IPEK YUCELEN GEORGIA INSTITUTE of TECHNOLOGY School of Materials Science and Engineering Nano@Tech ADVISERS: Prof. SANKAR NAIR School of Chemical & Biomolecular Engineering Prof. HASKELL W. BECKHAM School of Materials Science and Engineering Single-Walled Metal Oxide Nanotubes 2.2 nm y 1.0 nm Ball-and-stick models of (left) the aluminosilicate nanotube, and (right) a section of the wall showing the hexagonal aluminosilicate repeat units. x Aluminosilicate (AlSiOH) Nanotubes - R:2.2 nm, L=100 nm Aluminogermanate (AlGeOH) Nanotubes - R:3.3 nm, L=20 nm z Maillet, P. et al. JACS. 2010, 132, 1208. Aluminum hydroxide shell [(OH)3Al2] Interior silanol groups [O3SiOH] Average length ~ 100 nm Hu, S. et al. Chem.Eur. J. 2010, 16, 1889. Offers a vast range of compositions and dimensions 100 nm 1 MoO3 Nanotubes R:6 nm Georgia Institute of Technology Applications of Single-Walled Metal Oxide Nanotubes Kang, D.-Y., et al. J. Phys. Chem. C, 2011, 115, 7676. Functional site Nanofluidic Membranes A Konduri, S., et al. J. Phys. Chem. C, 2008, 112, 15367. Zang, J., et al. ACS Nano, 2009, 3, 1548. B Nanotube Polymeric matrix B Molecular Separations Nanocables Kang, D.-Y., et al. ACS Applied Materials & Interfaces, 2012, 4, 965. Kang, D.-Y., et al. Journal of Membrane Science, 2011, 381, 50. Zang, J., et al. J. Phys. Chem. Lett., 2010, 1, 1235. Kuc, A. and T. Heine, Advanced Materials, 2009, 21, 4353. 2 Georgia Institute of Technology Synthesis of Single-Walled Metal Oxide Nanotubes Low temperatures synthesis (95°C) Inexpensive and easily accessible reactants Can be obtained in pure form Al - Aluminum-tri-sec-butoxide (ASB) + Si - Tetraethyl orthosilicate (TEOS) in HClO4 Freeze-Drying 25°C 95°C DI H2O Step 1 - Aging 18 h 3 Step 2 - Heating 96 h Dialysis 96 h Pure Form Georgia Institute of Technology Research Objectives Engineering inorganic nanoscopic objects Ångstrom Level Dimensional Control Exemplary material – aluminosilicate nanotubes Identification of nanointermediates and local structural evolution – Nuclear Magnetic Resonance (NMR), Electrospray Ionization Mass Spectrometry (ESI-MS) Molecular Configuration – solvated Density Functional Theory (DFT) simulations Structural characterization at larger scales – Cryo-electron Microscopy, and TEM 4 Georgia Institute of Technology Aluminosilicate Speciation During Aging (25˚C) – ESI-MS Al1SiX(ClO4)y – Al13Six(ClO4)y (x= 0-7, y= 0-5) Complete and incomplete Al6Si ring units Speciation is same throughout the aging m/z 733: [Al12Si7O16(OH)30(H2O)10]2+ m/z 595: [Al10SiO3(OH)22(H2O)4(Cl35O4)3(Cl37O4)]2+ 243 x107 ESI(+) 25°C 300 400 500 600 m/z 451: [Al6(OH)17]+ 678 697 706 0.0 200 597 207 221 0.2 267 303 323 341 357 385 403 421 433 459 487 515 541 261 0.4 700 800 Chemical Formula of AlSi Species Peak Series (m/z) [Al(OH)2(H2O)n]+ [Al(OH)(H2O)n(ClO4)]+ [Al(H2O)n(ClO4)2]+ [Al2(OH)5(H2O)n]+ [Al2(OH)4(ClO4)(H2O)n]+ [Al2SiO2(OH)5(H2O)n+1]+ [Al3SiO2(OH)6(H2O)n(ClO4)]2+ [Al3SiO2(OH)8(H2O)n]+ [Al7Si2O5(OH)13(H2O)n+3(ClO4)3]3+ [Al2(OH)3(H2O)n(ClO4)2]+ [Al7Si2O5(OH)12(H2O)n(Cl35O4)3(Cl37O4)]3+ [Al8Si2O6(OH)13(H2O)n(Cl35O4)3(Cl37O4)]3+ [Al2(OH)2(H2O)n(ClO4)3]+ [Al2(OH)2(H2O)n(Cl35O4)2(Cl37O4)]+ [Al2SiO(OH)5(H2O)n(ClO4)2]+ [Al4SiO3(OH)8(H2O)n+1(ClO4)]+ [Al2SiO(OH)4(H2O)n(ClO4)3]+ [Al5SiO3(OH)12(H2O)n+1]+ / [Al4Si2O4(OH)11(H2O)n+1]+ [Al5Si2O5(OH)12(H2O)n+1]+ [Al6SiO3(OH)15(H2O)n]+ [Al4Si2O4(OH)10(H2O)n(ClO4)]+ [Al10SiO3(OH)22(H2O)n(ClO4)3(ClO4)]2+ [Al8Si2O5(OH)15(H2O)n+5(Cl35O4)4(Cl37O4)]2+ [Al10Si3O9(OH)18(H2O)n+1(Cl35O4)3(Cl37O4)]2+ [Al12Si3O9(OH)27(H2O)n+6(Cl35O4)]2+ [Al12Si3O9(OH)25(H2O)n(Cl35O4)2(Cl37O4)]2+ [Al13Si2O10(OH)22(H2O)n+1(Cl35O4)2(Cl37O4)]2+ [Al12Si3O9(OH)26(H2O)n+1(ClO4)2]2+ [Al12Si5O12(OH)29(H2O)n+3(ClO4)]2+ [Al13O4(OH)24(H2O)n+2(Cl35O4)4(Cl37O4)]2+ [Al12Si4O10(OH)29(H2O)n+6(Cl35O4)]2+ [Al12Si7O16(OH)30(H2O)n+5]2+ [Al12Si4O10(OH)28(H2O)n+8(Cl35O4)2]2+ [Al13Si4O16(OH)18(H2O)n+5(Cl35O4)2(Cl37O4)]2+ [Al12Si7O13(OH)35(H2O)n+5(ClO4)]2+ [Al13Si6O10(OH)40(H2O)n+3(ClO4)]2+ 61+18n (n=0-2) 143+18n (n=0-3) 225+18n (n=0-3) 139+18n (n=0-2) 221+18n (n=0-3) 217+18n (n=0-3) 171+9n (n=0-5) 277+18n (n=0-2) 299+6n (n=0-4) 303+18n (n=0-5) 309+6n (n=0-10) 329+6n (n=0-7) 385+18n (n=0-4) 387+18n (n=0-4) 381+18n (n=0-3) 437+18n (n=0-2) 463+18n (n=0-4) 433+18n (n=0-6) 493+18n (n=0-3) 493+18n (n=0-3) 497+18n (n=0-4) 559+9n (n=0-4) 597+9n (n=0-4) 610+9n (n=0-5) 609+9n (n=0-4) 638+9n (n=0-6) 638+9n (n=0-6) 605+9n (n=0-7) 678+9n (n=0-4) 678+9n (n=0-4) 648+9n (n=0-4) 688+9n (n=0-5) 707+9n (n=0-4) 707+9n (n=0-4) 756+9n (n=0-3) 756+9n (n=0-3) m/z 5 Georgia Institute of Technology Aluminosilicate Speciation During Aging (95˚C) – ESI-MS x107 0.10 239 257 95°C 277 0.05 0.00 200 Al8Six(ClO4)y-Al13Six(ClO4)y 300 400 500 m/z 6 600 700 800 Chemical Formula of AlSi Species Peak Series m/z [Al(OH)2(H2O)n]+ [Al(OH)(H2O)n(ClO4)]+ [Al(H2O)n(ClO4)2]+ [Al2(OH)5(H2O)n]+ [Al2(OH)4(ClO4)(H2O)n]+ [Al2SiO2(OH)5(H2O)n+1]+ [Al3SiO2(OH)6(H2O)n(ClO4)]2+ [Al3SiO2(OH)8(H2O)n]+ [Al7Si2O5(OH)13(H2O)n+3(ClO4)3]3+ [Al2(OH)3(H2O)n(ClO4)2]+ [Al7Si2O5(OH)12(H2O)n(Cl35O4)3(Cl37O4)]3+ [Al2(OH)2(H2O)n(ClO4)3]+ [Al2(OH)2(H2O)n(Cl35O4)2(Cl37O4)]+ [Al2SiO(OH)5(H2O)n(ClO4)2]+ [Al4SiO3(OH)8(H2O)n+1(ClO4)]+ [Al2SiO(OH)4(H2O)n(ClO4)3]+ [Al5SiO3(OH)12(H2O)n+1]+ [Al5Si2O5(OH)12(H2O)n+1]+ [Al6SiO3(OH)15(H2O)n]+ [Al4Si2O4(OH)10(H2O)n(ClO4)]+ [Al3SiO2(OH)7(H2O)n+6]2+ [Al3SiO2(OH)5(H2O)n+6(ClO4)2]2+ [Al3SiO2(OH)8(H2O)n+2]+ 61+18n (n=0-2) 143+18n (n=0-3) 225+18n (n=0-3) 139+18n (n=0-2) 221+18n (n=0-3) 217+18n (n=0-3) 171+9n (n=0-5) 277+18n (n=0-2) 299+6n (n=0-4) 303+18n (n=0-5) 309+6n (n=0-10) 385+18n (n=0-4) 387+18n (n=0-4) 381+18n (n=0-3) 437+18n (n=0-2) 463+18n (n=0-4) 433+18n (n=0-6) 493+18n (n=0-3) 493+18n (n=0-3) 497+18n (n=0-4) 184+9n (n=0-1) 266+9n (n=0-1) 313+18n (n=0-2) Al1SiX(ClO4)y – Al7Six(ClO4)y (x= 0-2, y= 0-3) Nanotube-like intermediates (m/z 500-800) disappear from ESI-MS spectra Abrupt pH drop from 3.3 to 1.7 upon heating to 95 ˚C Condensation of curved nano-intermediates takes place Georgia Institute of Technology 27Al Liquid-State NMR Nanotube-like Hexa-coordination 6 ppm Keggin cluster Al-13 (63.3 ppm, 12 ppm) Hexa-coordinated monomer Al-1 (0 ppm) Nanotube-like hexa-coordination (~6 ppm) (b) e.g. 18h Aging [AlO4Al12(OH)24(H2O)12]7+ Keggin cluster Al-13 Monomer 27Al-Chemical-Shift (ppm) Nanotube-like and Keggin species Chemical shift, linewidth and integrated areas of each peak are examined 7 Georgia Institute of Technology 27Al Liquid-State NMR Area of NMR resonances — concentration in solution Aging Stage at 25˚C FWHM (full width at half maximum) —environmental ordering around Al Heating Stage at 95˚C Chemical shift — structure Heating Stage at 95˚C Aging Stage at 25˚C 8 Georgia Institute of Technology Overall Mechanism of Nanotube Formation Heating Stage at 95˚C Aging Stage at 25˚C Formation of Single-Walled Aluminosilicate Nanotubes from Molecular Precursors and Curved Nanoscale Intermediates Yucelen, G. I., Choudhury, R. P., A. Vyalikh, A. Scheler, U, Beckham, H. W. and Nair, S. "Formation of Single-Walled Aluminosilicate Nanotubes from Molecular Precursors and Curved Nanoscale Intermediates", Journal of the American Chemical Society, 2011. 133(14): p. 5397-5412. 9 Georgia Institute of Technology Shaping Single-Walled Metal Oxide Nanotubes Hypothesis – a relationship between the precursor shape and the resulting nanotube Can we achieve Ångstrom-level control over precursor and nanotube curvature? Binding of ligands such as perchlorate (ClO4-), chloride (Cl-), and acetate (CH3COO-) Initial Precursors Ligands 10 Cl- ClO4- CH3COO- Ångstrom-level Curvature Control Georgia Institute of Technology XRD, Nitrogen Physisorption, and NMR 1 2 Experimental XRD patterns 0.80±0.02 nm 0.05 M HCl 0.93±0.05 nm 0.05 M 50%HCl-50%HClO4 0.99±0.06 nm 0.05 M HClO4 Pore Diameters – N2 Physisorption Studies 3 CH3COOH HCl 50%HCl-50%HClO4 HClO4 27Al 11 Experimental results support the hypothesis Largest external diameters obtained by ClO4 Nanotube composition is preserved and 29Si MAS NMR Georgia Institute of Technology Cryo-Electron Microscopy Nanotube diameters are measured from high-resolution cryo-EM micrographs Nanotube diameter was determined based on measurement of 50 nanotubes Largest diameters obtained by the use of HClO4, smallest by the use of CH3COOH Theoretical Line Measured Diameter 2.8 CH3COOH R: 2.2±0.2 nm HCl+HClO4 R: 2.5±0.2 nm HCl R: 2.4±0.2 nm HClO4 R: 2.8±0.2 nm External Diameter (nm) 2.7 2.6 2.5 2.4 2.3 2.2 2.1 CH3COOH 11 HCl 12 HClO4 + HCl 13 14 HClO4 15 # of Repeat Units in Circumference Ångstrom-level Diameter Control 12 Georgia Institute of Technology Curvatures of DFT-optimized nanoscale intermediates R = 2.3 ± 0.1 nm R = 1.4 ± 0.1 nm κ = 1/R = 0.44 nm-1 HClO4 κ = 1/R = 0.71 nm-1 [Al10SiO3(OH)22(H2O)4(ClO4)4]2+ [Al10SiO3(OH)26(H2O)4]2+ HCl R = 1.4 ± 0 nm κ = 1/R = 0.71 nm-1 R = 1.5 ± 0 nm κ = 1/R = 0.66 nm-1 CH3COOH [Al9Si2O6(OH)17(H2O)3Cl3]3+ R = 0.73 ± 0.08 nm R = 0.7 ± 0 nm κ = 1/R = 1.37 nm-1 κ = 1/R = 1.4 nm-1 [Al10Si2O6(OH)19(H2O)6(CH3COO)5]2+ 13 [Al9Si2O6(OH)20(H2O)3]3+ [Al10Si2O6(OH)24(H2O)4]2+ Georgia Institute of Technology Shaping Single-Walled Metal Oxide Nanotubes There is a clear correlation between the precursor curvatures and the diameters of the nanotubes obtained. The precursor curvatures follow the trend of HClO4<HCl<CH3COOH, and the nanotube diameters correspondingly follow the inverse trend HClO4>HCl>CH3COOH Yucelen, G.I., Kang, D-Y, Guerrero-Ferreira, R. C., Wright, E. R., Beckham, H. W. and Nair, S., “Shaping Single-Walled Metal Oxide Nanotubes from Precursors of Controlled Curvature”, Nano Letters, 2012. 12(2): p. 827-832. 14 Georgia Institute of Technology Modelling Nanotube Formation and Growth Mechanisms Quantitative kinetic model formulation: k1 nP → A → NTi = (i a= , a n / 4) k1 k2 k3 NTi + P → NTi +1 (i ≥ a, a + 1, a + 2,..., N ) NTi + NT j → NTi + j k4 (i, j ≥ a, a + 1, a + 2,..., N ) P NT A k3 d [P ] m = −nk1 [P ] − k3 [P ][NT ] dt d [A] m = k1 [P ] − k 2 [A] dt d [NT ] 2 = k 2 [A] − k 4 [NT ] dt d [NT ]i = k 2 [A] − k3 [P ]NTi − k 4 NTi [NT ] (i = a ) dt N d [NT ]k 1 i = k −1 = k3 [P ][NTk −1 − NTk ] + k 4 ∑ NTi NT j − 2 NTk ∑ NTi dt 2 i =a i =a j = k −i k2 k4 (k > a) Three primary type of species coexist in synthesis solutions: P, A, and NT Nanotube synthesis and growth is assumed to be a four-step process 15 Georgia Institute of Technology Model Fitting and Validation (a) (b) 8h (c) 14 h 30 h (e) (g) 85 h t = 30 h t = 14 h 1 0.8 0.8 0.8 0.8 0.4 0.2 0 0 0.6 0.4 400 600 0 0 800 0.6 0.4 0.2 0.2 200 [NTi] (normalized) 1 [NTi] (normalized) 1 0.6 200 L (nm) t = 72 h 400 600 L (nm) t = 85 h 1 0 0 800 0.4 0.2 200 400 600 0 0 800 0.8 0.8 0.2 0 0 0.2 200 400 L (nm) 600 800 0 0 [NTi] (normalized) 0.8 [NTi] (normalized) 0.8 [NTi] (normalized) 1 0.4 0.6 0.4 400 L (nm) 600 800 1.4×107 k2 (s-1) 2.2×10-4 k3 (M-1s-1) 2.8×102 k4 (M-1s-1) 19.4 n 80 m 3.9 P0 (M) 8.0×10-5 0 0 600 800 600 800 0.6 Dimensional evolution is studied by TEM Model captures all features of the NDLs (~10% avg. error) 0.4 0.2 0.2 200 400 L (nm) t = 144 h 1 0.4 200 L (nm) t = 96 h 1 0.6 k1 (M-ms-1) 0.6 1 0.6 AlSiOH NT Synthesis t = 48 h 1 [NTi] (normalized) [NTi] (normalized) 144 h Reaction Constants Simulated NLD Experimental NLD [NTi] (normalized) (h) 96 h t=8h 16 48 h (f) 72 h (d) 200 400 L (nm) 600 800 0 0 200 400 L (nm) Georgia Institute of Technology Model Predictions The model is able to predict NLDs and mean lengths of nanotubes when P0 is increased and decreased by 50 percent 96 h t = 96 h 1 1 0.5P(b) 0 0.6 0.4 400 0.4 600 0 0 800 200 1 1.5P(d) 0 [NTi] (normalized) t 0.6 0.4 0 0 600 800 1.5P(c)0 240 0.5 P 220 0 P 200 0 180 1.5 P 160 0 140 120 100 80 20 40 60 80 100 120 140 Synthesis Time (h) 0.8 96 h 0.8 400 Lt =(nm) 96 h tL=(nm) 14 h 1 [NTi] (normalized) Experimental NLD 200 0.2 0.5P0 , t=96 h 0.6 1.5P0 , t=96 h 0.4 0.2 200 400 L (nm) 17 0.6 0.2 0.2 0 0 0 0.8 [NTi] (normalized) t 85 h [NTi] (normalized) Simulated NLD 0.8 0.5P(a) Average AlSiOH Nanotube Length (nm) t t = 14 h 600 800 0 0 200 400 600 80 L (nm) Georgia Institute of Technology Thank You!!! POROUS MATERIALS AND MEMBRANES via NANOSCALE PROCESSING STRATEGIES Nair Research Group Beckham Research Group ACKNOWLEDGMENTS: This work was supported by The National Science Foundation (CAREER, CBET-0846586) COLLABORATORS: Prof. E. R. Wright (The Robert P. Apkarian Integrated Electron Microscopy Core of Emory University) Prof. F. Fernandez (Chemistry & Biochemistry, Georgia Tech) Dr. J. Leisen (Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Tech) Georgia Institute of Technology
© Copyright 2026 Paperzz