Physics 105 Classical Mechanics Lecture 7 October 9, 2009 R.P. Johnson Damped Oscillator with Square Wave Forcing Function n := 1 , 3 .. 9 b := n T := 2 ⋅ π 4 ω := n ⋅ 2⋅ π n n⋅ π Fa( t) := T is the period of the driving function Frequency harmonics 1, 3, 5, etc T −1 if t ≥ −π ∧ t ≤ 0 Exact square wave driving function, defined here over a single period of T=2pi. otherwise 1 if t > 0 ∧ t ≤ π 0 otherwise Square wave driving function (truncated Fourier series). Note that the constant term and cosine terms are zero, as F is an odd function.. ∑ ( n ( n )) F( t) := b ⋅ sin ω ⋅ t n ω0 := 1.5 β := .5 m := 1 δ := atan2ω0 − ω n 2 ( n) b D := n 2 Oscillator parameters , 2 ⋅ ω ⋅ β n n 2 ω 2 − ω 2 + 4⋅ ω 2⋅ β2 ( n) 0 ( n) ( ) s( n , t) := D ⋅ sin ω ⋅ t − δ n x ( t) := 1 m n n ∑ (s(n , t)) ⋅ n Phase of the response for each harmonic Amplitude of the response for each harmonic Fourier components of the solution Solution for the steady-state response Input Square Wave 1 F( t) Fa( t) 0 −1 −1 − 0.5 0 t π 0.5 1 Input Square Wave Fourier Components b1⋅ sin( ω 1 t) 1 b3⋅ sin( ω 3 t) b5⋅ sin( ω 5 t) b7⋅ sin( ω 7 t) 0 b9⋅ sin( ω 9 t) Fa( t) −1 −1 − 0.5 0 0.5 1 t π Fourier Amplitude of the Response 0.8 0.6 Dn 0.4 0.2 0 0 2 4 6 n 8 Oscillator Steady-State Response 1 0.5 x( t) 0 − 0.5 −1 −1 − 0.5 0 0.5 1 t π Oscillator Response Fourier Components 1 s( 1 , t) 0.5 s( 3 , t) s( 5 , t) 0 s( 7 , t) − 0.5 −1 −1 − 0.5 0 t π 0.5 1 Damped Oscillator with Saw-Tooth Wave Forcing Function n := 1 , 2 .. 9 b := ( −1 ) n T := 2 ⋅ π n+ 1 ω := n ⋅ 2⋅ π n n⋅ π t Fa( t) := T is the period of the driving function Frequency harmonics 1, 3, 5, etc T if t ≥ −π ∧ t ≤ π 2π Exact saw tooth driving function, defined here over a single period of T=2pi. 0 otherwise ∑ (bn⋅sin(ωn⋅t)) F( t) := Square wave driving function (truncated Fourier series). Note that the constant term and cosine terms are zero, as F is an odd function. n ω0 := 2.5 β := .5 m := 1 δ := atan2ω0 − ω n 2 ( n) b D := n 2 Oscillator parameters , 2 ⋅ ω ⋅ β n n 2 ω 2 − ω 2 + 4⋅ ω 2⋅ β2 ( n) 0 ( n) ( ) s( n , t) := D ⋅ sin ω ⋅ t − δ n x ( t) := 1 m n n ∑ (s(n , t)) ⋅ n Phase of the response for each harmonic Amplitude of the response for each harmonic Fourier components of the solution Solution for the steady-state response Input Saw Tooth 1 F( t) Fa( t) 0 −1 −1 − 0.5 0 t π 0.5 1 Input Saw Tooth Fourier Components b1⋅ sin( ω 1 t) 1 b2⋅ sin( ω 2 t) b3⋅ sin( ω 3 t) b4⋅ sin( ω 4 t) 0 b5⋅ sin( ω 5 t) Fa( t) −1 −1 − 0.5 0 0.5 1 t π Fourier Amplitude of the Response 0.1 0.05 Dn 0 − 0.05 − 0.1 0 2 4 6 n 8 Oscillator Steady-State Response 0.1 0 x( t) − 0.1 − 0.2 −1 − 0.5 0 0.5 1 t π Oscillator Response Fourier Components 0.1 s( 1 , t) 0.05 s( 3 , t) s( 5 , t) 0 s( 7 , t) − 0.05 − 0.1 −1 − 0.5 0 t π 0.5 1 Oscillator Steady-State Response 0.1 0 x( t) − 0.1 − 0.2 −1 0 1 t π 2 3
© Copyright 2026 Paperzz