Pre-Calculus - Graphing Review Graph standard, then describe using translation. 1) 2) Given a standard parabola graph of y = x2; explain what happens to this graph using the following information: a) Graph y = x2 d) y + 9 = 1/2 (x - 1)2 g) 1 x " 4 = " ( y + 2)2 5 b) y - 2 = (x + 3)2 c) y + 3 = 2(x + 4)2 e) 3 y = " ( x + 2)2 5 f) x = y2 ! Given a standard absolute value graph of y = |x|; explain what happens to this graph using the following information: ! 3) a) Graph y = |x| b) y = 2|x| c) 1 y "4 =" x +2 3 d) y + 2 = -|x - 5| e) x = |y| f) x = -3 |y - 2| Given a standard rectangular hyperbola using the following information: 4) 5) ! 1 x b) y= 1 ! x+2 c) y= 1 +3 x "1 x "1 f) y= 3 2x + 3 g) y= 1 x2 a) Graph e) y= ! ! 1 ; explain what happens to this graph x ! ! d) y =" 1 x ! Given a standard square root equation ! ! using the following!information: x ; explain what happens to this graph a) Graph y = x b) y = x+2 ! c) y = 5" x e) y =2+ x "4 f) y =2 x+4 g) y = "2 " 3 3 " x ! ! ! ! ! d) y = " x +1 ! Given a standard cubic equation x3; explain what happens to this graph using the following information: a) Graph y = x3 d) y = 2(x - 4)3 - 3 ! b) y = (x + 2)3 e) y= 1 3 x 4 c) y = -(x + 2)3 + 2 6) Given a standard cube root equation the following information: a) Graph y = d) y = 23 x 3 x 7) d) 10) ! y = 13 3 x ! ! a) f(x) ± c d) c*f(x); where 0 < c < 1 b) f(x±c) e) -f(x) c) c*f(x); where c > 1 Graph the following lines: y=x b) y=x-2 c) y = 2x - 3 3 y =" x+4 5 d) e) y= 2 5 x" 3 2 Graph the following piecewise functions: % x + 2 if ' if a) f (x) = & x 3 ' (#x + 3 if ! e) y = 3 x "1 c) Given y = f(x) and c > 0, summarize problems 1-6 with respect to the basic info below: a) 9) y =3 x "2 ! ! 8) x ; explain what happens to this graph using b) ! ! 3 $ x2 " 4 & f ( x) = % 2 " x &' 1 % x " 3 if ' 2 if b) f ( x) = & "x '"x + 4 if ( x " #1 x <1 x $1 if x! #2 if x =2 $ if & 2 & f ( x) = % 2x if e) & 1 &'7 # x if 3 !x # "2 "2 < x < 1 c) x $1 x <1 ! 1" x " 3 x >3 ! $ x 2 "1 & f ( x) = % x + 1 if &' 2 if $ x + 2 if & if f) f ( x) = % "x & 3x if ' x # "1 x = "1 x < "4 "4 # x # 5 x >5 Given a standard greatest integer function of y = [x]; explain what happens to this graph using the following information: ! ! a) Graph y = [x] e) y = [2x] - 1 b) y = [3x] f) y = [-x] c) y = [x] + 3 d) "1 % y = $ x' #2 & g) y = [x - 3] h) y = 4[x] 11) Graph the following rational expressions. a) y= 12) Graph these polynomials on your calculator – include window, y-intercept, zeros, and max / min. a) y = 4x3 - 12x2 - x + 3 ! 5x + 7 2x "1 b) y= x2 " x " 6 x 2 + 3x + 2 ! c) y= ! ( x " 2)( x " 3) ( x + 1)( x " 3)( x " 5) ! b) y = x4 - 4x3 - 7x2 + 34x - 24 d) y= ( x "1)( x + 3) ( x + 2)( x "1)( x " 4) ! c) y = 9x5 - 94x3 + 27x2 + 40x – 12
© Copyright 2026 Paperzz