M. Ahmed,1 S. Gong,1 D. Fuentes,1 S. Sestak,1 F. Theobald,2 and K. D’Silva3; 1 CSIRO Earth Science and Resource Engineering, North Ryde, Australia 2 Environmental Consulting, Cologne, Germany 3 Thermo Fisher Scientific, Bremen, Germany Key Words Analysis of aliphatic, aromatic and branched/cyclic hydrocarbon fractions, Thermo Scientific DFS High Resolution Mass Spectrometer Introduction Comprehensive molecular characterisation of petroleum is used to solve issues related to exploration and production of oil and gas. It can help identify processes that occurred in reservoirs and along migration pathways. It provides the ability to understand the key geological information encoded in the geochemistry of gas and liquid hydrocarbons and can help oil companies deduce the origin and maturity of petroleum hydrocarbons (natural gas, coal seam gas or oils). Geochemical fossils or biological markers, popularly called biomarkers, frequently convey genetic information about the types of organisms contributing to the organic matter of sediments. They are used for correlations (oil-oil and oil-source rock), for reconstitution of depositional environments, and also as indicators for diagenesis and catagenesis.1 CSIRO Organic Geochemistry Team is a world leading provider of research services to the petroleum industries and state and federal agencies. Located in Sydney Australia, CSIRO Organic Geochemistry Team have conducted genetic characterisation of oils, fluid inclusion oils, natural gases and potential source rock extracts for various research projects on behalf of international energy companies including Chevron, PETRONAS, Woodside, Oil Search, Exxon-Mobil, Petrobras, Interoil, Origin Energy, Roc Oil, and BP Exploration & Production Inc. CSIRO Organic Geochemistry Team currently use a Thermo Scientific™ DFS™ high resolution GC-MS for the molecular analyses of sedimentary organic matter, e.g., crude oils, fluid inclusion oils, condensates, potential source rock extracts, solid bitumen, pyrolyzates of ashpaltene/kerogen, etc. The DFS instrument provides a range of capabilities required for this application, including; high resolution, full scan, selected ion monitoring (also known as multiple ion detection, MID) and multiple reaction monitoring (MRM) with stable and predictable metastable product ion formation. All of these capabilities are combined by CSIRO for comprehensive analyses of petroleum hydrocarbons. Appli cat i on N ote 3 0 2 6 3 Molecular Characterisation of Petroleum 2 This application note presents a brief description of the methods and chromatographic conditions, using the DFS high resolution GC-MS for the analyses of: Mass Spectrometer Data Acquisition Methods Full scan of analysis of aliphatic and aromatic hydrocarbons Multiple ion detection (MID) analysis m/z 128, 134, 142, 154, 156, 166, of aromatic hydrocarbon fraction, 168, 170, 178, 183. GC program A. Method-A • Aliphatic and aromatic hydrocarbon fractions of the North Sea Oil-1, a geochemical standard sample from the Norwegian Petroleum Directorate Multiple ion detection (MID) analysis of aromatic hydrocarbon fraction, Method-B • Branched /cyclic hydrocarbon fraction of a standard mixture of oils called AGSO STD obtained from Geoscience Australia (formerly, the Australian Geological Survey Organization) Methods Multiple Reaction Monitoring (MRM) m/z 370>191, 384>191, 398>191, analysis for hopanes 412>191, 426>191, 440>191, 454>191, 468>191, 482>191. GC program B. Multiple Reaction Monitoring (MRM) analysis for steranes GC Thermo Scientific Trace Ultra GC Sampler Thermo Scientific TriPlus XT™ Carrier gas Helium Carrier gas flow rate Constant (1.5 mL/min) ™ InjectorSplit/Splitless Injection temperature 260°C Injection volume 1 µL Sample concentration 100 - 500 µg/mL in dichloromethane GC column equivalent TraceGOLD™ TG-1MS 60 m × 0.25 mm, 0.25 µm film P/N 26099-1540 and TraceGOLD TG-5MS 60 m × 0.25 mm, 0.25 µm film P/N 26098-1540 Temperature programs A) 40 °C ( 2 min) @ 4 °C min-1 to 310 °C (40 min) B) 40 °C (2 min) @ 20 °C min-1 to 200 °C (0 min) 2 °C min-1 to 310 °C (40 min) Thermo Scientific DFS Electron energy 70 eV Resolution 1000 at 5% peak height Injection temperature 260 °C Transfer line temperature 280 °C Source temperature 280 °C m/z 358>217, 372>217, 386>217, 400>217, 414>217, 414>231. GC program B. Results Gas Chromatographic Methods MS m/z 178, 180, 182, 183, 184.03, 184.12, 192, 197, 198.05, 198.14, 202, 206, 212, 216, 220, 234. GC program A. Multiple ion detection (MID) analysis m/z 177, 183, 191, 205, 217,218, of aliphatic hydrocarbon or its 231.11, 231.21,253, 259. GC program B. branched chain and cyclic fraction Results of these analyses for the identification/ quantification of some selected hydrocarbon biomarkers are presented in the following section. Mass Spectrometer Parameters m/z 50-550, scan rate 0.5 sdec-1. GC program A. Crude oils and source rock extracts are complex mixtures of many classes of compounds including source and maturity related biomarkers such as n-alkanes, isoprenoids, terpanes, steranes and diasteranes. Some biomarkers are often present in very low concentrations requiring different modes of GC-MS analyses for their identification and/or quantification; full scan, multiple ion detection and multiple reaction monitoring (MRM). Full scan analyses provide mass spectra for structural elucidation and chromatograms of all ions. Multiple ion detection (MID) methods acquire only selected ions, e.g., m/z 123, 191, 217, etc. and provide results of better sensitivity than full scan, providing information about trace components. This method can be used to determine the fingerprints for the selected compound types (e.g., bicyclic sesquiterpanes, hopanes, steranes and diasteranes). Multiple reaction monitoring analyses monitor a selected daughter ion (e.g., m/z 217) formed from molecular ions that decompose in the first field-free region of a doublefocussing mass spectrometer. This method provides the necessary selectivity required to analyze these specific compounds in such a complex matrix; resulting in better sensitivity and signal-to-noise ratios. Full Scan Analyses 3 RT: 0.00 - 99.01 26 [a] 24 22 Relative Abundance 20 Squalane (IS) 47.25 22.11 18 63.47 49.72 16 14 52.08 18.14 12 Pr 10 n ‐C 8 8 14.10 67.90 69.56 Ph 73.26 6 8.08 4 7.98 2 0 14 0.14 0 0 10 20 30 100 [b] 90 50 Time (min) 40 29.49 80 bbundance 70 n ‐C37 75.50 81.22 84.89 89.29 80 90 NL:7.92E7 m/z= 84.60- 85.60 MS NSO1_ALI _01A_M 36.06 39.08 41.95 25.91 70 Relative A 60 n ‐C 14 32.87 RT: 0.00 - 99.01 47.25 60 Squalane (IS) 22.11 49.72 50 52.08 40 n ‐C 8 18.14 30 Pr 14.10 20 58.59 7.99 0 63.47 Ph 64.38 67.89 69.56 10.34 10 0 NL:2.25E9 TIC MS NSO1_ALI_01A_M Contaminant n ‐C 14 32.87 29.49 36.06 39.08 39 08 25.91 73 .26 26 75.51 81.21 89.28 9 44 9.44 10 n ‐C 37 20 30 40 50 Time (min) 60 70 80 90 Figure 1. Full scan (a) Total ion chromatogram and (b) m/z 85 extracted ion chromatogram of the aliphatic hydrocarbon fraction showing the distributions of n-alkanes and isoprenoids. Pr = Pristane, Ph = Phytane. MID Analyses RT: 20.00 - 82.00 SM: 5G 100 C30 αβ 90 Relative Abundance 80 C30 βα 70 Gammacerane 60 C30* C29Ts 20/3 26/3 20 19/3 21/3 10 0 C29 αβ C29* 40 20 25 23/3 30 24/3 R Tm 24/4 25/3 35 Ts 40 45 50 Time (min) 55 C31 βα C31 αβ S 50 30 60 C αβ S 32 S C33 αβ R C34 αβ R S R 65 70 75 C35 αβ S R 80 Figure 2. MID mass chromatogram m/z 191 of the aliphatic hydrocarbon fraction showing the distribution of terpanes. Peak assignments define stereochemistry at C-22 (S and R); αβ and βα denote 17α(H), 21β(H) -hopane and 17β(H), 21α(H)-moretane, respectively. 19/3 – 26/3 = C19 – C26 tricyclic terpanes, 24/4 = C24 tetracyclic terpane, Ts = C27 18α(H), 22,29,30-trisnorneohopane, Tm = C27 17α(H), 22,29,30-trisnorhopane. RT: 44.00 - 64.00 SM: 5G 100 C 27 βα 20S C 27αββ 20R + C29 βα 20S 90 C 27ααα 20S NL: 5.92E4 m/z = 216.95 - 217.45 MS NSO1_110 923_ALI_D C 27αββ 20S + C28 αβ 20R* 80 Relative Abundance 4 C 28 αβ 20S 70 C 27 βα 20R 60 40 C 29 βα 20R C 28 βα 20S* C 27 αβ 20R 50 C 27ααα 20R C 28ααα 20S* C 28βα20R* C 29ααα 20S C 29αββ 20R C 28αββ 20R C 29αββ 20S C 29 αβ 20S C 27 C 30ααα 20S C 30αββ 20S C 28 αβ 20S 30 C 29ααα 20R C 28αββ 20S ααα 20R C 30αββ 20R C 30ααα 20R 20 10 44 46 48 50 52 54 Time (min) 56 58 60 62 64 Figure 3. MID mass chromatogram m/z 217 of the aliphatic hydrocarbon fraction showing C27–C29 steranes and diasteranes. Peak assignments define stereochemistry at C-20 (S and R); βα, αβ, ααα and αββ denote 13β(H),17α(H)-diasteranes, 13α(H),17β(H)-diasteranes, 5α(H),14α(H),17α(H)-steranes and 5α(H),14β(H),17β(H)-steranes, respectively. * = isomeric peaks (24S and 24R). RT: 36.8 - 39.8 SM:5G 100 1,3,6‐TMN Relative Abundance 90 1,3,7‐ TMN 80 RT: 47.00 - 49.00 SM:5G NL: 1.41E6 m/z = 169.61- 170.61 MS NSO1_ARO _24JUL_B 1,3,5‐ + 1,4,6‐TMN 2,3,6‐TMN 1,2,7‐TMN 70 60 1,6,7‐TMN 50 1,2,5‐TMN 1,2,6‐TMN 40 100 1,2,4‐ TMN 20 10 37.0 37.5 38.0 38.5 Time (min) 49.50 - 52.50 SM:5G [c] 39.0 80 Relative Abundance 2‐MP 70 3 MP 3‐MP 60 50 40 10 0 39.5 1,3‐ + 3,9‐ + 3,10‐ + 2,10‐DMP 90 RT: NL: 9.86E5 m/z = 205.61- 206.61 MS NSO1_aro _24jul_c 3,5‐ , + 2,6‐DMP , 40 30 20 10 0 49.5 9‐ + 2‐ + 1‐EP + 3,6‐DMP 1,7‐DMP 2,3‐ + 1,9‐ + 4,9‐ + 4,10 -DMP 1,8‐DMP 1,2‐DMP 50.5 48.0 Time (min) 48.5 49.0 Retene [d] NL: 9.86E5 m/z = 205.61- 206.61 MS NSO1_aro _24jul_c 90 70 60 50 40 30 3‐EP 50.0 47.5 80 2,7‐DMP 60 47.0 52.00 - 60.00 SM:5G 100 1,6‐ + 2,9‐ + 2,5‐DMP 70 50 1‐MP 80 20 1,2,3‐TMN Relative Abundance RT: 100 NL: 1.54E6 m/z = 191.59 - 192.59 MS nso1_aro _24jul_C 30 30 0 5 9‐MP [b] 90 Relative Abundance [a] 51.0 51.5 Time (min) 52.0 52.5 20 10 0 52 53 54 55 56 57 Time (min) 58 59 60 Figure 4. (a) m/z 170.11, (b) m/z 192.09, (c) m/z 206.11 and (d) m/z 234.14 mass chromatograms of the aromatic hydrocarbon fraction showing the distributions of C3-alkylnaphthalenes, methylphenanthrenes, C2-alkylphenanthrenes and retene, respectively. TMN = Trimethylnaphthalene, MP= Methylphenanthrene, EP = Ethylphenanthrene, DMP = Dimethylphenanthrene. MRM Analyses 80 80 60 40 NL: 1.08E4 m/z = 189.70-192.70 F: + c EI SRM ms2 [email protected] [189.70-192.70] MS AGSO_ 25JUL _HOPS m/z 384 →191 C28 Hopanes 25,30-BNH TNH 29,30-BNH 28,30-BNH Relative Abundance XT Relative Abundance Relative Abundance 20 20 0 100 Relative Abundance m/z= 189.70-192.70 F: + c EI SRM ms2 [email protected] [189.70-192.70] MS AGSO_25JUL_HOPS Bicadinane T1 Bicadinane R C 27 β 40 0 100 C 29 αβ NL: 4.32E4 60 m/z = 189.70-192.70 F: + c EI SRM ms2 . 398 40@cid0 00 [189.70-192.70] MS AGSO_25JUL_HOPS m/z 398 →191 C29 Hopanes 80 C 29 Ts 40 C 29 25 ‐nor XT C29 βα C 29 * 20 0 100 Relative Abundance m/z 370 →191 C27 Hopanes Bicadinane T Tm 60 NL: 1.90E4 C 30 αβ m/z 412 →191 C30 Hopanes 80 NL: 3.97E4 m/z = 189.70-192.70 F: + c EI SRM ms2 [email protected] [189.70-192.70] MS AGSO_25JUL_HOPS Oleanane±Lupane 60 C 30 30 ‐nor Gammacerane C 30* 40 Relative Abundance Relative Abundance Relative Abundance Ts RT: 58.59 - 88.59 SM: 5G Relative Abundance RT: 50.00 - 80.00 100 20 0 50 55 60 65 Time (min) 70 80 75 SM: 5G 100 S C 31αβ m/z 426 →191 80 R C31 Hopanes 60 40 20 C 31* 0 100 S C 32 αβ m/z 440 →191 80 R C32 Hopanes 60 40 C 32 * 20 0 100 S m/z 454 →191 C 33 αβ 80 C33 Hopanes R 60 C 33 * 40 200 0 100 S C 34 αβ 80 m/z 468 →191 R 60 C34 Hopanes 40 20 0 100 S C 35 αβ 80 m/z 482 →191 R 60 C35 Hopanes 40 20 0 60 65 70 75 80 85 Time (min) NL: 1.53E4 m/z= 189.70-192.70 F: + c EI SRM ms2 [email protected] [189.70-192.70] MS AGSO_25JUL_HOPS NL: 8.87E3 TIC F: + c EI SRM ms2 [email protected] [189.70-192.70] MS AGSO_25JUL_HOPS NL: 4.49E3 m/z= 189.70-192.70 F: + c EI SRM ms2 [email protected] [189.70-192.70] MS AGSO_25JUL_HOPS NL: 2.08E3 m/z= 189.70-192.70 F: + c EI SRM ms2 [email protected] [189.70-192.70] MS AGSO_25JUL_HOPS NL: 1.69E3 m/z= 189.70-192.70 F: + c EI SRM ms2 [email protected] [189.70-192.70] MS AGSO_25JUL_HOPS Figure 5. MRM chromatograms showing m/z M >191 metastable transitions of C27, C28, C29, C30, C31, C32, C33, C34 and C35 hopanes. XT = cross talk, BNH = Bisnorhopane, TNH = 17 α(H), 18 α(H), 21 β(H)-trisnorhopane. + RT: 42.00 - 58.00 Relative Abundance 80 60 40 Relative Abundance m/z 372 → 217 C 27 Steranes and diasteranes C 28 βα 20S* 80 60 40 80 m/z= 215.70-232.70 F: + c EI SRM ms2 [email protected] XT [215.70-218.70] MS _AGSO 06AUG12 _ STER C αββ20R C 28ααα 20S* 28 C 28 C 28αββ 20S βα 20R* C 28ααα 20R C 28αβ 20 S m/z 386 →217 XT C 28αβ 20R* C Steranes and XT 20 0 100 NL: 1.15E4 XT 20 0 100 Relative Abundance SM: 5G C 27 βα 20S C 27ααα 20S C 27 βα 20R C 27αββ 20R C 27αββ 20S C 27αβ 20 S αβ 20 R C 27 C 27ααα 20R 100 C 29 βα 20S m/z 400 → 217 C 29 Steranes and diasteranes 60 C 29αβ 20 R C 29βα20R C 29 αβ 20S 40 NL: 4.02E3 m/z= 215.70-232.70 F: + c EI SRM ms2 [email protected] .[215 70 218 70] MS 28 AGSO_06AUG12_STER diasteranes C 29αββ 20R C 29ααα 20S NL: 9.22E3 C 29αββ 20S m/z= 215.70-232.70 F: + c EI SRM ms2 C 29ααα 20R [email protected] [215.70-218.70] MS AGSO_06AUG12_STER 20 0 100 Relative Abundance 6 C 30βα20S m/z 414 → 217 C 30 Steranes and diasteranes 80 C 30βα 20R 60 C 30 αββ 20R C 30ααα 20S C 30αββ 20S C 30 ααα 20R NL: 8.80E2 m/z= 215.70-232.70 F: + c EI SRM ms2 [email protected] [215.70-218.70] MS 40 AGSO_06AUG12_STER 20 0 42 44 46 48 50 Time (min) 52 54 56 58 Figure 6. MRM chromatograms showing m/z M+>217 metastable transitions of C27, C28, C29 and C30 steranes and diasternaes. Peak assignments define stereochemistry at C-20 (S and R); βα, αβ, ααα and αββ denote 13β(H),17α(H)-diasteranes, 13α(H),17β(H)-diasteranes, 5α(H),14α(H),17α(H)-steranes and 5α(H),14β(H),17β(H)-steranes, respectively. XT = cross talks, * = isomeric peaks (24S and 24R). References The capabilities of the Thermo Scientific DFS high resolution mass spectrometer have enabled the continuation and development of oil biomarker research at CSIRO Organic Geochemistry Laboratories. 1. Tissot, B.P., Welte, D.H., 1984. Petroleum formation and occurrence, pp. 699. Springer, Berlin. The results generated using the DFS instruments allow CSIRO to elucidate and quantify the molecular distributions of the aliphatic and aromatic hydrocarbon biomarkers, such as, n-alkanes, regular isoprenoids, steranes and diasteranes, tri- and tetracyclic terpanes, hopanes, alkylnapthalenes, alkylphenanthrenes, retene, etc. (Figs 1 – 6). These results provide useful tools for the assessment of: 2. Seifert, W.K., Moldowan, J.M., Jones, R.W., 1979. Applications of biological marker chemistry to petroleum exploration, 2, pp. 425-438. Heyden, London. 3. Mackenzie, A.S., 1984. Applications of biological markers in petroleum geochemistry. In: J.M. Brooks, D.H. Welte (Eds.), Advances in Petroleum Geochemistry 1 (Ed. by J.M. Brooks, D.H. Welte), pp. 115-212. Academic Press, London. 4. Peters, K.E., Walters, C., Moldowan, J.M., 2005. The Biomarker Guide, pp. 1155 pp. Cambridge University Press, Cambridge. • Secondary alteration processes - biodegradation, evaporative fractionation, water washing 5. Alexander, R., Larcher, A.V., Kagi, R.I., Price, P.L., 1988. The use of plant derived biomarkers for correlation of oils with source rocks in the Cooper/ Eromanga Basin System, Australia. APEA Journal, 28(1), 310-324. • Source or origin of organic matter - higher plants, algae, prokayriotic, eukaryotic • Thermal maturity - immature, mature, over mature • Palaeo-environmental condition - marine, deltaic, lacustrine, terrigeneous 6. George, S.C., Volk, H., Dutkiewicz, A., Ridley, J., Buick, R., 2008. Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billion years. Geochimica et Cosmochimica Acta, 72, 844-870. •Lithology - clay rich, carbonates • Geological age • Oil-oil and/or oil-source correlations Applications of such results in petroleum exploration geochemistry are described in numerous papers2–5 and also in CSIRO publications.6–9 Acknowledgements We would like to thank the team at CSIRO Sydney for the analysis of all samples and preparation of this application note. 7. Gong, S., George, S.C., Volk, H., Liu, K., Peng, P., 2007. Petroleum charge history in the Lunnan Low Uplift, Tarim Basin, China - Evidence from oil-bearing fluid inclusions. Organic Geochemistry, 38, 1341-1355. 8. Volk, H., Kempton, R.H., Ahmed, M., Gong, S., George, S.C., Boreham, C.J., 2009. Tracking petroleum systems in the Perth Basin by integrating microscopic, molecular and isotopic information on petroleum fluid inclusions. Journal of Geochemical Exploration, 101, 109. 9. Ahmed, M., Volk, H., Allan, T., Holland, D., 2012. Origin of oils in the Eastern Papuan Basin, Papua New Guinea. Organic Geochemistry, 53, 137-152. www.thermoscientific.com/DFS ©2013 Thermo Fisher Scientific Inc. All rights reserved. ISO is a trademark of the International Standards Organization. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. Africa-Other +27 11 570 1840 Australia +61 3 9757 4300 Austria +43 1 333 50 34 0 Belgium +32 53 73 42 41 Canada +1 800 530 8447 China +86 10 8419 3588 Denmark +45 70 23 62 60 Europe-Other +43 1 333 50 34 0 Finland/Norway/Sweden +46 8 556 468 00 France +33 1 60 92 48 00 Germany +49 6103 408 1014 India +91 22 6742 9434 Italy +39 02 950 591 Japan +81 45 453 9100 Latin America +1 561 688 8700 Middle East +43 1 333 50 34 0 Netherlands +31 76 579 55 55 New Zealand +64 9 980 6700 Russia/CIS +43 1 333 50 34 0 South Africa +27 11 570 1840 Spain +34 914 845 965 Switzerland +41 61 716 77 00 UK +44 1442 233555 USA +1 800 532 4752 AN30263_E 03/13S Appli cat i on N ote 3 0 2 6 3 Conclusions
© Copyright 2026 Paperzz