1. 3.11 Definitions of Hyperbolic Functions sinh x = ex − e−x 2 cosh x = ex + e−x 2 tanh x = sinh x cosh x coth x = 1 tanh x sech x = 1 cosh x csch x = 1 sinh x 2. Derivatives d sinh x = cosh x dx d cosh x = sinh x dx d tanh x = sech2 x dx d coth x = −csch2 x dx d sech x = −sech x tanh x dx d csch x = −csch x coth x dx 1 3.11 Hyperbolic Functions 2 3. Identities sinh(−x) = − sinh x cosh(−x) = cosh x cosh2 x − sinh2 x = 1 1 − tanh2 x = sech2 x sinh(x + y) = sinh x cosh y + cosh x sinh y cosh(x + y) = cosh x cosh y + sinh x sinh y 4. Inverse Hyperbolic Functions y = sinh−1 x ⇔ x = sinh y y = cosh−1 x ⇔ x = cosh y and y ≥ 0 y = tanh−1 x ⇔ x = tanh y 5. Derivatives d 1 sinh−1 x = √ dx 1 + x2 d 1 cosh−1 x = √ 2 dx x −1 d 1 tanh−1 x = dx 1 − x2 d 1 coth−1 x = dx 1 − x2 d 1 sech−1 x = − √ dx x 1 − x2 d 1 csch−1 x = − √ dx |x| x2 + 1 3.11 Hyperbolic Functions 3 6. Examples Example 6.1. Find the numeric value of sinh 1 and sinh−1 1. Example 6.2. Given sech x = 2/7, find the other hyperbolic functions. Example 6.3. Find lim coth x x→−∞ Example 6.4. Find lim+ coth x x→0 Example 6.5. Find the derivative of y = x2 cosh(3x − 1) √ Example 6.6. Find the derivative of y = sech−1 1 − x2 Example 6.7. Find the value(s) for x where the slope of the tangent to the graph of y = tanh−1 x is 2.
© Copyright 2026 Paperzz