Magnetism Martijn MARSMAN Institut für Materialphysik and Center for Computational Material Science Universität Wien, Sensengasse 8/12, A-1090 Wien, Austria b-initio ackage ienna M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. imulation Page 1 Outline (Non)collinear spin-density-functional theory On site Coulomb repulsion: L(S)DA+U Spin Orbit Interaction Spin spiral magnetism M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 2 Spin-density-functional theory wavefunction spinor Ψ Φ Ψ 2 2 matrix, n r density Ψβn r r Ψαn ∑ fn nαβ r n M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 3 α r ∑ nαα Tr nαβ r nTr r σ x σy σz Pauli spin matrices, σ 2 αβ i 0 0 M. M ARSMAN , σz 1 VASP WORKSHOP, VIENNA 0 10-15 F EBRUARY 2003. 1 0 i 1 σy 0 1 0 σx r σαβ ∑ nαβ mr m r σαβ nTr r δαβ nαβ r Page 4 The Kohn-Sham density functional becomes Exc n r dr nTr r nTr r dr r r 1 2 drVext r nTr r α n 1 ∆ Ψαn 2 ∑ ∑ fn Ψαn E and the Kohn-Sham equations β εn Sαα Ψαn ∑ H αβ Ψβn with the 2 2 Hamilton matrix r αβ Vxc n r nTr r δαβ r r dr Vext r δαβ 1 ∆δαβ 2 H αβ M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 5 αβ εn β Ψn αβ β β Ψn H ββ Ψαn βα Vxc Ψαn Vxc H αα βα Ψαn and Ψn couple over Vxc and Vxc δExc n r δnβα r r αβ Vxc n r n r diagonal , a reliable approximation mz r unfortunately, only in case m r to Exc n r is known M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 6 density matrix can be diagonalized ∑ Uiα δ i j ni r αβ r nβα r Uβ j r where U(r) are spin-1/2 rotation matrices U r σ zU r αβ δExc δn2 r 1 δExc 2 δn1 r δExc δ δn2 r αβ r 1 δExc 2 δn1 r αβ Vxc or equivalently, using mr mr and m̂ r mr 1 nTr r 2 n r mr 1 nTr r 2 n r we can write δExc m̂ r σαβ δn r 1 δExc 2 δn r δExc δ δn r αβ 1 δExc 2 δn r r αβ Vxc where VASP WORKSHOP, VIENNA M. M ARSMAN , nTr r εxc n r n r dr Exc 10-15 F EBRUARY 2003. Page 7 Collinear (spins along z direction): H αα β Ψn εn H ββ Ψαn Ψαn β Ψn Noncollinear: αβ εn β Ψn β Ψn H ββ Ψαn βα Vxc Ψαn Vxc H αα In the absence of Spin Orbit Interaction (SOI) the spin directions are not linked to the crystalline structure, i.e., the system is invariant under a general common rotation of all spins M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 8 YMn2 Mn sublattice collinear M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. noncollinear Page 9 On site Coulomb repulsion L(S)DA fails to describe systems with localized (strongly correlated) d and f wrong one-electron energies electrons Strong intra-atomic interaction is introduced in a (screened) Hartree-Fock like replacing L(S)DA on site manner Uγ1 γ3 γ4 γ2 n̂γ1 γ2 n̂γ3 γ4 EHF 1 Uγ1 γ3 γ2 γ4 2∑ γ " ! determined by the PAW on site occupancies Ψ s 2 m2 m1 Ψ s 1 n̂γ1 γ2 and the (unscreened) on site electron-electron interaction 1 r r m2 m4 δ s 1 s 2 δ s 3 s 4 m1 m3 Uγ1 γ3 γ2 γ4 ( m are the spherical harmonics) M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 10 Uγ1 γ3 γ2 γ4 given by Slater’s integrals F 0 , F 2 , F 4 , and F 6 (f-electrons) Calculation of Slater’s integrals from atomic wave functions leads to a large overestimation because in solids the Coulomb interaction is screened (especially F 0 ). In practice treated as fitting parameters, i.e., adjusted to reach agreement with experiment: equilibrium volume, magnetic moment, band gap, structure. Normally specified in terms of effective on site Coulomb- and exchange parameters, U and J. F4 F2 0 65 # F 4 , and F2 1 14 F 0, J For 3d-electrons: U U and J sometimes extracted from constrained-LSDA calculations. M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 11 Total energy and double counting Edc n̂ Etot n n̂ Total energy EDFT n EHF n̂ Double counting 2 n̂tot J 4 n̂tot 1 ∑σ n̂σtot n̂σtot 1 J 2 n̂tot U 2 n̂tot Edc n̂ LDA+U 1 n̂tot U 2 n̂tot Edc n̂ LSDA+U Hartree-Fock Hamiltonian can be simply added to the AE part of the PAW Hamiltonian M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 12 Orbital dependent potential that enforces Hund’s first and second rule – maximal spin multiplicity – highest possible azimuthal quantum number Lz (when SOI included) M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 13 Dudarev’s approach to LSDA+U U J % σ m1 m2 % m1 n̂σm1 m2 n̂σm2 m1 Penalty function that forces idempotency of the onsite occupancy matrix, n̂σ n̂σ n̂σ 0.25 0.2 n−n2 & $ 0.3 % 2 ∑ % ∑ nσm1 m1 ∑ ELSDA U ELSDA 0.15 real matrices are only idempotent, if their eigenvalues are either 1 or 0 (fully occupied or unoccupied) 0.1 0.05 0 0 0.2 0.4 0.6 0.8 1 n U J ( ' ELSDA εi U ELSDA VASP WORKSHOP, VIENNA % M. M ARSMAN , % % σ m 1 m2 n̂σm1 m2 n̂σm2 m1 % 2 ∑ 10-15 F EBRUARY 2003. Page 14 An example: NiO, a Mott-Hubbard insulator Rocksalt structure AFM ordering of Ni (111) planes Ni 3d electrons in octahedral crystal field t2g (3dxy , 3dxz , 3dyz ) eg (3dx2 ) y2 , 3dz2 ) M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 15 Dudarev U=8 J=0.95 t2g eg 4 n(E) (states/eV atom) n(E) (states/eV atom) LSDA 2 0 −2 −4 −4 −2 0 2 4 E(eV) = 0.44 eV −2 −4 10 −4 −2 0 2 4 E(eV) 6 mNi = 1.71 µB Egap = 3.38 eV 8 10 Experiment = 1.64 - 1.70 µB Egap = 4.0 - 4.3 eV mNi 0 Egap 8 2 1.15 µB = mNi 6 t2g eg 4 M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 16 Spin Orbit Interaction Relativistic effects, in principle stemming from 4-component Dirac equation Pseudopotential generation: Radial wave functions are solutions of the scalar relativistic radial equation, which includes Mass-velocity and Darwin terms Kohn-Sham equations: Spin Orbit Interaction is added to the AE part of the PAW Hamiltonian (variational treatment of the SOI) p̃i σαβ Li j p̃ j % i j 1 dVspher φj r dr ∑ φi 2 h̄2 2me c αβ HSOI M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 17 Consequences: Mixing of up- and down spinor components, noncollinear magnetism Spin directions couple to the crystalline structure, magneto-crystalline anisotropy Orbital magnetic moments M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 18 An example: CoO Rocksalt structure AFM ordering of Co (111) planes 3.8 µB along 112 +* Experiment: mCo Orbital moment in t2g manifold of Co2 [3d7 ] ion not completely quenched by crystal field LDA+U (U=8 eV, J=0.95 eV) + SOI enforce Hund’s rules , Calculations yield correct easy axis, mS 2.8 µB mL 1.4 µB and c/a ratio 1 (magnetostriction) - M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 19 Spin spirals q mx r cos q R / / my r cos q R mx r sin q R . . R mr my r sin q R mz r Generalized Bloch condition iq R 2 0 ) 0 1 R Ψk r R Ψk r e Ψk r iq R 2 1 e 0 0 M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Ψk r Page 20 keeping to the usual definition of the Bloch functions ∑ CkG ei k 2 G G r 0 3 Ψk r and G r 0 3 2 ∑ CkG ei k Ψk r G the Hamiltonian changes only minimally βα H ββ Vxc Vxc e αβ iq r Vxc e 0 H αα H ββ iq r 0 βα αβ Vxc ) H αα where in H αα and H ββ the kinetic energy of a plane wave component changes to G k G2 k q 22 in H αα q 22 in H ββ VASP WORKSHOP, VIENNA M. M ARSMAN , G k G2 k 10-15 F EBRUARY 2003. Page 21 Primitive cell suffices, no need for supercell that contains a complete spiral period Adiabatic spin dynamics: Magnon spectra for instance for elementary ferromagnetic metals (bcc Fe, fcc Ni) lim θ 0 4 θ E 0θ E qθ ∆E q θ q ωq M 4 ∆E q θ M sin2 θ see for instance: “Theory of Itinerant Electron Magnetism”, J. K übler, Clarendon Press, Oxford (2000). M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 22 −8.13 Spin spirals in fcc Fe E [eV] −8.17 # # −8.19 # 0 15 0 1 0 # = 0 0 10 q2 = X (AFM) 0 0 06 = −8.15 000 q1 2π a0 2π a0 2π a0 2π a0 = Γ (FM) −8.21 Γ q1 X q2 W # 01 0 10 # 2π a0 qexp 10.45 Å33 10.63 Å3 10.72 Å3 11.44 Å M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 23 Magnetization at q1 M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 24 Some references Noncollinear magnetism in the PAW formalism – D. Hobbs, G. Kresse and J. Hafner, Phys. Rev. B. 62, 11 556 (2000). L(S)DA+U – I. V. Solovyev, P. H. Dederichs and V. I. Anisimov, Phys. Rev. B. 50, 16 861 (1994). – A. B. Shick, A. I. Liechtenstein and W. E. Pickett, Phys. Rev. B. 60, 10 763 (1999). – S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Phys. Rev. B. 57, 1505 (1998). Spin spirals – L. M. Sandratskii, J. Phys. Condens. Matter 3, 8565 (1993); J. Phys. Condens. Matter 3, 8587 (1993) M. M ARSMAN , VASP WORKSHOP, VIENNA 10-15 F EBRUARY 2003. Page 25
© Copyright 2026 Paperzz