distribution of heterobasidion genets on a norway spruce

ГЛАСНИК ШУМАРСКОГ ФАКУЛТЕТА, БЕОГРАД, 2008, бр. 98, стр. 117-126
BIBLID: 0353-4537, (2008), 98, p 117-126
Keča N. 2008. Distribution of heterobasidion genets on a norway spruce site: case study in national park “kopaonik“. Bulletin of the Faculty of Forestry 98: 117-126.
Nenad Keča
UDK: 630*443:582.284.4 Heterobasidio­n annosu­m
(497.11-751.2 Kopaonik)
Оригинални научни рад
DISTRIBUTION OF HETEROBASIDION GENETS ON A NORWAY
SPRUCE SITE: CASE STUDY IN NATIONAL PARK “KOPAONIK“
Abstract: Heterobasidion annosum s.l. causes great economic loss in coniferous
forests worldwide. Recent studies showed that three European Heterobasdion species are present in forest ecosystems in Serbia. Aim of this study was to find which
Heterobasidion species are present in studied Norway spruce stand (National Park
“Kopaonik“), to identify Heterobasidion genets, and present distribution of genets.
Key words: Norway spruce, Heterobasidion parviporum, genets, distribution
ПРИСУСТВО ИНДИВИДУА HETEROBASIDION ВРСТА НА СТАНИш­
ТУ СМРчЕ У НАЦИОНАЛНОМ ПАРКУ „КОПАОНИК”
Извод: Heterobasidion annosum s.l. је врста која узрокује велике економске ште­
те у четинарским шумама широм света. Новија истраживања показала су да су
у шумским екосистемима у Србији присутне све три европске Heterobasidion
врсте. Циљ ових истраживања био је да се установе које су Heterobasidion врсте
присутне у истраживанoj састојини смрче у националном парку „Копаоник“,
да се идентификују број индивидуа Heterobasidion-а и да се прикаже њихова
ве­личина и просторни распоред.
Кључне речи: смрча, Heterobasidion parviporum, индивидуе, распоред
1. INTRODUCTION
Root and butt rot caused by Heterobasidion annosum is, in economic terms, the
most impоrtant disease of conifers in the forests of northern temperate regions. Other fungal pathogens may be of greater local importance, but Heterobasidion occurs in most, if
not all managed coniferous forests of the northern hemisphere, as far north as central Finland, and south as far as northern Africa and Central America (Wo o d w a r d et al. 1998).
During last 25 years our picture of the root-rot fungus H. annosum and the honey
fungus Armillaria mellea has changed considerably because both of these fungi has been
split into several species (K o r h o n e n , 2004). Because morphological differences were
др Ненад Кеча, доцент, Универзитет у Београду - Шумарски факултет, Београд
117
Nenad Keča
also observed in the fruit bodies N i e m e l ä & K o r h o n e n (1998) raised the three European intersterility groups (P, S, F) to the level of species: H. annosum (Fr.) Bref., H. parvipirum Niemelä & Korhonen, and H. abietinum Niemelä & Korhonen. Three Heterobasidion
species are present in Europe and two intersterility groups are present in North America.
History of study of Heterobasidion in Serbia goes back in 1963, when strong attack
if Fomes annosus on Kopaonik was reported. At the same time, the disease was found in
natural forests of spruce on Zlatar, Durmitor (Montenegro), Jahorina (Bosnia and Herzegovina) (M a r i n k o v i ć et al., 1990). Most recent studies showed that all three species are
present in coniferous forests in Serbia (K e č a , 2008).
Studies about population structure, size of genets, spread and distribution of Heterobasidion haven’t been performed earlier in Serbia. Fifty to 60% of the Heterobasidion
genets identified in the final - cutting Norway spruce stands had infected only one tree
(P i r i et al., 1990). Most of available data are obtained from cultures and from Scandinavian countries. There are almost no data about structure and size of Heterobasidion genets
from South-East Europe and also from Balkan region.
The aim of present case study was to obtain detailed information about the presence, size and spatial distribution of Heterobasidion genets in an selection Norway spruce
forest. Heterobasidion genets are mapped and data about tree condition are collected.
2. MATERIAL AND METHODS
2.1. Study site
This study was carried out in a Norway spruce stand in the National Park “Kopaonik“. Compartment № 96 (Management Unit “Samokovska reka”) is on slope (11-15°),
north aspect, altitude ranging 1,500-1,520 m a.s.l. Parent material - granite, compact structure without decomposition. The site was of the Picetum excelsae oxalidetosum (Miš. et
Pop.) on a brown podzolic soil, which is a typical spruce site for Serbia. According to
the last forest inventory survey stand density is 493 trees∙ha–1, volume is estimated on
409,5 m3∙ha–1. Diameter of average tree is 29 cm on breast height and height is estimated
on 20,5 m.
2.2 Field work
The study plot, 90×40 m in size, was established in May 2006. Trees showing chlorosis, declining processes, and all wind - and snow - snapped trees were mapped and the
diameter of the stumps and trees (breast height) was recorded. For isolation of the decay
fungus, wood samples were taken aseptically from the stem base and main roots of all
mentioned categories of trees with an increment borer. Isolation was also performed from
all carpophores found on site. In total, 23 living trees were examined, plus 6 wind-snapped
trees, 5 recently died trees and 2 carpophores.
118
ɀɢɜɨɫɬɚɛɥɨ
$OLYHWUHH
ɂɡɜɚʂɟɧɨɫɬɚɛɥɨ
:LQGVQDSHGWUHH
Ɇɪɬɜɨɫɬɚɛɥɨ
'HDGWUHH
Figure 1. Distribution of Heterobasidion parviporum genets in the study plot (compartment 96, Management Unit “Samokovska reka”,
N.P. Kopaonik - trees encircled by a dash line are infected by the same H. parviporum genet)
Слика 1. Распоред Heterobasidion parviporum индивидуа на огледној површини (ГЈ „Само­ковска река“, одељење 96, Н.П. „Копао­
ник“ - испрекидане линије пред­стављају ста­бла инфицирана истом индивидуом H. parviporum)
P
Ⱦɭɛɟʄɟɫɬɚɛɥɨɢɧɮɢɰɢɪɚɧɨɬɪɭɥɟɠɧɢɰɨɦ
6WDQGLQJVSUXFHLQIHFWHGZLWKURWLQJIXQJL
Ⱦɭɛɟʄɟɫɬɚɛɥɨɫɦɪɱɟɢɧɮɢɰɢɪɚɧɨ+SDUYLSRUXP
6WDQGLQJVSUXFHLQIHFWHGZLWK+SDUYLSRUXP
Ʌɟɝɟɧɞɚ/HJHQG
Distribution of heterobasidion genets on a norway spruce site: case…
119
Nenad Keča
2.3. Isolation and identification of Heterobasidion genotypes
Heterobasidion were isolated onto a modified selective medium (H u n t , C o b b ,
1971) containing (per liter): 20 g malt extract (Merck, Darmstadt, Germany) and 15 g agar
(Torlak, Belgrade, Serbia), 5 mg Benomyl WP 50 (Zorka, Šabac, Serbia), 4 mg dichloran
(Merck). Following autoclaving at 105 kPa for 20 min, 100 mg∙L–1 of streptomycin sulphate was added aseptically. Wood fragments, taken with increment borer, were surface
sterilized in sodium hypochlorite (2 g∙L–1 active chlorine) for 1 minute and small tissue
fragments were removed aseptically before placing on selective medium. Cultures were
incubated at room temperature for two weeks and emerging hyphae transferred into glass
tubes containing 1.5% MEA and stored at 4°C.
The genets were identified with somatic incompatibility test, by pairing the isolates
in all possible combinations on MAE and recording the line of demarcation. The isolates
were identified by pairing with 4 haploid tester isolates from the three European Heterobasidion species (isolates provided by K. Korhonen, Finish Forest Research Institute, Vantaa, Finland).
3. RESULTS
Eighteen Heterobasidion isolates and 12 isolates of rotting fungi were collected,
each from a separate tree or other substrate (table 1). All the Heterobasidion isolates found
on the study plot belong to the species H. parviporum. There was no significant diference
(data not shown) between isolation of H. parviporum from healthy (visually) - 8, chlorotic
- 3, declining - 3 and wind-snapped - 4 trees. Sprophores, rather big, were found only on
root of wind-snapped trees. During three year survey it is observed that, in this forest type,
carpophores formation starts from end of August and lasts till end of October.
Eleven Heterobasidion genets were identified on the study plot (Figure 1). Five
genets included only one tree, other five two trees and only one genet occupied larger area
infecting three adjacent spruce trees. In the cases where two trees were occupied by the
same Heterobasidion genet, excavation showed that, in four of five cases, root contact was
present between spruce trees. Vegetative spread through root contact may be more important in selection forests than in even-aged stands and conifer plantations, because young
trees are always in contact with roots of old potentially infected trees.
Three species causing rot of wood were found on declining and decaying trees
sampled on studied site (Table 1). Fomitopsis pinicola (Swartz:Fr.) Karst. is one of the
most frequently observed lignicolous fungi in the confer forests in Serbia. This species
was observed on declining spruce causing intense brown rot. Rhizomorphs of Armillaria
cepistipes Velen. were present as epiphyte on roots of declining spruce trees. One isolate
of A. cepistipes was obtained from decaying wood sample. Clymacocystis borealis (Fr.)
Kotl. & Pouzar may cause root and butt rot in old forest at all altitudes.
120
Distribution of heterobasidion genets on a norway spruce site: case…
Table 1. List of isolates, including host condition, species identification and genets, collected in
Norway spruce stand in National Park “Kopaonik”
Табела 1. Листа изолата прикупљених у састојини смрче у националном парку „Копаоник“,
укључујући стање домаћина, идентификоване врсте и индивидуе
Isolate lab.
Озн. изол.
Host condition
Стање домаћ.
1
S21-2006
Chlorotic
Heterokaryotic mycelium Heterobasidion parvipirum
2
S41-2006
Healthy
Heterokaryotic mycelium Heterobasidion parvipirum
3
S42-2006
Healthy
Heterokaryotic mycelium Heterobasidion parvipirum VIII
4
S23-2006
Declining
Heterokaryotic mycelium Heterobasidion parvipirum
VII
5
S26-2006
Chlorotic
Heterokaryotic mycelium Heterobasidion parvipirum
IV
6
S27-2006
Wind-snapped
Heterokaryotic mycelium Heterobasidion parvipirum
7
S83-2006
Healthy
Heterokaryotic mycelium Heterobasidion parvipirum
8
S29-2006
Wind-snapped
Heterokaryotic mycelium Heterobasidion parvipirum
9 S29K-2006
carpophore
Fungal tissue isolated
Изол. из ткива гљиве
Identification
Идентификација
№
homokaryotic
Heterobasidion parvipirum
10 S51-2006
Healthy
Heterokaryotic mycelium Heterobasidion parvipirum
Heterokaryotic mycelium Heterobasidion parvipirum
11 S43-2006
Wind-snapped
12 S43K-2006
carpophore
13 S45-2006
Declining
Heterokaryotic mycelium Heterobasidion parvipirum
14 S47-2006
Healthy
Heterokaryotic mycelium Heterobasidion parvipirum
homokaryotic
Heterobasidion parvipirum
15 S52-2006
Wind-snapped
Heterokaryotic mycelium Heterobasidion parvipirum
16 S53-2006
Chlorotic
Heterokaryotic mycelium Heterobasidion parvipirum
17 S84-2006
Healthy
Heterokaryotic mycelium Heterobasidion parvipirum
18 S86-2006
Healthy
Heterokaryotic mycelium Heterobasidion parvipirum
19 S87-2006
Declining
Heterokaryotic mycelium Heterobasidion parvipirum
20 S88-2006
Healthy
Heterokaryotic mycelium Heterobasidion parvipirum
21 S22-2006
Wind-snapped
Rhizomorphs
Armillaria cepistipes
22 S24-2006
Declining
Mycelium
Fomitopsis pinicola
23 S25-2006
Wind-snapped
Mycelium
Fomitopsis pinicola
24 S30-2006
Chlorotic
Mycelium
Armillaria cepistipes
25 S44-2006
Declining
Rhizomorphs
Armillaria cepistipes
26 S46-2006
Declining
Mycelium
Clymacocystis borealis (Fr.) Kotl. & Pouzar
27 S48-2006
Dieback, decayed
Mycelium
Fomitopsis pinicola
28 S49-2006
Declining
Mycelium
Not identified
29 S50-2006
Declining
Mycelium
Fomitopsis pinicola
30 S89-2006
Healthy
-
Nothing isolated
Gen.
Инд.
IX
III
V
X
VI
XI
II
I
121
Nenad Keča
Table 1. List of isolates, including host condition, species identification and genets, collected in
Norway spruce stand in National Park “Kopaonik”
Табела 1. Листа изолата прикупљених у састојини смрче у националном парку „Копаоник“,
укључујући стање домаћина, идентификоване врсте и индивидуе
Isolate lab.
Озн. изол.
Identification
Идентификација
Host condition
Стање домаћ.
Fungal tissue isolated
Изол. из ткива гљиве
31 S85-2006
Declining
Mycelium
Fomitopsis pinicola
32 S90-2006
Recently dead
-
Nothing isolated
33 S91-2006
Recently dead
-
Nothing isolated
34 S92-2006
Recently dead
-
Nothing isolated
35 S93-2006
Recently dead
-
Nothing isolated
36 S94-2006
Recently dead
-
Nothing isolated
№
Gen.
Инд.
4. DISCUSSION
Eleven Heterobasidion genets were present in the relatively small studied plot in
spruce stand in National Park “Kopaonik”. Fifty to 60% of the Heterobasdion genets identified in stands at the end of rotation had infected only one tree (Va s i l i a u s k a s , S t e n l i d ,
1998). In present study only one genet had spread on tree neighbouring trees and occupied area of about 120 m2. Only a few larger genets encompass 10 or more trees have been
identified, but even on old spruce sites they seem to be rather uncommon (S t e n l i d , 1985,
P i r i et al., 1990). Observation of many small genets indicate that basidiospores play important role in establishing of new infections. Further development of genets is based on
vegetative spread through root contact. In selection forests managers should be careful,
because naturally regenerated advance-growth spruces are susceptible to infection (P i r i ,
K o r h o n e n , 2001) and the vegetative spread from old trees or stumps cannot be excluded
because of root contact.
Management in selection forests should provide conditions which will favour
stump decomposition. This study showed that even relatively small stumps (diameter
~30 cm) produced carpophores 27 years after tree was cut. In southern Finland it is estimated that Heterobasidion in not able to survive in spruce stumps for more than 50 years
(P i r i , 1996). Studied carried out in Sweden have shown that the growth rate of Heterobasidion in the roots of Norway spruce increases almost three time after tree is cut (B e n d z H e l l g r e n et al., 1999). Young spruce trees growing around infected old stumps could be
easily infected with Heterobasidion through root contact. P i r i and K o r h o n e n (2007)
concluded that only stumps with greatest infection potential and with sufficient root contact are able to transfer the disease to the next stand generation. Some other authors also
stress that spore infection is less important, for mortality in next generation, than infection
established in roots before felling (G r e i g , B u r d e k i n , 1970).
122
Distribution of heterobasidion genets on a norway spruce site: case…
Young trees may not necessarily decline and die, but infection could spread into the
central part of trunk and cause rot. Artificial infections, carried out on spruce showed that
central rot can spread up to 12 m in height (M a r i n k o v i ć et al., 1990), which means that
such tree can not be used a timber. Economic loss is highly infected stands could reach up
to 25% of volume (Keča, Ranković, unpublished).
Carpophores are produced during autumn, but fortunately only from August till first
snow (M a r i n k o v i ć et al., 1990). Size of fruit bodies found in present study was very big,
and some of them occupied the whole root system of wind-snapped trees. Spore deposition
is c. 30.000 spore per dm2∙h–1 at a distance of 1 m (R e d f e r n , S t e n l i d , 1998). So, it is
obvious that if fresh cut stumps or wounded trunks and roots of standing trees are present
in stand infection will arise. Large roots of wind-snapped trees should be removed from
stands as soon as possible, before they start to produce carpophores.
According to the results obtained in this case study could be concluded that if selection forests of Norway spruce are managed properly the impact of the Heterobasidion
disease can be held under control.
5. CONCLUSIONS
In present study all Heterobasidion isolates are identified as Heterobasidion parviporum. Species is widely distributed in spruce forests type - Picetum excelsae oxlalidetosum in N.P. “Kopaonik”. Fifty-eight percent of sampled trees were infected with Heterobasidion. Eleven Heterobasidion genets are present on studied site. Five genets had infected
only one and five other two trees, while only one genet infected three neighboring trees.
Carpophores were produced from middle of August till end of October. Management in
the stands, endangered by Heterobasidion, should be directed to protection of freshly cut
stamps and to providing of condition which favour decomposition of stumps.
Acknowledgements: Thank are due to K. Korhonen, METLA, Finland for the donation of the different haploid testers of the European Heterobasidion species.
LITERATURE
B e n d z - H e l l g r e n M., B r a n d t b e r g P.O., J o h a n s s o n M., S w e d j e m a r k G., S t e n l i d J.
(1999): Growth rate of Heterobasidion annosum in Picea abies established on forest land and arable land, Scandinavian Journal of Forest Research 14 (402-407)
G r e i g B.J.W., B u r d e k i n D.A. (1970): Control and eradication of Fomes annosus in Great Britain, Proceedings of the Third IUFR­O Conference on Fomes annosus Denmard (ed.
by Hodges C.S., RIshbeth K., Yde-Andersen A.), USDA, Forest Service, Washington (21-32)
H u n t R.S., C o b b F.W. Jr. (1971): Selective medium for the isolation of wood-rotting Basidiomycetes, Canаdian Journal of Botany 49 (2064-2065)
123
Nenad Keča
K e č a N. (2008): Identification of Heterobasidion species in Serbia and possibility of its control,
Plant Doctor 35 (44–50) (in Serbian with English summary)
K o r h o n e n K. (2004): Fungi belonging to the genera Heterobasidion and Armillaria in Eurasia,
„Fungal Communities in forest ecosystems, Coordinating Investigation”, Vol. 2,
Ed. by Storozhenko V.G., Krutov V.I., Moscow - Petrozavodsk (89-113)
M a r i n k o v i ć P., Š m i t S., P o p o v i ć J. (1990): Disease of the root of spruce, Fomes annosus (Fr.)
Cooke, the importance of this phenomenon in maintaining and restoring spruce forests on Kopaonik, Proceedings „Nature of Kopaonik - Protection and use”, Institute
for Tourism PMF, Belgrade (235-240) (in Serbian with English summary)
N i e m e l ä T., K o r h o n e n K. (1998): Taxonomy of the Genus Heterobasidion, „Heterobasidion
annosum - Biology, Ecology, Impact and Control” (eds. S. Woodward, J. Stenlid,
R. Karjalainen, A. Hüttermann), CAB International, Wallingford (27-33)
P i r i T. (1996): The spreading of the S type of Heterobasidion annosum from Norway spruce stumps
to the subsequent tree stand, European Journal of Forest Pathology 26 (193–204)
P i r i T., K o r h o n e n K. (2001): Infection of advance regeneration of Norway spruce by Heterobasidion parviporum, Canаdian Journal of Forest Research 31 (937-942)
P i r i T., K o r h o n e n K. (2007): Spatial distribution and persistence of Heterobasidion parviporum
genets on a Norway spruce site, Forest Pathology37 (1-8)
P i r i T., K o r h o n e n K., S a i r a n e n A. (1990): Occurrence of Heterobasidion annosum in pure and
mixed spruce stands in southern Finland, Scandinavian Journal of Forest Resea­
rch 5 (113-125)
R e d f e r n B.D., S t e n l i d J. (1998): Spore Dispersal and Infection, „Heterobasidion annosum - Biology, Ecology, Impact and Control” (ed. by S. Woodward, J. Stenlid, R. Karjalainen, A. Hüttermann, CAB International, Wallingford (105-124)
S t e n l i d J. (1985): Population structure of Heterobasidion annosum as determined by somatic incompatibility, sexual incompatibility, and isoenzyme patterns, Canаdian Journal of
Botany 63 (2268-2273)
Va s i l i a u s k a s R., S t e n l i d J. (1998): Spread of S and P group isolates of Heterobasidion annosum within and among Picea abies trees in central Lithuania, Canаdian Journal of
Forest Research 28 (961-966)
Wo o d w a r d S., S t e n l i d J., K a r j a l a i n e n R., H ü t t e r m a n n A. (1998): Heterobasidion annosum - Biology, Ecology, Impact and Control, CAB International, Wallingford (589)
Кеча Ненад
ПРИСУСТВО ИНДИВИДУА HETEROBASIDION ВРСТА НА СТАНИш­ТУ СМРчЕ У
НАЦИОНАЛНОМ ПАРКУ „КОПАОНИК”
Резиме
Heterobasidion annosum s.l. je најзначајнији представник проузроковача трулежи ко­
рена и приданка и присутан је у готово свим четинарским шумама северне хемисфере. Ис­
товремено представља један од најозбиљнијих проблема у газдовању четинарским шумама
и културама. Новија истраживања показала су да су у четинарским састојинама у Србији
присутна сва три европска представника овога рода H. annosum (интерстерилна група П, са
124
Distribution of heterobasidion genets on a norway spruce site: case…
борова), H. abietinum (интерстерилна група Ф, са јеле) и H. parviporum (интерстерилна гру­
па С, са смрче).
У састојини смрче у НП „Копаоник“ издвојена је огледна површина 90×40 m на којој
су узети узорци са стабала смрче која су показивала знаке хлорозе, одумирања или су била
из­ваљена. Састојина се налази у Г.Ј. „Самоковска река“ у одељењу 96. Стабла са којих су узе­
ти узорци су обележена бројевима како је то приказано у табели 1. Узорци су узети помоћу
свр­дла, а затим је извршена изолација гљиве на хранљивој подлози - малц екстракт агар
(1,5% малц w/v и 1,5% aгар w/v). После изолације извршена је идентификација Heterobasidion изолата, парењем са хаплоидним тестерима добијеним од К. Корхонена (METLA, Фин­
ска). Идентификација индивидуа Heterobasidion извршена је међусобним укрштањем изолата
и посматрањем појаве демаркационе линије на контакту двеју индивидуа.
Изолацијом је добијено 18 изолата Heterobasidion и 12 изолата трулежница (табела 1).
Сви Heterobasidion изолати припадали су H. parviporum. Није било статистички значајних
разлика у појави H. parviporum на здравим - 8, хлоротичним - 3, одумирућим - 3 и изваљеним - 4
стаблима (подаци нису приказани). Карпофоре су пронађене само на изваљеним стаблима и
имале су велике димензије. Једна карпофора се распростирала на читавој површини кореновог
система заузимајући површину од више десетина dm2. Утврђено је да се карпофоре образују
од краја августа до краја октобра, тј. до првих снегова.
Из 18 изолата идентификовано је 11 индивидуа Heterobasidion-а (слика 1). Пет ин­
дивидуа су биле присутне на само једном стаблу, других пет индивидуа било је присутно
на по два суседна стабла, а само једна индивидуа се распростирала на три суседна стабла.
За индивидуе које су се простирале на два и више стабала проверено је присуство контакта
корења и установљено је да је у четири случаја био присутан конатакт између корења двају
стабала. Вегетативно ширење кроз контакт корења може бити од значаја у пребирној састојини,
због сталног присуства контакта између корења млађег и старијег дрвећа.
Добијени резултати указују да се газдовање мора усмерити на заштиту свеже посечених
пањева у састојинама у којима H. parviporum није присутан, а у састојинама где је гљива већ
присутна неопходно је обезбедити услове да што пре дође до декомпозиције пањева.
125
Nenad Keča
126