Molecular Characterization of Petroleum

M. Ahmed,1 S. Gong,1 D. Fuentes,1 S. Sestak,1 F. Theobald,2 and K. D’Silva3;
1
CSIRO Earth Science and Resource Engineering, North Ryde, Australia
2
Environmental Consulting, Cologne, Germany
3
Thermo Fisher Scientific, Bremen, Germany
Key Words
Analysis of aliphatic, aromatic and branched/cyclic
hydrocarbon fractions, Thermo Scientific DFS
High Resolution Mass Spectrometer
Introduction
Comprehensive molecular characterisation of petroleum
is used to solve issues related to exploration and
production of oil and gas. It can help identify processes
that occurred in reservoirs and along migration pathways.
It provides the ability to understand the key geological
information encoded in the geochemistry of gas and
liquid hydrocarbons and can help oil companies deduce
the origin and maturity of petroleum hydrocarbons
(natural gas, coal seam gas or oils). Geochemical fossils
or biological markers, popularly called biomarkers,
frequently convey genetic information about the types
of organisms contributing to the organic matter of
sediments. They are used for correlations (oil-oil and
oil-source rock), for reconstitution of depositional
environments, and also as indicators for diagenesis
and catagenesis.1
CSIRO Organic Geochemistry Team is a world leading
provider of research services to the petroleum industries
and state and federal agencies.
Located in Sydney Australia, CSIRO Organic
Geochemistry Team have conducted genetic
characterisation of oils, fluid inclusion oils, natural gases
and potential source rock extracts for various research
projects on behalf of international energy companies
including Chevron, PETRONAS, Woodside, Oil Search,
Exxon-Mobil, Petrobras, Interoil, Origin Energy, Roc Oil,
and BP Exploration & Production Inc.
CSIRO Organic Geochemistry Team currently use a
Thermo Scientific™ DFS™ high resolution GC-MS
for the molecular analyses of sedimentary organic
matter, e.g., crude oils, fluid inclusion oils, condensates,
potential source rock extracts, solid bitumen, pyrolyzates
of ashpaltene/kerogen, etc. The DFS instrument provides
a range of capabilities required for this application,
including; high resolution, full scan, selected ion
monitoring (also known as multiple ion detection, MID)
and multiple reaction monitoring (MRM) with stable and
predictable metastable product ion formation. All of these
capabilities are combined by CSIRO for comprehensive
analyses of petroleum hydrocarbons.
Appli cat i on N ote 3 0 2 6 3
Molecular Characterisation of Petroleum
2
This application note presents a brief
description of the methods and
chromatographic conditions, using
the DFS high resolution GC-MS for
the analyses of:
Mass Spectrometer Data Acquisition Methods
Full scan of analysis of aliphatic and
aromatic hydrocarbons
Multiple ion detection (MID) analysis m/z 128, 134, 142, 154, 156, 166,
of aromatic hydrocarbon fraction, 168, 170, 178, 183. GC program A.
Method-A
• Aliphatic and aromatic hydrocarbon
fractions of the North Sea Oil-1, a
geochemical standard sample from
the Norwegian Petroleum Directorate
Multiple ion detection (MID) analysis of aromatic hydrocarbon fraction,
Method-B • Branched /cyclic hydrocarbon fraction
of a standard mixture of oils called
AGSO STD obtained from Geoscience
Australia (formerly, the Australian
Geological Survey Organization)
Methods
Multiple Reaction Monitoring (MRM) m/z 370>191, 384>191, 398>191,
analysis for hopanes 412>191, 426>191, 440>191, 454>191,
468>191, 482>191. GC program B.
Multiple Reaction Monitoring
(MRM) analysis for steranes GC
Thermo Scientific Trace Ultra GC
Sampler
Thermo Scientific TriPlus XT™
Carrier gas
Helium
Carrier gas flow rate
Constant (1.5 mL/min)
™
InjectorSplit/Splitless
Injection temperature
260°C
Injection volume
1 µL
Sample concentration
100 - 500 µg/mL in dichloromethane
GC column equivalent
TraceGOLD™ TG-1MS 60 m × 0.25 mm,
0.25 µm film P/N 26099-1540 and
TraceGOLD TG-5MS 60 m × 0.25 mm,
0.25 µm film P/N 26098-1540
Temperature programs
A) 40 °C ( 2 min) @ 4 °C min-1 to 310 °C
(40 min)
B) 40 °C (2 min) @ 20 °C min-1 to 200 °C
(0 min) 2 °C min-1 to 310 °C (40 min)
Thermo Scientific DFS
Electron energy
70 eV
Resolution
1000 at 5% peak height
Injection temperature
260 °C
Transfer line temperature 280 °C
Source temperature
280 °C
m/z 358>217, 372>217, 386>217,
400>217, 414>217, 414>231.
GC program B.
Results
Gas Chromatographic Methods
MS
m/z 178, 180, 182, 183, 184.03,
184.12, 192, 197, 198.05, 198.14,
202, 206, 212, 216, 220, 234.
GC program A.
Multiple ion detection (MID) analysis m/z 177, 183, 191, 205, 217,218,
of aliphatic hydrocarbon or its 231.11, 231.21,253, 259. GC program B.
branched chain and cyclic fraction
Results of these analyses for the identification/
quantification of some selected hydrocarbon
biomarkers are presented in the following
section.
Mass Spectrometer Parameters
m/z 50-550, scan rate 0.5 sdec-1. GC program A.
Crude oils and source rock extracts are complex mixtures
of many classes of compounds including source and
maturity related biomarkers such as n-alkanes,
isoprenoids, terpanes, steranes and diasteranes. Some
biomarkers are often present in very low concentrations
requiring different modes of GC-MS analyses for their
identification and/or quantification; full scan, multiple ion
detection and multiple reaction monitoring (MRM).
Full scan analyses provide mass spectra for structural
elucidation and chromatograms of all ions. Multiple ion
detection (MID) methods acquire only selected ions, e.g.,
m/z 123, 191, 217, etc. and provide results of better
sensitivity than full scan, providing information about
trace components. This method can be used to determine
the fingerprints for the selected compound types (e.g.,
bicyclic sesquiterpanes, hopanes, steranes and diasteranes).
Multiple reaction monitoring analyses monitor a selected
daughter ion (e.g., m/z 217) formed from molecular ions
that decompose in the first field-free region of a doublefocussing mass spectrometer. This method provides the
necessary selectivity required to analyze these specific
compounds in such a complex matrix; resulting in better
sensitivity and signal-to-noise ratios.
Full Scan Analyses
3
RT: 0.00 - 99.01
26
[a]
24
22
Relative Abundance
20
Squalane (IS)
47.25
22.11
18
63.47
49.72
16
14
52.08
18.14
12
Pr
10
n ‐C 8
8
14.10
67.90
69.56
Ph
73.26
6
8.08
4
7.98
2
0 14
0.14
0
0
10
20
30
100
[b]
90
50
Time (min)
40
29.49
80
bbundance
70
n ‐C37
75.50
81.22 84.89
89.29
80
90
NL:7.92E7
m/z= 84.60- 85.60 MS
NSO1_ALI _01A_M
36.06
39.08 41.95
25.91
70
Relative A
60
n ‐C 14
32.87
RT: 0.00 - 99.01
47.25
60
Squalane (IS)
22.11
49.72
50
52.08
40
n ‐C 8
18.14
30
Pr
14.10
20
58.59
7.99
0
63.47
Ph
64.38
67.89
69.56
10.34
10
0
NL:2.25E9
TIC MS
NSO1_ALI_01A_M
Contaminant
n ‐C 14
32.87
29.49 36.06 39.08
39 08
25.91
73 .26
26 75.51
81.21 89.28
9 44
9.44
10
n ‐C 37
20
30
40
50
Time (min)
60
70
80
90
Figure 1. Full scan (a) Total ion chromatogram and (b) m/z 85 extracted ion chromatogram of the aliphatic hydrocarbon fraction showing the distributions of n-alkanes
and isoprenoids. Pr = Pristane, Ph = Phytane.
MID Analyses
RT: 20.00 - 82.00 SM: 5G
100
C30 αβ
90
Relative Abundance
80
C30 βα
70
Gammacerane
60
C30*
C29Ts
20/3
26/3
20
19/3
21/3
10
0
C29 αβ
C29*
40
20
25
23/3
30
24/3
R
Tm
24/4
25/3
35
Ts
40
45
50
Time (min)
55
C31 βα
C31
αβ
S
50
30
60
C αβ
S 32
S C33 αβ
R
C34 αβ
R
S
R
65
70
75
C35 αβ
S
R
80
Figure 2. MID mass chromatogram m/z 191 of the aliphatic hydrocarbon fraction showing the distribution of terpanes. Peak assignments define stereochemistry at
C-22 (S and R); αβ and βα denote 17α(H), 21β(H) -hopane and 17β(H), 21α(H)-moretane, respectively. 19/3 – 26/3 = C19 – C26 tricyclic terpanes, 24/4 = C24
tetracyclic terpane, Ts = C27 18α(H), 22,29,30-trisnorneohopane, Tm = C27 17α(H), 22,29,30-trisnorhopane.
RT: 44.00 - 64.00 SM: 5G
100
C 27 βα 20S
C 27αββ 20R + C29 βα 20S
90
C 27ααα 20S
NL: 5.92E4
m/z = 216.95 - 217.45 MS
NSO1_110
923_ALI_D
C 27αββ 20S + C28 αβ 20R*
80
Relative Abundance
4
C 28 αβ 20S
70
C 27 βα 20R
60
40
C 29 βα 20R
C 28 βα 20S*
C 27 αβ 20R
50
C 27ααα 20R
C 28ααα 20S*
C 28βα20R*
C 29ααα 20S
C 29αββ 20R
C 28αββ 20R
C 29αββ 20S
C 29 αβ
20S
C 27
C 30ααα 20S
C 30αββ 20S
C 28
αβ 20S
30
C 29ααα 20R
C 28αββ 20S
ααα
20R
C 30αββ 20R
C 30ααα 20R
20
10
44
46
48
50
52
54
Time (min)
56
58
60
62
64
Figure 3. MID mass chromatogram m/z 217 of the aliphatic hydrocarbon fraction showing C27–C29 steranes and diasteranes. Peak assignments define
stereochemistry at C-20 (S and R); βα, αβ, ααα and αββ denote 13β(H),17α(H)-diasteranes, 13α(H),17β(H)-diasteranes, 5α(H),14α(H),17α(H)-steranes and
5α(H),14β(H),17β(H)-steranes, respectively. * = isomeric peaks (24S and 24R).
RT: 36.8 - 39.8
SM:5G
100
1,3,6‐TMN
Relative Abundance
90
1,3,7‐
TMN
80
RT: 47.00 - 49.00 SM:5G
NL: 1.41E6
m/z = 169.61- 170.61 MS
NSO1_ARO _24JUL_B
1,3,5‐ + 1,4,6‐TMN
2,3,6‐TMN
1,2,7‐TMN
70
60
1,6,7‐TMN
50
1,2,5‐TMN
1,2,6‐TMN
40
100
1,2,4‐
TMN
20
10
37.0
37.5
38.0
38.5
Time (min)
49.50 - 52.50 SM:5G
[c]
39.0
80
Relative Abundance
2‐MP
70
3 MP
3‐MP
60
50
40
10
0
39.5
1,3‐ + 3,9‐ + 3,10‐ + 2,10‐DMP
90
RT:
NL: 9.86E5
m/z = 205.61- 206.61 MS
NSO1_aro _24jul_c
3,5‐
, + 2,6‐DMP
,
40
30
20
10
0
49.5
9‐ + 2‐ + 1‐EP +
3,6‐DMP
1,7‐DMP
2,3‐ + 1,9‐ + 4,9‐ + 4,10 -DMP
1,8‐DMP
1,2‐DMP
50.5
48.0
Time (min)
48.5
49.0
Retene
[d]
NL: 9.86E5
m/z = 205.61- 206.61 MS
NSO1_aro _24jul_c
90
70
60
50
40
30
3‐EP
50.0
47.5
80
2,7‐DMP
60
47.0
52.00 - 60.00 SM:5G
100
1,6‐ + 2,9‐ + 2,5‐DMP
70
50
1‐MP
80
20
1,2,3‐TMN
Relative Abundance
RT:
100
NL: 1.54E6
m/z = 191.59 - 192.59 MS
nso1_aro _24jul_C
30
30
0
5
9‐MP
[b]
90
Relative Abundance
[a]
51.0
51.5
Time (min)
52.0
52.5
20
10
0
52
53
54
55
56
57
Time (min)
58
59
60
Figure 4. (a) m/z 170.11, (b) m/z 192.09, (c) m/z 206.11 and (d) m/z 234.14 mass chromatograms of the aromatic hydrocarbon fraction showing the distributions
of C3-alkylnaphthalenes, methylphenanthrenes, C2-alkylphenanthrenes and retene, respectively. TMN = Trimethylnaphthalene, MP= Methylphenanthrene,
EP = Ethylphenanthrene, DMP = Dimethylphenanthrene.
MRM Analyses
80
80
60
40
NL: 1.08E4
m/z = 189.70-192.70 F:
+ c EI SRM ms2
[email protected]
[189.70-192.70] MS
AGSO_ 25JUL _HOPS
m/z 384 →191
C28 Hopanes
25,30-BNH
TNH
29,30-BNH
28,30-BNH
Relative Abundance
XT
Relative Abundance Relative Abundance
20
20
0
100
Relative Abundance
m/z= 189.70-192.70 F:
+ c EI SRM ms2
[email protected]
[189.70-192.70] MS
AGSO_25JUL_HOPS
Bicadinane T1
Bicadinane R
C 27 β
40
0
100
C 29 αβ
NL: 4.32E4
60
m/z = 189.70-192.70 F:
+ c EI SRM ms2
.
398 40@cid0
00
[189.70-192.70] MS
AGSO_25JUL_HOPS
m/z 398 →191
C29 Hopanes
80
C 29 Ts
40
C 29 25 ‐nor
XT
C29 βα
C 29 *
20
0
100
Relative Abundance
m/z 370 →191
C27 Hopanes
Bicadinane T
Tm
60
NL: 1.90E4
C 30 αβ
m/z 412 →191
C30 Hopanes
80
NL: 3.97E4
m/z = 189.70-192.70 F:
+ c EI SRM ms2
[email protected]
[189.70-192.70] MS
AGSO_25JUL_HOPS
Oleanane±Lupane
60
C 30 30 ‐nor
Gammacerane
C 30*
40
Relative Abundance Relative Abundance
Relative Abundance
Ts
RT: 58.59 - 88.59
SM: 5G
Relative Abundance
RT: 50.00 - 80.00
100
20
0
50
55
60
65
Time (min)
70
80
75
SM: 5G
100
S
C 31αβ
m/z 426 →191
80
R
C31 Hopanes
60
40
20 C 31*
0
100
S
C 32 αβ
m/z 440 →191
80
R
C32 Hopanes
60
40
C 32 *
20
0
100
S
m/z 454 →191
C 33 αβ
80
C33 Hopanes
R
60
C 33 *
40
200
0
100
S
C 34 αβ
80
m/z 468 →191
R
60
C34 Hopanes
40
20
0
100
S
C 35 αβ
80
m/z 482 →191
R
60
C35 Hopanes
40
20
0
60
65
70
75
80
85
Time (min)
NL: 1.53E4
m/z= 189.70-192.70 F:
+ c EI SRM ms2
[email protected]
[189.70-192.70] MS
AGSO_25JUL_HOPS
NL: 8.87E3
TIC F: + c EI SRM ms2
[email protected]
[189.70-192.70] MS
AGSO_25JUL_HOPS
NL: 4.49E3
m/z= 189.70-192.70 F:
+ c EI SRM ms2
[email protected]
[189.70-192.70] MS
AGSO_25JUL_HOPS
NL: 2.08E3
m/z= 189.70-192.70 F:
+ c EI SRM ms2
[email protected]
[189.70-192.70] MS
AGSO_25JUL_HOPS
NL: 1.69E3
m/z= 189.70-192.70 F:
+ c EI SRM ms2
[email protected]
[189.70-192.70] MS
AGSO_25JUL_HOPS
Figure 5. MRM chromatograms showing m/z M >191 metastable transitions of C27, C28, C29, C30, C31, C32, C33, C34 and C35 hopanes.
XT = cross talk, BNH = Bisnorhopane, TNH = 17 α(H), 18 α(H), 21 β(H)-trisnorhopane.
+
RT: 42.00 - 58.00
Relative Abundance
80
60
40
Relative Abundance
m/z 372 → 217
C 27 Steranes and diasteranes
C 28 βα 20S*
80
60
40
80
m/z= 215.70-232.70 F: + c
EI SRM ms2
[email protected]
XT
[215.70-218.70] MS
_AGSO 06AUG12
_ STER
C αββ20R
C 28ααα 20S* 28
C 28
C 28αββ 20S
βα 20R*
C 28ααα 20R
C 28αβ 20 S
m/z 386 →217
XT
C 28αβ 20R*
C Steranes and
XT
20
0
100
NL: 1.15E4
XT
20
0
100
Relative Abundance
SM: 5G
C 27 βα 20S
C 27ααα 20S
C 27 βα 20R
C 27αββ 20R
C 27αββ 20S
C 27αβ 20 S
αβ
20
R
C 27
C 27ααα 20R
100
C 29 βα 20S
m/z 400 → 217
C 29 Steranes and diasteranes
60
C 29αβ 20 R
C 29βα20R
C 29 αβ
20S
40
NL: 4.02E3
m/z= 215.70-232.70 F: + c
EI SRM ms2
[email protected]
.[215 70 218 70] MS
28
AGSO_06AUG12_STER
diasteranes
C 29αββ 20R
C 29ααα 20S
NL: 9.22E3
C 29αββ 20S
m/z= 215.70-232.70 F: + c
EI SRM ms2
C 29ααα 20R
[email protected]
[215.70-218.70] MS
AGSO_06AUG12_STER
20
0
100
Relative Abundance
6
C 30βα20S
m/z 414 → 217
C 30 Steranes and diasteranes
80
C 30βα 20R
60
C 30 αββ 20R
C 30ααα 20S
C 30αββ 20S
C 30
ααα
20R
NL: 8.80E2
m/z= 215.70-232.70 F: + c
EI SRM ms2
[email protected]
[215.70-218.70] MS
40
AGSO_06AUG12_STER
20
0
42
44
46
48
50
Time (min)
52
54
56
58
Figure 6. MRM chromatograms showing m/z M+>217 metastable transitions of C27, C28, C29 and C30 steranes and diasternaes. Peak assignments define
stereochemistry at C-20 (S and R); βα, αβ, ααα and αββ denote 13β(H),17α(H)-diasteranes, 13α(H),17β(H)-diasteranes, 5α(H),14α(H),17α(H)-steranes
and 5α(H),14β(H),17β(H)-steranes, respectively. XT = cross talks, * = isomeric peaks (24S and 24R).
References
The capabilities of the Thermo Scientific DFS high
resolution mass spectrometer have enabled the
continuation and development of oil biomarker research
at CSIRO Organic Geochemistry Laboratories.
1. Tissot, B.P., Welte, D.H., 1984. Petroleum formation
and occurrence, pp. 699. Springer, Berlin.
The results generated using the DFS instruments allow
CSIRO to elucidate and quantify the molecular distributions of the aliphatic and aromatic hydrocarbon
biomarkers, such as, n-alkanes, regular isoprenoids,
steranes and diasteranes, tri- and tetracyclic terpanes,
hopanes, alkylnapthalenes, alkylphenanthrenes, retene,
etc. (Figs 1 – 6). These results provide useful tools for the
assessment of:
2. Seifert, W.K., Moldowan, J.M., Jones, R.W., 1979.
Applications of biological marker chemistry to
petroleum exploration, 2, pp. 425-438. Heyden,
London.
3. Mackenzie, A.S., 1984. Applications of biological
markers in petroleum geochemistry. In: J.M. Brooks,
D.H. Welte (Eds.), Advances in Petroleum Geochemistry 1
(Ed. by J.M. Brooks, D.H. Welte), pp. 115-212. Academic
Press, London.
4. Peters, K.E., Walters, C., Moldowan, J.M., 2005. The
Biomarker Guide, pp. 1155 pp. Cambridge University
Press, Cambridge.
• Secondary alteration processes
- biodegradation, evaporative fractionation,
water washing
5. Alexander, R., Larcher, A.V., Kagi, R.I., Price, P.L.,
1988. The use of plant derived biomarkers for
correlation of oils with source rocks in the Cooper/
Eromanga Basin System, Australia. APEA Journal,
28(1), 310-324.
• Source or origin of organic matter
- higher plants, algae, prokayriotic, eukaryotic
• Thermal maturity
- immature, mature, over mature
• Palaeo-environmental condition
- marine, deltaic, lacustrine, terrigeneous
6. George, S.C., Volk, H., Dutkiewicz, A., Ridley, J.,
Buick, R., 2008. Preservation of hydrocarbons and
biomarkers in oil trapped inside fluid inclusions for
>2 billion years. Geochimica et Cosmochimica Acta,
72, 844-870.
•Lithology
- clay rich, carbonates
• Geological age
• Oil-oil and/or oil-source correlations
Applications of such results in petroleum exploration
geochemistry are described in numerous papers2–5 and
also in CSIRO publications.6–9
Acknowledgements
We would like to thank the team at CSIRO Sydney for
the analysis of all samples and preparation of this
application note.
7. Gong, S., George, S.C., Volk, H., Liu, K., Peng, P.,
2007. Petroleum charge history in the Lunnan Low
Uplift, Tarim Basin, China - Evidence from oil-bearing
fluid inclusions. Organic Geochemistry, 38,
1341-1355.
8. Volk, H., Kempton, R.H., Ahmed, M., Gong, S.,
George, S.C., Boreham, C.J., 2009. Tracking petroleum
systems in the Perth Basin by integrating microscopic,
molecular and isotopic information on petroleum fluid
inclusions. Journal of Geochemical Exploration, 101,
109.
9. Ahmed, M., Volk, H., Allan, T., Holland, D., 2012.
Origin of oils in the Eastern Papuan Basin, Papua New
Guinea. Organic Geochemistry, 53, 137-152.
www.thermoscientific.com/DFS
©2013 Thermo Fisher Scientific Inc. All rights reserved. ISO is a trademark of the International Standards Organization.
All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. Specifications, terms and pricing are
subject to change. Not all products are available in all countries. Please consult your local sales representative for details.
Africa-Other +27 11 570 1840
Australia +61 3 9757 4300
Austria +43 1 333 50 34 0
Belgium +32 53 73 42 41
Canada +1 800 530 8447
China +86 10 8419 3588
Denmark +45 70 23 62 60
Europe-Other +43 1 333 50 34 0
Finland/Norway/Sweden
+46 8 556 468 00
France +33 1 60 92 48 00
Germany +49 6103 408 1014
India +91 22 6742 9434
Italy +39 02 950 591
Japan +81 45 453 9100
Latin America +1 561 688 8700
Middle East +43 1 333 50 34 0
Netherlands +31 76 579 55 55
New Zealand +64 9 980 6700
Russia/CIS +43 1 333 50 34 0
South Africa +27 11 570 1840
Spain +34 914 845 965
Switzerland +41 61 716 77 00
UK +44 1442 233555
USA +1 800 532 4752
AN30263_E 03/13S
Appli cat i on N ote 3 0 2 6 3
Conclusions