File

Name
Date
n
Integrated
Unit5
Applications of radicals
Review
simplify each
O E)
:/
\/405
1.
\‘
W3.
4
—
-3
_
1
5
2
3
5
2
.
_
fa
Period:
gnggfi
2:0
?_u)7‘
/\
15
373
Q15
:
5'
9
32a5
7.55./\5
6‘
\31q5 ~45“:
at;
)g(
4%/24x’
Lléaaeml
7417
"l 3
2
s.
4X1;
m"2“(°X
3
:
3
'\Z—\)(o15
_
3-3'
[——5%,
‘W
y
~42-s-2.
3‘/§—5\/4_5
6%
\7_t'§++%l'§-ISJ?
8x“3’f$7(l‘l32xL)
3
t
/‘xii;
_
is
l
7.
\2__;
/
L":4‘lq‘l
3_—|l_
31_1:
°
Pqa;.'l»\ (’,ofi€’(.‘\'
835-6‘ 250+7%/5
9.
2—-=*+w35“_‘3
83l2-37-G2
54
/_‘
1%‘
”L“**"5‘”‘
Law
30
1\
6-5:’.
a’
"’
,_,
‘/‘\Z’F’u
1
10. The measures of the legs of a right triangle can be represented by the expressions 6x2 y and 9x2y. Find
'
N-I
" ex ression for the measure of the h"‘ potenuse.
7
3,c,x
3%-gix
37.
‘:0
=C
(;—.\1\‘Ix
(‘/=\
K
W13
'_<,’..3x~\ 1
G/xq
/\
Y\
to
has a rectangular box with dimensions 20 inches by 35 inches 40 inches. She would
@ Cathy
of
with
should
the
length
of
volume.
What
with
box
but
the
a side of
the shape a cube
replace
same
a
it
like
by
in
the cube be? Express your answer as a radical expression
in
simplest form.
lg, 000
1 ’.‘..,m
ao-:55-L\0= 28.000
W0
‘ 3"“"‘s
"*5 ‘
7"}? ”*‘§".u.5
at a distance of d1 and a
is at a distance of dz. These quantities are related by the equation %1 =
12. Suppose a light has a brightness intensity of It when
when it
I\
"""°f’\
and I2: 24 units. What would
T”*“*-‘
31
5_
'
2-’
1
is
bright’i'1e'ss
2
intensity of
Suppose
I1
/2
= 50 units
be? Express your answer in simplest form.
=——
we
:50 =x—-—-=7
M
-n'-l
at
it
.\
btlietp..=—>
——
,-2
1<.1',.,~se
‘Slit
l
l_
,._
=9‘
~
—
55
7;:
Name
Date
Integrated ll Unit5
More Exponents Practice
Possilolul
0
Correct Ari-sw€rS
Period:
in
Simplify the following problems using the properties of exponents. Leave the product exponential
form. If you are not sure what to do, expand the problem.
(6x2)(4x2y°)
1.
1%‘
2.
x4
“W315
5.
>‘
-3
I
ff:
at
t“
(2
9
8.
,
2(5,:/2)‘
6.
3 2
{£5
7.
431%)
(3/822
3.
3
<—;4:3)2(—v:)3
4.
-3155
in
W2
.\
-‘
=
&‘/
6
7.
5
3
X31.
11.
(6’7V
L24"x5yy3q
12.
aw“
§1T,',f\j°35 -.
14.
(ac5\2(
Z“
3
'bC-‘O
V:
-—
v.
:
G“
''
doubled.
Va“
16. Find the volume of a cube if eagh edge is
7_L
L3
\jI
\t9
LTJ
C
I’.
o"c‘
W
9
_3,_I
X“
3b\3
b"’(,‘3
(4f°h“ -5 f5)(—3h2)
15.
3
2
(3x”y z‘) (—y h 2”)
D
in Lb
QX3
-q
XIA
3‘ 3°5
zxfj Z
1:.
P25 (0
ossib\
Name
Date
Integrated ll Unit 5
Applying Exponent Properties to Rational Exponents
Coned‘ Mam;
Period:
Essential Question: How can you extend the properties of exponents to work with rational
exponents and radicals?
Applying Properties of Exponents:
If 73 - 78
Product Progeny:
=
1
3
then 7;
7“ = 7”
3
7E
-
because when you multiply with exponents you QM
=
4
Vs
73- ‘L
—
:
the exponents.
Use this to find the following:
I
I
H
1
1
1-
52,5z:5/1:5
5
X05
37
_
Quotient Progem:
lf 3—2=3
3%
H
J’
5
:3
S
2,3
then —3=33
3
3E
I
34_34:341:
2.
x2_x0_5+_L:x2.5
1+3
5
J’
2
=y
=F_
1
:38 :34
5<.L\o‘\'fl1L“'
because when you divide with exponents you
Use this to find the following:
7-
5%
z_|
~1=5W
53
8
7
1_9_‘
5956‘
'—<'%\
:5g’%
9
3
W—a=\lJ
‘/3
/
5"!
01
/QIZ
'1:u)
=\x)’Z -—
'9
4/5
‘Cl'5
l
'
2wow
i
10
03
—-=
0-'5-l-5
:
><
~I1
“/
I» -z-'
x ll
(35)3
If
Power Propem:
2
= 3“ =
3'5
2
)3
then (33
3
33
=
filler
because when you take powers of exponents you
11.
13.
15.
a'
[5§j’:(6)§
(X6-y2)4)75
a.
lf=6i3
a
:xa.
-15
_ Qfltyzu
9
2
[125-85}
—125—5.a5*‘
g
12.
_1
(xsyss)
14_
4
W2
(
K
:3
5q r
'.
0}
.q. fZ___
t. 0
251 r
—
‘L
BLb
c,
..cL
_
b'
4
(
2)( -V -3 Z 5)4
xz
/'-l 7~§(
\
Write each expression as a radical
1
X2
1;
b.
%/;
{/3
b.
4
43-43:“I%=L]
2
d
'
_
c
.
=xi._/I_y:3._/_‘/
J
L?
1L
\j
_ 11
2
5
45
LI
5m3
m
C
Zn)
zlb
Y’
b.
i(;°’A-_-L/1‘—l[o
5
3
£b’5j{b5j
-31-:5
B
8
‘B
¥\7/b
’
‘ow
3
e
m
27g
(H1,
4
L‘
f
2
—5
)
,
' X‘
3
Z
3
%
I
agz)
2734 ¥‘5
Z
»7’{:‘](’
c.
r3
c.
J;
w/rit_e
c.
Wfléa
"fig
'
2
18. Apply the properties of exponents to simplify each expression and
a.
2.:
Simplify each using the properties of exponents
17. Write each expression with rational exponents
a.
U ;3\ xi
0
5
532.7
16.
=9
‘
Use this to find the following:
1
32
=
7;
:m§*‘:m?1*%
_
3
l
Z
,
mi?-
as
X
F
1”‘
F
Z
5/Z
éno2K3
16%
:'k1q:
3
f
L127
:
:
<4
H5