Gaseous Chemical Equilibrium “A” students work (without solutions manual) ~ 10 problems/night. 1. Can balance equations 2. Can predict direction of reaction (∆H) 3. Can compute rates Dr. Alanah Fitch Flanner Hall 402 508-3119 [email protected] rate = − Office Hours Th&F 2-3:30 pm d [ A] m = k [ A] adt 4. Can we predict what happens at end? Module #15: Introduction to Equilibrium 1. Define Equilibrium, And equilibrium constant Consider the reaction at 100 oC, where the initial Pressure of dinitrogen tetroxide is 1 atm: Our Friend for this Chapter review N 2 O4 , g → 2 NO2 , g Dinitrogen tetroxide The decomposition of dinitrogen tetroxide vs time Is shown in the table below A. Intermediate in: • nitric acid & sulfuric acid production • nitration of organic compound & explosives • manufacture of oxidized cellulose compound (hemostatic cotton) B. Used to bleach flour C. Proposed as oxidizing agent in rocket propulsion nitrogen dioxide. 1.8 We studied it’s decomposition kinetics in The preceding chapter N2O4, atm 1 0.6 0.35 0.22 0.22 0.22 NO2, atm 0 0.8 1.3 1.56 1.56 1.56 1.6 1.4 NO2 1.2 atm s 0 20 40 60 80 100 1 0.8 0.6 N2O4 0.4 0.2 0 The reaction order and Rate constant can be determined by various time/conc. plots N 2 O4 , g → 2 NO2 , g 0 20 40 60 t, s 1 80 100 120 N 2 O4 , g → 2 NO2 , g s 0 20 40 60 80 100 N2O4, atm 1 0.6 0.35 0.22 0.22 0.22 NO2, atm 0 0.8 1.3 1.56 1.56 1.56 1/N204 1 1.67 2.86 4.55 4.55 4.55 1st order reaction review review ln PN 2 O4 ,t = ln PN 2 O4 ,t = 0 − kt rate = k [ A] ln PN 2 O4 ,t = ln(1) − kt ln PN 2 O4 ,t = 0 − kt 1 k = 0.0254 s 1 ln N204 0 -0.51 -1.05 -1.51 -1.51 -1.51 [ ] [ ] ln At = ln Ao − kt 0 -0.2 -0.4 1.8 0 1.6 -0.6 ln[N2O4] 4 1.4 -0.4 3.5 1.2 1/PN2O4 ln[N2O4] 3 -0.8 2.5 ln[N2O4] = - 0.0065 -0.0254(t) -0.8 R2 = 0.9992 -1 2 -1 0.6 1.5 0.4 -1.2 1 0.2 -1.4 0.5 0 -1.6 -1.2 0 0 20 40 60 80 100 120 0 0 20 40 60 t, s rate = k [ A] t 80 100 40 60 80 100 120 -1.4 t, s t, s [ ] 20 120 rate = k [ A]2 rate = k [ A]1 0 -1.6 0 1 1 − = kt [ A] A0 [ ] 20 40 60 0 80 100 120 t, s [ ] ln At = ln Ao − kt [ A ] = [ A ] − kt 1.8 k forward N 2 O4, g ⎯⎯⎯⎯ ⎯→ 2 NO2, g 1.6 “Equilibrium” = “steady state concentrations” 1. occurs when rate forward = rate backward 1.4 atm 1.2 1 ( ) 0.6 k f PN2O4 , g = k b PNO2 , g 0.4 0.025 0.025 0.2 rate = k f PN 2O4 0 0 20 40 1⎞ ⎛ rate = ⎜ 0.0254 ⎟ PN 2 O4 ⎝ s⎠ 0.02 0.02 60 80 100 120 t, s kf kb 0.015 0.015 What do you observe? 2. 0.01 0.01 (P ) = ( ) rate = k b PNO2 00 00 20 20 40 40 60 60 80 80 2 rate = 0.002309 100 100 ( ) 1 P atm ⋅ s NO2 2 kb 120 120 3. t, s backward 2 NO2, g ⎯⎯⎯⎯ ⎯→ N 2 O4, g k t, s kbackward = 0.002309 PN2O4 , g (P ) = K = PN2O4 , g 1 s = 11atm Kequilibrium = 1 0.002309 atm ⋅ s 00254 . NO2 , g equilibrium BOTH reactions are occurring competitively N 2 O4, g →← 2 NO2, g ojo 1. Conc. Are “stable” 2. Rate forward = rate backward 2 1 atm⋅s 2 NO2, g ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ N 2 O4, g 2 NO2 , g concentrations are also constant (steady state) kf 1 N 2 O4, g ⎯⎯⎯⎯⎯⎯⎯⎯s → 2 NO2, g 2 2 0.005 0.005 k forward = 0.0254 Rate forward = Ratebackward Conc. plot 0.8 0.03 0.03 rate, rate, Atm/s Atm/s atm -0.6 1 0.8 Using the rate Constants the Rate at each time Can be calculated 5 4.5 -0.2 4. Hamilton’s Bar: Legal occupancy: 10 An equilibrium constant describes the steady state concs at 100 oC for any starting set of concentrations Kequilibrium = 11atm = Experiment time t=0 t=equilibrium 1 N2O4 1.00 0.22 K equilibrium = 11atm = ? Kequilibrium = 11atm = ? (P ) (P ) The stupid analogy 2 NO2 PN 2 O4 NO2 0.00 1.56 22 N2O4 N2O4 0.00 0.00 0.07 0.07 3 N2O4 1.00 0.42 NO2 NO2 1.00 1.00 0.86 0.86 NO2 1.00 2.16 2 3 out NO2 , g PN 2O4 , g 2 (156 . atm) 0.22atm 11atm = 1106 . atm ? Kequilibrium = 11atm = ( 0.86atm) 2 ? Kequilibrium = 11atm = 0.07atm ? Hamilton’s appears to have an unchanged population, but constant exchange of drinkers is occurring. The equilibrium is 10/3. 2 ( 216 . atm) 0.42atm ? 11atm = 1056 . atm 11atm = 1111 . atm The “Generic” Rule FITCH Rules General 10 in G1: Suzuki is Success G2. Slow me down G3. Scientific Knowledge is Referential G4. Watch out for Red Herrings G5. Chemists are Lazy ⎛ qq ⎞ ⎟ E = k⎜ C1. It’s all about charge ⎝r +r ⎠ C2. Everybody wants to “be like Mike” ⎛ qq ⎞ C3. Size Matters ⎟ E = k⎜ ⎝r +r ⎠ C4. Still Waters Run Deep Piranhas lurk Apparent C5. Alpha Dogs eat first Lack of change, Stoichiometry shows up as power aA + bB → ← cC + dD 1 2 Chemistry el 1 2 1 2 el 1 (P ) (P ) (P ) (P ) c Pressure Of reactants On bottom 2 K Pr essue = C d D a A b B Constant microscopic change An equilibrium constant can be written in terms of Molarity also 3 Pressure Of Products On top PV = nRT aA + bB → ← cC + dD P n = = [molarity ] RT V P = RT[molarity ] (P ) (P ) = (P ) (P ) c K Pr essue ⎧ ( RT ) c ( RT ) d ⎫ K Pr essue = ⎨ a b ⎬ K concentration ⎩ ( RT ) ( RT ) ⎭ d C D a A b (c+ d )− (a +b) K Pr essue = ( RT ) Kconcentration ( RT[ C]) ( RT[ D]) d ( RT[ A]) a ( RT[ B])b Office Hours Th&F 2-3:30 pm ∆n K Pr essue = ( RT ) f −i K concentration ⎧ ( RT ) c ( RT ) d ⎫ ⎧ [ C ] c [ D] d ⎫ K Pr essue = ⎨ a b ⎬⎨ a b ⎬ ⎩ ( RT ) ( RT ) ⎭ ⎩ [ A] [ B] ⎭ Kconcentration Dr. Alanah Fitch Flanner Hall 402 508-3119 [email protected] B c K Pr essue = “A” students work (without solutions manual) ~ 10 problems/night. Module #15: Introduction to Equilibrium When doing problems watch out that they are not switching units on you!!!!! [ C ] c [ D] d = [ A] a [ B] b Sample calculation Of K Calculate the Kc for the reaction at 25oC: Consider the Haber Reaction which “fixes” nitrogen and is immensely 2 NOg + Cl2 , g → ← 2 NOCl g N 2 , g + 3H 2 , g → ← 2 NH 3, g if the equilibrium pressures are PNOCl = 1.2 atm; PNO = 5.0x10-2 atm; and PCl2 = 3.0x10-1 atm. KNOW PNOCl = 1.2 atm PNO = 5.0x10-2 atm PCl2 = 3.0x10-1 atm (P ) = (P ) (P DON’T Kconc eq KP NO Cl2 2 (12 . atm) 2 ( 0.050atm) ( 0.30atm) KP = 19 . x10 3 atm 2 = 19 . x10 3 atm −1 atm 3 gases will we get ammonia? 1 L ⋅ atm ⎛ ⎞ 19 . x10 = ⎜ 0.0826 ⋅ 298 K ⎟ ⎠ atm ⎝ mol ⋅ K ) KP = none 1 ( 2 ) − ( 3) 19 . x10 3 = ( RT ) Kconcentration atm 2 NOCl 2 important for the large scale production of ammonia used in explosives fertilizers If we mix nitrogen and hydrogen Red Herring? 19 . x10 3 (c+ d )− (a +b) K Pr essue = ( RT ) Kconcentration N2 941 kJ/mole bond energy 3H2 432 kJ/mole −1 3 K concentration 1 1 K = L ⋅ atm atm ⎛ ⎞ concentration ⋅ 298 K ⎟ ⎜ 0.0826 ⎝ ⎠ mol ⋅ K 19 . x10 3 1 ⎛ L ⋅ atm ⎞ ⋅ 298 K ⎟ = Kconcentration ⎜ 0.0826 ⎠ atm ⎝ mol ⋅ K Kconcentration = 4.6 x10 4 Haber found a Catalyst to make reaction go N2 3H2 2NH3 1 M 4 Galen, 170 Marie the Jewess, 300 Charles Augustin James Watt Coulomb 1735-1806 1736-1819 Jabir ibn Hawan, 721-815 Luigi Galvani 1737-1798 Galileo Galili Evangelista Torricelli 1564-1642 1608-1647 An alchemist Count Alessandro G A A Volta, 1747-1827 Amedeo Avogadro 1756-1856 John Dalton 1766-1844 Jean Picard 1620-1682 William Henry 1775-1836 Daniel Fahrenheit 1686-1737 Jacques Charles 1778-1850 Blaise Pascal 1623-1662 Georg Simon Ohm 1789-1854 Robert Boyle, 1627-1691 Isaac Newton 1643-1727 Michael Faraday 1791-1867 B. P. Emile Clapeyron 1799-1864 Example What is KC for the Haber Process at 127oC if the equilibrium concentrations of gases are NH3 = 3.1x10-2 mol/L; N2 = 8.5x10-1 mol/L; and H2 = 3.1x10-3 mol/L? Anders Celsius 1701-1744 Germain Henri Hess 1802-1850 KNOW Justus von Thomas Graham Liebig (1803-1873 1805-1869 Ludwig Boltzman 1844-1906 Gilbert N Lewis 1875-1946 Henri Louis LeChatlier 1850-1936 Johannes Bronsted 1879-1947 Richard AC E Erlenmeyer 1825-1909 James Joule (1818-1889) Henri Bequerel 1852-1908 Lawrence Henderson 1878-1942 Rudolph Clausius 1822-1888 Jacobus van’t Hoff 1852-1911 Niels Bohr 1885-1962 William Thompson Lord Kelvin, 1824-1907 Johannes Rydberg 1854-1919 Johann Balmer 1825-1898 J. J. Thomson 1856-1940 Erwin Schodinger Louis de Broglie 1887-1961 (1892-1987) Francois-Marie Raoult 1830-1901 Heinrich R. Hertz, 1857-1894 Friedrich H. Hund 1896-1997 Max Planck 1858-1947 Rolf Sievert, 1896-1966 James Maxwell 1831-1879 Dmitri Mendeleev 1834-1907 Svante Arrehenius Walther Nernst 1859-1927 1864-1941 Fritz London 1900-1954 Wolfgang Pauli 1900-1958 Johannes D. Van der Waals 1837-1923 Marie Curie 1867-1934 DON’T KNOW RED HERRING J. Willard Gibbs 1839-1903 Fritz Haber 1868-1934 [NH3]= 3.1x10-2 [N2] = 8.5x10-1 [H2] = 3.1x10-3 Thomas M Lowry 1874-1936 KC Temp eq Prison escapees were thought to drag red herrings across their trail to fool the tracking dogs. Werner Karl Linus Pauling Louis Harold Gray Heisenberg 1901-1994 1905-1965 1901-1976 Fitch Rule G3: Science is Referential N 2 + 3H 2 → ← 2 NH 3 [NH3]= 3.1x10-2 [N2] = 8.5x10-1 [H2] = 3.1x10-3 Haber Process K=? N 2 + 3H 2 → ← 2 NH 3 [ NH ] K= [ N ][ H ] 3 2 2 NH 3 → ← N 2 + 3H 2 3 Kreverse 3 mol ⎤ ⎡ . x10 −2 ⎢⎣ 31 L ⎥⎦ K= 3 ⎡ − 1 mol ⎤ ⎡ − 3 mol ⎤ x x 8 . 5 10 31 . 10 ⎢⎣ L ⎥⎦ ⎢⎣ L ⎥⎦ [ N ][ H ] = K' = [ NH ] 2 3 2 2 3 2 2 Let’s reverse the reaction 3 2 2 2 [ NH ] [ N ][ H ] 2 K= K = 38 . x10 4 K = 38 . x10 4 1 K' = K 1 ⎛ mol ⎞ ⎜ ⎟ ⎝ L ⎠ 2 K' = 1 38 . x10 4 1 M2 We will compile our rules After a few examples. What is the first rule we have shown here? 1 M2 K ' = 2.6 x10 − 6 M 2 5 Reversing Reactions An example of adding chemical reactions SO2 ( g ) + 2 O2 ( g ) → ← SO3( g ) K SO 2 = 2.3 1 NO2 ( g ) → ← NO( g ) + 2 O2 ( g ) cC + dD → ← aA + bB K NO 2 = 4.0 1 SO2 ( g ) + NO2 ( g ) → ← NO( g ) + SO3( g ) Krx = K SO 2 K NO 2 K SO 2 = ⎡ ⎢ ⎣ SO3( g ) ⎤⎡ ⎥⎢ 2( g ) ⎦ ⎣ SO ⎤ ⎥ ⎦ 1 ⎤2 ⎥ 2( g ) ⎦ O K NO2 = ⎡ ⎢ ⎣ ⎤⎡ 1 ⎤2 ⎥ 2( g ) ⎦ ⎞ ⎡ ⎤⎡ ⎤ ⎟ ⎢ SO ⎥⎢ ⎥ 3( g ) ⎦ ⎣ NO( g ) ⎦ ⎟ = ⎡⎣ = Krx ⎤⎡ ⎤ ⎟ ⎢ SO2 ( g ) ⎥ ⎢ NO2 ( g ) ⎥ ⎦⎣ ⎦ ⎠ ⎣ K CD AB CD ( Multiplying reactions Krx = K SO 2 K NO 2 = 2.3x 4.0 = 9.2 aA + bB → ← cC + dD K aA + bB → ← cC + dD K aA + bB → ← cC + dD K 3aA + 3bB cC + 3dD n aA + bB → ← cC + dD What is the proper grammar for K? CaCO3,s → ← CaOs + CO2 , g [Ca ] [ PO ] [OH ] K= 2+ aq ? K P = PCO2 , g CaOs Krx = K n KKK = K 3 → ←3 − 2+ 3− Ca10 ( PO4 ) 6 ( OH ) 2 ,s → ← 10Ca aq + 6 PO4 ,aq + 2OH aq Are equilibria that involve more than one phase CaCO3,s ) Example Problem: Bone is called apatite and can dissolve: Heterogeneous Equilibria CaOs Same patterns For Kp ( K )( K ) aA + bB → ← eE + fF NO ⎛ ⎞⎛ ⎡ ⎤⎡ ⎡ ⎤ ⎜ ⎟ ⎜ ⎢ NO( g ) ⎥ ⎢ O ⎢ SO3 ( g ) ⎥ ⎣ ⎦ ⎜ ⎟ ⎜ ⎣ ⎡ ⎦⎣ ⎤ ( KSO2 )( K NO2 ) = 1 ⎜⎡ ⎢ NO ⎥ ⎤⎡ ⎤2 ⎟⎜ 2( g ) ⎦ ⎣ ⎝ ⎢⎣ SO2 ( g ) ⎥⎦ ⎢⎣ O2 ( g ) ⎥⎦ ⎠ ⎝ [ A] [ B] 1 = K c [ C ] c [ D] d b K AB cC + dD eE + fF ⎤ ⎥ 2( g ) ⎦ 1 ⎤2 ⎥ 2( g ) ⎦ K'C = a → ← NO( g ) ⎥⎦ ⎢⎣ O ⎡ ⎢ ⎣ [ C ] c [ D] d [ A] a [ B] b Summing reactions aA + bB → ← cC + dD ⎡ ⎢ ⎣ KC = aA + bB → ← cC + dD [Ca 10 10 3− 4 ,aq 6 ( PO ) ( OH ) 4 6 − aq 2 ,s 2 ] CaCO3,s [ 2+ K = Ca aq The position of a heterogeneous equilibrium does not Depend on the amounts of the pure solids or liquids present 6 ] [ PO ] [OH ] 10 3− 4 ,aq 6 − aq 2 “A” students work (without solutions manual) ~ 10 problems/night. Kconc 1. We can express it. Dr. Alanah Fitch Flanner Hall 402 508-3119 [email protected] 2. We can compute it’s numerical value Office Hours Th&F 2-3:30 pm 3. We can use it to: a: Tell if a rx will go b. Compute [eq] c. Compute [eq] after some change, ∆ Module #15: Introduction to Equilibrium Calculating Equilibrium Concentrations; 4 examples 3. Use Kconc to determine if a Rx will go: a. b. Compute Q, the “reaction quotient” if Q < Kconc, rx goes to right if Q = Kconc, rx is at equilibrium if Q > Kconc, rx goes to left Example 1: Use old friend N2O4 What happens when 0.2mole of N2O4 and 0.2 mole of NO2 are added together in a 4 L vol? Recall Kconc = 0.36M KNOW mole = 0.2 mol vol = 4 L K = 0.36M N 2 O4 → ← 2 NO2 ( g ) [ NO ] K = 0.36 M = [N O ] 2 What is Q? [C ] [ D ] [ A ] [B ] c Q= i i b i i=initial KC = 2 [C ] [ D ] [ A ] [B ] c d i a Don’t KNOW initial conc. rx? eq d a eq 2 eq b Q<,=,>K? Which way will reaction go? eq aA + bB → ← cC + dD 4 [N O ] 2 = 4 init [ NO ] 2 init = 0.2mol = 0.05 M 4L 0.2mol = 0.05 M 4L [ NO ] Q= [N O ] 2 2 init 2 4 init = ( 0.05 M ) 2 0.05 M = 0.05 M Q = 0.05 M < K = 0.36 M ; rx ⎯⎯⎯ ⎯→ right 7 Rules for Equilibrium Calculations Kconc 1. We can express it. 2. We can compute it’s numerical value 3. We can use it to: a: Tell if a rx will go b. Compute [eq] c. Compute [eq] after some change, ∆ 1. 2. 3. 4. Write balanced reaction Write the equilibrium expression Calculate the initial conc., Ci Calculate Q and determine if rx goes to left or to right. 5. Express “equil. C” (Ceq) in terms of init C and change, x, (Ceq =Ci"x) 6. Write K and put in Ceq, solve for x 7. Calculate equilibrium molarities 8**** Check your answer!!!!! 2. d eq KC = CO2 , g + H 2 , g → ← COg + H 2 Og b eq 1 KC 1 2 g g 1 1 2,g 3. Kc is 0.64 at 900 K. Suppose we start with CO2 and H2, both at a concentration of 0.100 mol/L. eq a eq Suppose we start with CO2 and H2, both at a concentration of 0.100 mol/L. When the system reaches equilibrium, what are the concentrations of products and reactants at 900K? = 0.64 2,g Calculate Original or Initial Concentrations [CO2]init = 0.100 mol/L [H2]init = 0.100 mol/L Red herrings? 1. [C ] [ D ] [ A ] [B ] [CO ] [ H O ] = [CO ] [ H ] c For the system (all are gases) Kc is 0.64 at 900 K. : CO2 , g + H 2 , g → ← COg + H 2 Og Write Kc EXAMPLE 2: A BIT SIMPLE Balance Equation already done 4. Calculate Q and determine if rx goes l or r. Q= [ CO] init [ H2 O]init [ CO2 ] [ ] init H2 init = 0 [ 0100 . ][ 0100 . ] Q = 0 < K c = 0.64; rx ⎯⎯⎯ ⎯→ right 8 x ⎛ ⎞ K = 0.64 = ⎜ ⎟ ⎝ 0100 . − x⎠ 5. Express “equil. C” in terms of init C+ or - x right Q = 0 < Kc = 0.64; rx ⎯⎯⎯ ⎯→ CO2 , g + H 2 , g → ← COg + H 2 Og [CO ] = [CO ] − x [H ] = [H ] − x 2 eq 2 eq Mass balance Limiting reaction [ CO] eq = [ CO] init + x 2 init [ H O ] = [ H O] 2 2 init eq 2 init +x 0.8 = OR: Construct an ICE chart Reaction: stoichiometry Initial conc Change (to right) Equil. conc 6. CO2 , g + H 2 , g → ← 1 0 +x 0.100-x 0.100-x 0+x 0+x K= [CO ] [ H ] 2 eq 7. 2 eq ( x )( x ) x ⎛ = =⎜ ⎝ [ 0100 ][ ] − x 0100 − x − . . 0100 . ⎞ ⎟ x⎠ 0.0800 = x + 0.8 x 0.0800 = 18 . x stoichiometry initial conc change (to right) Equil. conc H2 1 0.100 -x 0.100-x CO 1 0 +x 0+x x = 0.044 0.0800 = x = 0.0444 18 . 2 x = 0.044 Calculate equilibrium molarities CO2 1 0.100 -x 0.100-x x 0100 . −x 0.0800 − 0.8 x = x Write K and put in equil Conc. [ CO] eq [ H2 O]eq Kc is 0.64 at 900 K. Suppose we start with CO2 and H2, both at a concentration of 0.100 mol/L. 0.8( 0100 . − x) = x COg + H 2 Og 1 1 1 0.100 0.100 0 -x -x +x CO2 , g + H 2 , g → ← COg + H 2 Og 2 Reminder – x is change In concentration 8**** Check your answer!!!!! Suggestions for ways? H2O 1 0 +x 0+x K= [ CO] eq [ H2 O]eq [CO ] [ H ] 2 eq 2 eq ? ( 0.0444 M )( 0.0444 M ) = 0.64 = = 0.638 ( 0.05556 M )( 0.05556 M ) OJO: When I round first and then check I get: Kc = 0.60. [CO2]eq = [H2]eq = 0.100-x = 0.05556 M [CO]eq = [H2O]eq = 0.0444 M 9 K = 0.36 M = Red herrings? [N O ] 2 2 o N 2 O4 → ← 2 NO2 ( g ) KC = eq 2 d 2 , g ,eq eq a 2 If we add 0.1 mol of N2O4 in 1 L, what are the equilibrium concentrations? Recall that Kc = 0.36 M. 2 2 4 = 01 . mol = 01 . M 1L = 0.0mol = 0.00 M 1L Calculate Q and determine if rx goes l or r NO ] [ NO Q Q == [ NN OO ] 22 b eq [ NO ] [N O ] 22 22 init init [C ] [ D ] = [ NO ] = 0.36 M [ A ] [B ] [ N O ] eq 3. 4. Write Kc c 4 o [ NO ] Balance Equation 2. Old Friend: N2O4 2 If we add 0.1 mol of N2O4 in 1 L, what are the equilibrium concentrations? Recall that Kc = 0.36M. 1. K = 0.36 M N 2 O4 → ← 2 NO2 ( g ) EXAMPLE PROBLEM 3: More difficult = ( 0.0 M ) 2 44 init init 01 . M = 0.0 M < K c ; rx ⎯⎯⎯ ⎯→ right 4 , g ,eq Calculate Original or Initial Concentrations 0.1 mol of N2O4 in 1 L [N O ] 2 4 o [ NO ] 2 o If we add 0.1 mol of N2O4 in 1 L, what are the equilibrium concentrations? Recall that Kc = 0.36 M. 01 . mol = 01 . M 1L = 0.0mol = 0.00 M 1L Old Friend: N2O4 5. Express “equil. C” in terms of orig C+ or - x N 2 O4 → ← 2 NO2 ( g ) 1 2 stoichiometry N2O4 NO2 0.1 -x 0.1-x 0 + 2x 0+2x Initial conc Change (to right) Equil. conc 6. = [ NO ] K = 0.36 M = [N O ] 2 OJO!! K= Write K and put in equil Conc. NO ]] ++22xx) ) [[NO ([([NO NO ]] KK==00.36 .36MM== == [ [NN OO] ] ([([NN OO ]] −−xx)) 22 2 2 eq 2 2 4 4 eq 22 2 2 init init 2 2 4 4 init init 4 eq ([ NO ] + 2 x) = ([ N O ] − x) ( 0 + 2 x) 2 ( 01 . − x) 2 2 init 2 = 4 init ( 0 + 2 x) 2 ( 01 . − x) ax 2 + bx + c = 0 2 K ( 01 . − x) = ( 0 + 2 x) K = 0.36 M N 2 O4 → ← 2 NO2 ( g ) 2 2 eq If we add 0.1 mol of N2O4 in 1 L, what are the equilibrium concentrations? Recall that Kc = 0.36 M. 2 K 01 . − xK = ( 2 x ) = 4 x 2 ( 0 + 2 x) 2 = ( 01 . − x) 4 x 2 + xK − 01 .K=0 and solve for x 10 x= −b ± b 2 − 4ac 2a Kc = 0.36 M 4 x 2 + Kc x − 01 . Kc = 0 ax 2 + bx +c= 0 a = 4 b = Kc x= x= −b ± If we add 0.1 mol of N2O4 in 1 L, what are the equilibrium concentrations? Recall that Kc = 0.36 M. c = −01 . Kc b 2 − 4ac 2a − 0.36 ± x= ( 0.36) 2 − 4( 4)( − 0.036) 2( 4) OJO!!! N 2 O4 → ← 2 NO2 ( g ) Calculate equilibrium molarities x = 0.060 Initial conc Change (to right) Equil. conc 01 . − 0.06 = 0.4 NO2 0 + 2x 0+2x Plausible? No, not plausible. We would be forced to conclude: x = -0.15 2x = [NO2] = -0.3 M Which is plausible? N2O4 0.1 -x 0.1-x N2O4 0.1 -x 0.1-x Initial conc Change (to right) Equil. conc 2 − 0.36 ± ( 0.36) + 0.5764( 4)( 0.036) x= 8 − 0.36 ± 0.7056 − 0.36 ± 0.84 x= = = 0.06 and − 015 . 8 8 7. − 0.36 ± 0.7056 − 0.36 ± 0.84 = = 0.06 and − 015 . 8 8 NO 0 + 2x 0+2x 0 + 2( 0.06) = 012 . 1. . → .04 ? Plausible: [N2O4] decreased? 01 Plausible: [NO] increased? 0 → 012 . ? 2. Fits the equilibrium constant? [ NO ] = [ 012 . ] [ 0 N O [ ] .04] 2 K = 0.36 M = 2 2 Equilibrium [N2O4] = 0.04 M Equilibrium [NO2] = 0.12 M If we add 0.1 mol of N2O4 in 1 L, what are the equilibrium concentrations? Recall that Kc = 0.36 M. 8**** Check your answer!!!!! 11 4 2 = 0.36 M For the reaction of hydrogen gas with iodine gas at room temperature the Kp is 1x10-2. Suppose that you mix HI at 0.5, H2 at 0.01 and I2 at 0.005 atm in 5 liter volume. Calculate the equilibrium Pressures. Example 4: Do Units Matter in how we approach the problem?: For the reaction of hydrogen gas with iodine gas at room temperature the Kp is 1x10-2. Suppose that you mix HI at 0.5, H2 at 0.01 and I2 at 0.005 atm in 5 liter volume. Calculate the equilibrium Pressures. Beforehand: red herrings? 1. 3. Calculate Original or Initial Conc or Pressure A bit of red herring = already know them. PHI = 0.5 atminit PH2 = 0.01 atminit PI2 = 0.005 atminit 5L volume Balance Equation H2 , g + I 2, g → ← 2 HI ( g ) 2. 4. Write K aA + bB → ← cC + dD K Pr essue = ( PC ) ( PD ) a b (P ) (P ) A KP = HI ,eq H2 .eq (P ) (P ) (P ) H2 .init = 1x10 − 2 2 HI ,init I 2 ,init = ( 0.5atm) 2 left = 5000 > K p = 0.01; rx ←⎯⎯⎯ ( 01 . atm) ( 0.005atm) I 2 ,eq B OJO 5. (P ) (P ) (P ) Q= 2 d c Calculate Q and determine if rx goes l or r For the reaction of hydrogen gas with iodine gas at room temperature the Kp is 1x10-2. Suppose that you mix HI at 0.5, H2 at 0.01 and I2 at 0.005 atm in 5 liter volume. Calculate the equilibrium Pressures. Kp = H2 1 .01 +x .01+x I2 1 .005 +x .005+x K p = 0.01 (0.01 + x )(0.005 + x ) K p (0.01 + x )(0.005 + x ) = ( 0.5 − 2 x ) Express “equil. C” in terms of orig C+ or - x stoichiometry Initial conc Change (to left) Equil. conc ( 0.5 − 2 x ) 2 K p (5x10 − 5 + 0.015x + x 2 ) = 0.25 − 2 x + 4 x 2 HI 2 0.5 -2x 0.5-2x 5x10 − 5 K p + 0.015xK p + x 2 K p = 0.25 − 2 x + 4 x 2 ( (4 x 2 − 2 x + 0.25) − 5x10 −5 K p − 0.015xK p − x 2 K p = (4 x − x K ) + (− 2 x − 0.015xK ) + (0.25 − 5x10 K ) = 0 (4 − K ) x − x(2 + 0.015K ) + (0.25 − 5x10 K ) = 0 2 −5 2 Write K and put in equil Pressures ( 0.5 − 2 x ) p p −5 2 p Kp = ) 0.25 − 2 x + 4 x 2 − 5x10 − 5 K p + 0.015xK p + x 2 K p = 0 p 6. 2 p p ( 4− .01) x 2 − x( 2 + 0.00015) + (0.25 − 5x10 −7 ) = 0 2 (0.01 + x )(0.005 + x ) ( 3.99) x 2 − x( 2.00015) + ( 0.2499995) = 0 12 x= − b ± b 2 − 4ac 2a ( 3.99) x 2 − x( 2.00015) + ( 0.2499995) = 0 Which do we use + or -? x = 0.237739 2 − ( − 2.00015) ± ( − 2.00015) − 4( 3.99)( 0.2499995) x= 2( 3.99) x= x= x = 0.263552 H2 I2 HI stoichiometry 1 1 2 Initial conc .01 .005 0.5 Change (to left) +x +x -2x Equil. conc .01+x .005+x 0.5-2x If we use the second answer then we will get 2.00015 ± 4.0006 − 3.98992 7.98 2.00015 ± 0102995 . 7.98 PHI ,eq = 0.5 − 2 x = 0.5 − 2(0.263552) = − 0.0271 x = 0.237739 Not plausible x = 0.263552 x = 0.237739 stoichiometry Initial conc Change (to left) Equil. conc H2 1 .01 +x .01+x I2 1 .005 +x .005+x “A” students work (without solutions manual) ~ 10 problems/night. HI 2 0.5 -2x 0.5-2x Dr. Alanah Fitch Flanner Hall 402 508-3119 [email protected] PHI ,eq = 0.5 − 2 x = 0.5 − 2(0.237739) = 0.024523 PI 2 ,eq = 0.005 + x = 0.005 + 0.237739 = 0.242739 Office Hours Th&F 2-3:30 pm PH2 ,eq = 0.01 + x = 0.01 + 0.237739 = 0.247739 ( P ) = ( 0.024523) = 0.01 ( P )( P ) ( 0.242739)( 0.247739) 2 2 K= HI ,eq H2 ,eq Module #15: Introduction to Equilibrium Checks!!! Making Assumptions I 2 ,eq 13 Example on Using Simplifications General FITCH Rules If 1.0 mol NOCl is placed in a 2.0 L flask what are the equilibrium concentrations of NO and Cl2 given that at 35 oC the equilibrium constant, Kc, is 1.6x10-5 mol/L? G1: Suzuki is Success G2. Slow me down G3. Scientific Knowledge is Referential G4. Watch out for Red Herrings G5. Chemists are Lazy ⎛ qq ⎞ ⎟ E = k⎜ C1. It’s all about charge ⎝r +r ⎠ C2. Everybody wants to “be like Mike” ⎛ qq ⎞ C3. Size Matters ⎟ E = k⎜ ⎝r +r ⎠ C4. Still Waters Run Deep C5. Alpha Dogs eat first Clues? K is “small” compared to others (<<< 1) we have worked with !!!!! 1 2 Chemistry el 1 2 1 2 2 EXAMPLE 3: Example 4: For systems with multiple reactions Need to simply = ASSUMPTIONS N 2 O4 → ← 2 NO2 ( g ) If 1.0 mol NOCl is placed in a 2.0 L flask what are the equilibrium concentrations of NO and Cl2 given that at 35 oC the equilibrium constant, Kc, is 1.6x10-5 mol/L? 3. 35 oC is a red herring Clues? K is “small” compared to others (<<< 1) we have worked with !!!!! 4. Kc is 0.64. Kc = 0.36M H2 , g + I 2, g → ← 2 HI ( g ) 2 NOCl → ← 2 NO + Cl2 Example on Using Simplifications Red herrings: CO2 , g + H 2 , g → ← COg + H 2 Og Example 2 el 1 35 oC is a red herring Red herrings: Kp is 1x10-2. If 1.0 mol NOCl is placed in a 2.0 L flask what are the equilibrium concentrations of NO and Cl2 given that at 35C the equilibrium constant is 1.6x10-5 mol/L? Calculate or Initial Concentrations [NOClinit] = 1.0 mol/2L = 0.5 M [NOinit] = 0 M [Cl2init ]= 0 M Calculate Q and determine if rx goes l or [ NO ] [Cl ] ( 0)( 0) Q= = = 0; rx ⎯⎯⎯ ⎯→ 0.5 [ NOCl ] 2 g ,init We are starting with reactants 2 , g ,init 2 g .init 1. Balance Equation 2 NOCl → ← 2 NO + Cl2 2. Write K Kc = [ NO] 2 ⎡⎣⎢ Cl2 ⎤⎦⎥ [ NOCl ] 2 14 We will define Small in the Next chapter! right 5. Express “equil. C” in terms of orig C+ or - x 2 NOCl → ← 2 NO + Cl2 stoichiometry Initial conc Change (to right) Equil. conc NOCl 2 0.5 -2x 0.5-2x NO 2 0 +2x 0+2x Cl2 1 0 x 0 +x Assumptions ~0.5 2x x ( (22xx) )22xx KK== 0.5 22 Assumptions are based on NOClinit xx)) ([([NOCl init]]−−22 a) K is small so x is small − 00.000 .000xx sig fig b) If x is small then sig fig 0.4999 z ⎯⎯⎯ ⎯→ 0.5 rules eliminate x 6. Write K and put in equil Conc ≈ K = 16 x 3 16 . x10 − 5 = 16 x 3 16 . x10 − 5 = x3 16 10 − 6 = x 3 ( 2 x) 2 x [ NOCl ] 3 2 init x = 10 − 2 ( 2 x) 2 x 4 x 3 K= = = 16 x 3 ( 0.5) 2 0.25 7. x = 10 − 2 stoichiometry Initial conc Change (to right) Equil. conc NOCl 2 0.5 -2x 0.5-2x NO 2 0 +2x 0+2x Cl2 1 0 x 0 +x Assumptions ~0.5 2x x [ NOCl ] = 0.5 g ,eq 10 − 6 = x NO ] == 22xx = 2 x10 [ NO [[ClCl ] == xx = 10 Calculate equilibrium molarities [ NOCl ] = 0.5 − 2 x CHECK ASSUMPTIONS 0.5 Where are [ NOCl ] = 0.5 − 2(10 ) − 0.02 The Sig Fig? [ NOCl ] = 0.5 − 0.02 0.48 g ,eq −2 g ,eq g ,eq Answer Accept error less than 5% −2 0.5 ⎡ real − estimated ⎤ error = ⎢ ⎥⎦ 100 real ⎣ gg,,eq eq ⎡ 0.48− .5 ⎤ error = ⎢ 100 = 4% ⎣ 0..48 ⎥⎦ −2 22, , gg,eq ,eq Are we done yet? ARE WE DONE? 15 8**** Check your answer!!!!! [ NOCl ] = 0.5 [ NO ] = 2 x = 2 x10 [Cl ] = x = 10 POINT of ASSUMPTIONS g ,eq −2 g ,eq 1. Avoid using polynomial equations 2. Can do it with small K values 3. Assume little change (get rid of an x) 4. Must check the assumptions −2 2 , g ,eq [ NO] 2 ⎡⎣⎢Cl2 ⎤⎦⎥ Kc = = 16 . x10 − 5 M [ NOCl ] 2 Kc = ⎡ ⎣⎢ 2 x10 −2 ⎤ 2 ⎡ ⎦⎥ ⎣⎢ [0.5] 2 10 − 2 ⎤⎦⎥ ? = 16 . x10 − 5 M Multiple Equilibria are not solvable With simple cubic, quadratic equations Kc = 16 . x10 − 5 = 16 . x10 − 5 M Chemists are Lazy! Chemists are ________ “A” students work (without solutions manual) ~ 10 problems/night. If we don’t have to calculate can we make qualitative descriptions of equilibrium? Dr. Alanah Fitch Flanner Hall 402 508-3119 [email protected] Le Châtelier’s Principle if a change is imposed on a system at equilibrium, the position of the equilibrium will shift in a direction that tends to reduce that change Office Hours Th&F 2-3:30 pm Module #15: Introduction to Equilibrium Qualitative Predictions For direction of Equilibrium 16 Effects of Changes on the System Galen, 170 Marie the Jewess, 300 Charles Augustin James Watt Coulomb 1735-1806 1736-1819 Luigi Galvani 1737-1798 Justus von Thomas Graham Liebig (1803-1873 1805-1869 Ludwig Boltzman 1844-1906 Gilbert N Lewis 1875-1946 Jabir ibn Hawan, 721-815 Richard AC E Erlenmeyer 1825-1909 Henri Louis LeChatlier 1850-1936 Johannes Bronsted 1879-1947 Galileo Galili Evangelista Torricelli 1564-1642 1608-1647 An alchemist Count Alessandro G A A Volta, 1747-1827 James Joule (1818-1889) Henri Bequerel 1852-1908 Rudolph Clausius 1822-1888 Niels Bohr 1885-1962 John Dalton 1766-1844 William Thompson Lord Kelvin, 1824-1907 Johannes Rydberg 1854-1919 Jacobus van’t Hoff 1852-1911 Lawrence Henderson 1878-1942 Amedeo Avogadro 1756-1856 Jean Picard 1620-1682 William Henry 1775-1836 Johann Balmer 1825-1898 J. J. Thomson 1856-1940 Erwin Schodinger Louis de Broglie 1887-1961 (1892-1987) Jacques Charles 1778-1850 Francois-Marie Raoult 1830-1901 Heinrich R. Hertz, 1857-1894 Friedrich H. Hund 1896-1997 Daniel Fahrenheit 1686-1737 Max Planck 1858-1947 Rolf Sievert, 1896-1966 Blaise Pascal 1623-1662 Georg Simon Ohm 1789-1854 James Maxwell 1831-1879 Robert Boyle, 1627-1691 Michael Faraday 1791-1867 Dmitri Mendeleev 1834-1907 Svante Arrehenius Walther Nernst 1859-1927 1864-1941 Fritz London 1900-1954 Isaac Newton 1643-1727 Wolfgang Pauli 1900-1958 B. P. Emile Clapeyron 1799-1864 Johannes D. Van der Waals 1837-1923 Marie Curie 1867-1934 Anders Celsius 1701-1744 1. Addition of inert gas does not affect the equilibrium position. 2. Concentration: The system will shift away from the added component. 3. Decreasing the volume shifts the equilibrium toward the side with fewer moles. 4. Temperature: K will change depending upon the temperature (treat the energy change as a reactant). Germain Henri Hess 1802-1850 J. Willard Gibbs 1839-1903 Fritz Haber 1868-1934 Thomas M Lowry 1874-1936 Werner Karl Linus Pauling Louis Harold Gray Heisenberg 1901-1994 1905-1965 1901-1976 Fitch Rule G3: Science is Referential Example What is the effect on equilibrium in the (decomposition) Concentration: The system will shift CaCO3,s →← CaOs + CO2, g toward from the removed component. of removing some CO2,g, does Q change? LeChatlier Examples Example: (Inert gas) Suppose we have the reaction initially at equilibrium 2 SO2 , g + O2 , g → ← 2 SO3, g Kc ,1000 K = 2.8 x10 2 [CO ] < [CO ] [CO ] = [COx ] 2 , g ,eq What happens when we add some N2,g, , does Q change? [SO ] [O ][SO ] 2 , g ,new 2 KC = 3, g ,eq 2 , g ,eq 2 2 , g ,eq Addition of inert gas does not affect the equilibrium position. Similarly…… s 2,g 3, s 2 , g ,eq right c 2 , g ,eq What happens when we add some SO3,g , does Q change? [SO ] > [SO ] [SO ] = x[SO ] 3,new of limestone produced by adding a small quantity of CaCO3(s)? 2, g [CO ] < K = [CO ]; rx ⎯⎯⎯⎯→ x Kc ,1000 K = 2.8 x10 2 2 SO2 , g + O2 , g → ← 2 SO3, g CaCO3,s →← CaOs + CO2, g [CO ][CaO ] = [CO ] [CaCO ] Q= 2 , g ,new Example Suppose we have the reaction initially at equilibrium: Example: (Effect of Solid) What is the effect on equilibrium in the calcination (decomposition) Kc = 2 , g ,eq 3,new Change in quantity of solids do not affect direction of equilibria. So addition of more limestone is irrelevant. 3,eq 3,eq Q= ( x[SO ]) 2 [O ][SO ] 2 , g ,eq 2 , g ,eq [SO ] = [O ][SO ] 2 3, g ,eq 2 > KC 3, g ,eq 2 , g ,eq ; rx ←⎯⎯⎯ left 2 2 , g ,eq Concentration: The system will shift away from the added component. 17 Example What happens if we decrease the volume of the container? 2 SO2 , g + O2 , g → ← 2 SO3, g ⎡ nSO ⎤2 ⎡ ⎢nSO3,3g,,geq,eq⎤ ⎥ 2 2 SO3, g ,eq 2 ⎢ ⎢⎣ Veq ⎥ ⎥⎦ nSO3, g ,eq SO3, g ,eq ⎢⎣ Veq ⎥⎦ Kc = 2 = 2 Kc = O 2 = ⎡ nO2 , g , eq ⎤ ⎡ n SO2 , g , eq ⎤2 = SO ⎡ ⎢nO2 , g ,eq ⎤ ⎥⎡ ⎢nSO2 , g ,eq ⎤ ⎥ O2 ,2eq,eq, g, g SO2 ,2g, g,eq,eq nO2 , g ,eq nSO2 , g ,eq ⎢ ⎢⎣ Veq ⎥ ⎥⎦⎢ ⎢⎣ Veq ⎥ ⎥⎦ ⎢⎣ Veq ⎥⎦ ⎢⎣ Veq ⎥⎦ [[ [[ ]] ][][ ]] [ 2 [ ][ ] [ [ [ ][ ][ ] ] ] ] [ [ [ ][ [ ] ][ ] ] Kc = 2801000 K 2 ] 2 ⎡ 1 ⎤ ⎢ ⎥ ⎢⎣ Veq ⎥⎦ 2 ⎡ 1 ⎤⎡ 1 ⎤ ⎢ ⎥⎢ ⎥ ⎢⎣ Veq ⎥⎦ ⎢⎣ Veq ⎥⎦ Decrease volume, what happens? ⎡ 1 ⎤ 2 2 2 ⎛ ⎢ ⎥ n SO3, g ,eq nSO3, g ,eq nSO3, g ,eq ⎜ ⎢⎣ Veq ⎥⎦ 1 Kc = = = ⎜ 2 3 2 nO2 , g ,eq nSO2 , g ,eq ⎡ 1 ⎤ nO2 , g ,eq nSO2 , g ,eq ⎡⎢ 1 ⎤⎥ ⎜⎝ nO2 , g ,eq nSO2 , g ,eq ⎢ ⎥ ⎢⎣ Veq ⎥⎦ ⎢⎣ Veq ⎥⎦ Veq Vnew < Veq Vnew = x 2 2 ⎛ ⎞ ⎛ ⎞ nSO3, g ,eq n ⎜ ⎟ Veq ⎜ ⎟ SO3 , g , eq right Q= ⎜ K < = ⎯→ ⎟ ⎜ 2 2 ⎟ Veq ; rx ⎯⎯⎯ c x ⎜ nO ⎟ ⎜ ⎟ n n n ⎝ 2 , g ,eq SO2 , g ,eq ⎠ ⎝ O2 , g ,eq SO2 , g ,eq ⎠ [ 2SO2( g ) + O2( g ) →← 2SO3( g ) 2 [ [ ][ ] ] Number of moles of reactants? Number of moles of products? ⎞ ⎟ 2 ⎟ Veq ⎟ ⎠ If we form reactants we get 3 moles If we form products we get 2 moles. reaction moves to decrease moles ] moves to the right. Q changes when we change volume because of differences in stoichiometry Decreasing the volume (increasing P) shifts the equilibrium toward the side with fewer moles 13_318 LeChatlier Example: Haber Process N 2 ( g ) + 3H 2 ( g ) What happens when volume is decreased? → ← Effect of Temperature???? 2 NH 3( g ) Consider effect of raising temperature on two reactions: Key: N2 H2 NH3 2SO2( g ) + O2( g ) →← 2 SO3( g ) ∆ H o = − 180kJ N 2 ( g ) + O2 ( g ) →← 2 NO2 ( g ) ∆ H o = + 181kJ What will happen? To equil Another way to see this is to write the rxs by considering heat As a product or reactant. Reaction shifts away from heat: 2SO2( g ) + O2 ( g ) →← 2SO3( g ) + heat ; rx ←⎯⎯⎯ left 7 N2 4 H2 3NH3 14 7 N2 4 H2 3NH3 14 To equil 6 N2 1H2 5NH3 N 2 ( g ) + O2 ( g ) + heat →← 2 NO2 ( g ) ; rx ⎯⎯⎯⎯→ right Temperature: K will change depending upon the temperature (treat the energy change as a reactant). 12 18 Do you see a pattern? Galen, 170 ⎡ K ⎤ − ∆ H forward rx ⎡ 1 1 ⎤ Van’t Hoff equation (1852-1911) ln ⎢ 1 ⎥ = ⎢ − ⎥ R ⎣ K2 ⎦ ⎣ T1 T2 ⎦ Marie the Jewess, 300 Jabir ibn Hawan, 721-815 An alchemist Galileo Galili Evangelista Torricelli 1564-1642 1608-1647 Jean Picard 1620-1682 Daniel Fahrenheit 1686-1737 Blaise Pascal 1623-1662 Robert Boyle, 1627-1691 Isaac Newton 1643-1727 Anders Celsius 1701-1744 o Charles Augustin James Watt Coulomb 1735-1806 1736-1819 Luigi Galvani 1737-1798 Justus von Thomas Graham Liebig (1803-1873 1805-1869 ⎡ k ⎤ ⎡ − Ea ⎤ ⎡ 1 1 ⎤ ln ⎢ 1 ⎥ = ⎢ ⎥⎢ − ⎥ ⎣ k 2 ⎦ ⎣ R ⎦ ⎣ T1 T2 ⎦ Arrhenius Equation ⎡ P ⎤ ⎡ − ∆ H vaporization ⎤ ⎡ 1 1 ⎤ ln ⎢ 1 ⎥ = ⎢ ⎥⎢ − ⎥ R ⎣ P2 ⎦ ⎣ ⎦ ⎣ T1 T2 ⎦ Clausius-Clapeyron equation Ludwig Boltzman 1844-1906 Gilbert N Lewis 1875-1946 Richard AC E Erlenmeyer 1825-1909 Henri Louis LeChatlier 1850-1936 Johannes Bronsted 1879-1947 Count Alessandro G A A Volta, 1747-1827 James Joule (1818-1889) Henri Bequerel 1852-1908 Lawrence Henderson 1878-1942 Amedeo Avogadro 1756-1856 Rudolph Clausius 1822-1888 Jacobus van’t Hoff 1852-1911 Niels Bohr 1885-1962 John Dalton 1766-1844 William Thompson Lord Kelvin, 1824-1907 Johannes Rydberg 1854-1919 William Henry 1775-1836 Johann Balmer 1825-1898 J. J. Thomson 1856-1940 Erwin Schodinger Louis de Broglie 1887-1961 (1892-1987) Jacques Charles 1778-1850 Francois-Marie Raoult 1830-1901 Heinrich R. Hertz, 1857-1894 Friedrich H. Hund 1896-1997 Max Planck 1858-1947 Rolf Sievert, 1896-1966 Georg Simon Ohm 1789-1854 James Maxwell 1831-1879 Michael Faraday 1791-1867 Dmitri Mendeleev 1834-1907 Svante Arrehenius Walther Nernst 1859-1927 1864-1941 Fritz London 1900-1954 Wolfgang Pauli 1900-1958 B. P. Emile Clapeyron 1799-1864 Johannes D. Van der Waals 1837-1923 Marie Curie 1867-1934 ∆ H 0 = − 92.2 kJ K = 6 x105 25C What have we learned? What is K at 100 oC? Predict first using LeChatelier’s principle: will it get larger or smaller? You try it!, we will compare to calc. 1. 2. 3. N 2 ( g ) + 3H 2 ( g ) → ← 2 NH 3( g ) + heat ⎡ K1 ⎤ − ∆ H o ⎡ 1 1⎤ ln ⎢ ⎥ = ⎢ − ⎥ R ⎣ T1 T2 ⎦ ⎣ K2 ⎦ ⎡ 6 x105 ⎤ ln ⎢ ⎥ = ⎣ K2 ⎦ e ⎡ 6 x105 ⎤ ln ⎢ ⎥ ⎢⎣ K2 ⎥⎦ 4. 5. 6. ⎡ 6 x105 ⎤ 7 .48628 = 1783.405 = ⎢ ⎥= e ⎣ K2 ⎦ J ⎞ ⎛ − ⎜ − 92.2 x10 3 ⎟ ⎝ 1 1 mol ⎠ ⎡ ⎤ ⎢⎣ 273 + 25K − 273 + 100 K ⎥⎦ J 8.31 mol − K ⎡ 6 x105 ⎤ 11095.07 ln ⎢ ⎥ = 1 ⎞ K ⎛ 2 ⎣ ⎦ ⎜ ⎟ ⎝ Kelvin ⎠ ⎡ .000675 ⎤ ⎢⎣ Kelvin ⎥⎦ = 7.48628 7. 8. 6 x105 = K2 = 336.435 1783.405 19 J. Willard Gibbs 1839-1903 Fritz Haber 1868-1934 Thomas M Lowry 1874-1936 Werner Karl Linus Pauling Louis Harold Gray Heisenberg 1901-1994 1905-1965 1901-1976 Fitch Rule G3: Science is Referential N 2 ( g ) + 3H 2 ( g ) → ← 2 NH 3( g ) Germain Henri Hess 1802-1850 Expression for K Expression for Q Distinguish between initial and final or equilibrium concentrations. How to predict direction of a reaction How to calculate the equilibrium conc. How to make assumptions to ease the calculations. How to check the calculations How to use Le Chat.... principle to effect of conc., pressure, volume, and temp. on a reaction. “A” students work (without solutions manual) ~7 problems/night. 20
© Copyright 2025 Paperzz