groot and C.A.
Physica 4 , 981 (1937).
Ann. Physik 32, 56 (1938).
Ten Seldam, Physica
12, 669 (1946).
4. D. Suryanarayana and J.A. Weil, J.Chem.Phys.
6 4 , 510 (1976).
5. E. Ley-Koo and S. Rubinstein, J.Chem.Phys.,to
be published.
6. E.P. Wigner, Phys. Rev. 94, 77 (1954).
7. R.E.
Trees, Phys. Rev.
8. B.F.
Gray, J. Chem. Phys.
36, 1801 (1962).
9. B.F.
Gray, J. Chem. Phys.
55, 2848 (1971).
102, 1553 (1954).
10. V.C.Aguilera-Navarro,
W.M.
K l o e t and A.H.
Zimerman, Rev. Bras. F i s .
1, 55 (1971).
11. B.F.
Gray and I . Gonda, J.Chem.Phys.
12. L.S.
Cederbaum and K. ~ch&hamer, Phys. Rev. A 1 2 , 2257 (1975).
13. M. Abramowi t z and I .A.
Dover Pub. Inc.,
14. G.A.
6 2 , 2007 (1975).
Stegun , Handbck
of Mathernati cal FunctZons ,
508'.
Essentials of Pude approdmants, Academic Press, New
New York, p.
Baker Jr.,
York, 1975.
15. A. C o n s o r t i n i and B.R.
Frieden, Nuovo C i m . 35, 153 (1976).
16. F.C.
-
Rotbart, J. Phys. A,:
Math. Gen. 21, 2363 (1978).