Camera Self-Calibration by an Equilateral Triangle

Special Issue of International Journal of Computer Applications (0975 – 8887)
on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012
Camera Self-Calibration by an Equilateral Triangle
A.Baataoui, I.El Batteoui
A.Saaidi Et K.Satori
LIIAN, Department of Mathematics and informatics
Faculty of Sciences Dhar-Mahraz P.O.Box 1796
Atlas-Fes, Morocco
LIIAN, Department of Mathematics and informatics
Faculty of Sciences Dhar-Mahraz P.O.Box 1796
Atlas-Fes, Morocco
ABSTRACT
In this article, we present a technique for self-calibration
of a CCD camera with constant focal distance using a
planar scene. The particularity of our technique is the use
of triangle equilateral which two vertices are defined from
the matches detected in images taken by the camera.
Using these vertices to estimate all the projection matrices
which are operated with homographies between the
images to estimate the intrinsic parameters of the camera.
Experimental results show the robustness of our
algorithms in terms of stability and convergence.
Finally, three images are sufficient to determine the
intrinsic parameters of camera by solving a system of
nonlinear equation that needs initialization and
optimization of a cost function associated to the
parameters sought by the bais of 'Levenberg-Marquardt
algorithm [15].
The paper is organized as follows: The second part
presents the model of camera and equilateral triangle. The
projection of the triangle is described in third part. Selfcalibration of cameras presented in fourth part. The
experiments are presented in the fifth and concluding part
in the sixth game.
Keywords: Self-Calibration, Equilatéral Triangle,
2. CAMERA AND EQUILATERAL
TRIANGLE
Absolute Conic , Homography.
A.
1. INTRODUCTION
We consider the pinhole camera model to transform a
point in the scene in his image, this model is defined by
the perspective projection matrix P of 34 given by the
The calibration of a camera is to determine the intrinsic
and extrinsic parameters using a known object called
calibration pattern [8, 9, 10, 18]. The grid may be threedimensional.(calibration 3D) or plane (calibration 2D).
This constraint is not always present in the applications of
computer vision, which gives rise to new methods called
self-calibration which allow to calculate the intrinsic and
extrinsic parameters without any prior knowledge on the
stage. The latter method uses 3D scenes [1, 2, 3, 21, 22,
23] or planar scenes [4, 5, 6, 7, 9] to calculate the camera
settings automatically, but they face many problems, such
as the majority of methods encounters the problem of
systems to solve non-linear, which must be initialized
while adding constraints on the model of self-calibration,
for example in [16] a constraint is added to the movement
of camera that undergoes a translation and a small
rotation, this constraint permits to estimate the
homography of the plane at infinity and to calculate
parameters of the camera.
In this paper we are interested on the camera selfcalibration with fewer constraints by the use of the object
of equilateral triangle any scene 2D and movement rigid
camera in space. Our technique is to estimate the
homography matrix between two images by the RANSAC
algorithm [11] based on points of interest detected by
Harris [12] which are matched by the correlation function
ZNCC [13, 14, 19 ]. Next, this matrix will be used with
two matches (the projections of the two vertices of an
equilateral triangle) to estimate the projection matrix and
determined the system of equations.
Model of camera
following formula : P  K ( R t ) with :

( R t) is the extrinsic parameter matrix, with R
is the rotation matrix and t the translation vector
of camera in space.

K is the intrinsic parameter matrix defined by:
 f   0 u0 


K 0  f
v0 
0
0
1 

(1)
f is the focal length,  is the scale factors,
(u0 , v0 ) are the image coordinates of the principal point
ant  is the obliquity factor.
B.
Triangle équilatéral
For any two points A and B in the plane of the stage,
there is a point C so that ABC is an equilateral triangle
set by the length of its side (Figure 1).
29
Special Issue of International Journal of Computer Applications (0975 – 8887)
on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012

R  seuil : near a point of interest
B. Correlation Measure
We
use
the
correlation
measure
ZNCC  Zero mean Normalised Cross Correlation  to
match the bridges of interest detected by the Harris
algorithm, this measure is characterized by the invariance
to changes in local luminance linear and defined by the
following formula :
ZNCC (qi , q j ) 
The three heights (median, bisector and
mediator) are the same measure. They are
3
simultaneously equal a
with a is length of
2
one side of an equilateral triangle.
The three angles are the same as: 60 .
3. EQUILATERAL TRIANGLE
PROJECTION
Harris Detector [12, 17]: To extract the high points in
terms of information, we used the Harris detector is based
on the following function:
(2)
n
qi and q j two points of Harris detected in the two
images i and j .
xn  I (qi  n)  I (qi )
yn  I '(q j  n)  I '(q j )
C. Homography between images
RANSAC [11] : is an algorithm that estimates geometric
entities (homography between images in our situation)
from a dataset (matched points), whose error with respect
to the entity is found above a threshold .
33 matrix
transformation linking two points belonging to image i
and j by the following equation:
with :
Homography btween images : is a
( x, y) : The coordinates of pixel in question.
A
C
B

M= 
C
A
2 I
x
2
B
(4)
I (qi ) and I '(q j ) are means of pixel luminance on a
window centered respectively in qi and q j .
A. Interest points
E ( x, y )  ( x. y ).M ( x, y )t ,
 xn2  yn2
with :
a few properties of the equilateral triangle:

n
n
Figure 1. Equilateral triangle

 xn yn
 I
y
2
2
w
q j : Hij qi
(5)
2
w
w( x, y ) 
1
2 2
C (
 I
xy
with qi and q j are respectively the projections of the
)w
same point in the scene in the picture i and j .
( x2  y 2 )
2 2
e

H ij is the homography matrix between two images i
The matrix M characterizes the local behavior of the
function E . To detect points of interest, we evaluated the
following measure:
 R  Det ( M )  k  Trace 2 ( M )

2
 with : Det ( M )  AB  C
Trace( M )  A  B and k  0.04


R  0 : at the vicinity of an edge

R  0 : in a homogeneous region
(3)
and j , estimated by the knowledge of at least four
matches by applying the RANSAC algorithm.
D. Projection matrix of the equilateral triangle
Projection Matrixes : to estimate the projection matrix
we will use two references : reference Affine
and
reference
Euclidean
( B, X a ,Ya , Z a )
( B, X e ,Ye , Ze ) with Z e and Z a are perpendicular to the
plane of the triangle ABC .
Table 1 presents the coordinates of the vertices of an
equilateral triangle in two references
Affine and
Euclidean.
30
Special Issue of International Journal of Computer Applications (0975 – 8887)
on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012
Table 1: Homogeneous Coordinates Of Vertices Of The
Triangle In The Two References Affine And Euclidean
Point
B
Affine plan
Euclidean plan
A
Q1  (0, 1, 1)T
a
3
Q '1  ( ,
a, 1)T
2 2
B
Q2  (0, 0, 1)T
Q '2  (0, 0, 1)T
C
Q3  (1, 0, 1)T
Q '3  (a, 0, 1)T
(6)
scale factor, by:
(7)
of camera in space to project the scene in the image i and
a


0
a
2




3
a 0  is the passage matrix, between the
S  0
2


0
1
0




reference Affine and Euclidean, of vertices of the triangle
as:
 S Qd
Lj
Image j
A
B
B
C
C
Figure 2. Projection of triangle ABC in the two images
i and j by the two matrixes Li and L j
1 0


T 
H i : KRi  0 1 Ri ti 
The
matrix
is
the
0 0



homography that permits to project the plan of the scene
in the image i , therefor formul (7) becomes:
Li : Hi S
Ri , ti represent, respectively, orientation and position
Qd'
Li
A
T
With 1 d 3 , qid  (uid , vid ) is a point in the 'image
i represents the projection of a vertices of the equilateral
triangle and Li a 33 matrix that can be defined, up to a
1 0


T 
Li : KRi  0 1 Ri ti  S
0 0



C
Image i
The triangle ABC , expressed in the Affine plan, is
projected in the image i by a matrix Li (Figure 2) as:
(uid , vid , 1)T : Li Qd
Planar scene
A
(8)
In practice there is not an automatic method to
determine the triangle in the image i . But we can always
determine which two vertices of the triangle can be
deduced four linear equations from the equation (6).
herefore we need other equations to calculate matrix Li .
(9)
And for the image j we can write:
Lj : H j S
(10)
From equations (9) and (10) we deduce that:
L j : Hij Li
(11)
with H ij is the homography betwin image i and j as:
Hij : H j Hi1
The matrix H ij
(12)
is determined by the
method
explained in the part C. in the two images i and j the
projections of the two vertices are given by:
(uid , vid , 1)T : Li Qd
(13)
(u jd , v jd , 1)T : L j Qd
(14)
with 1 d 3 . We devlop the two relations (11) and (14)
we find that:
(u jd , v jd , 1)T : Hij Li Qd
(15)
31
Special Issue of International Journal of Computer Applications (0975 – 8887)
on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012
Equations (13) and (15) are sufficient to determine the
matrix Li , for this we use a method of singular value
Cost function : To solve the system (21). We minimize
the following cost function:
min
4. CAMERA SELF-CALIBRATION
with
with




S ' 




0
'

(16)
a
2
3
a
2
0
a
0




.




the
matrix
Ri
is
T
orthogonal ( Ri Ri  I3 ) , So the relation (16) can be
written as follows:
LTi  Li
 S 'T S ' S 'T RiT ti 
: 

 tT R S '
tiT ti 
i i

T
with   KK

(17)
is the projection of the absolute conic
: I3 in all images.
z3i 
 the matrix contains the first
z2i 
T
two lines and columns of the matrix Li  Li , therfor from
equation (17) we find that:
T
Mi : S ' S
 ij2  z3i z2 j  z2i z3 j
n represents the number of images used. To solve the
function (22) using the Levenberg-Marquardt algorithm
[15] which requires a very important step initialization.
Initialization : to initialize the function (22), we assume
that certain conditions are satisfied on the vision system.

The principal point is to the center of the image,
therefore u0 and v0 are known.

Pixels are squared therefore   1 .

by replacing these data in the system of equations
(21), we find the following system between
image i and j :
 
1
 z1i
We note by M i  
 z3i
(22)
l 2ij  z3i z1 j  z1i z3 j
After the development of the Equation (7) we obtain:

j i 1 i 1
 ij2  z1i z2 j  z2i z1 j
A. Self-calibration equations
K 1Li : Ri S ' RiT ti

n 1
  ij2  l 2ij  ij2 
n
decomposition. the L j matrix is determined by equation
(11).
'
(18)
This formula expresses the relation between the intrinsic
camera parameters and those of a triangle. Therefore for
two images i and j , relation (18) can be written :
Mi : M j

with   f 4 f 2
(23)

T
,  is a 3n 2 matrix and  is a 3n
vector such as  and  elements are expressed in
function of u0 , v0 ,  , Li et L j .
5. EXPERIMENTATIONS
To experiment with this technique and demonstrate its
effectiveness, we took three images of 512 × 512 of two
2D scenes unknown by an camera whose intrinsic
parameters are kept constant (Figure 3).
(19)
From the relation (19) we deduce the following equalities
between image i and j :
z1 j z3i z3 j z3i z3 j
z1i

,

,

z2i z2 j z1i z1 j z2i z2 j
Image 1
(20)
These equations (20) brought us to a system of three
nonlinear equations:
 z1i z2 j  z2i z1 j  0

 z3i z1 j  z1i z3 j  0

 z3i z2 j  z2i z3 j  0
(21)
Image 2
Image 3
Figure 3.The three images of a scene unknown 2D used for
self-calibration of the camera
To detect the rich points in terms of information, we used
the Harris algorithm that eliminates the noise by a
Gaussian filter and gives better results deal with the
transformations of the image related to the rotation,
scaling, change of views, change brightness and noise
related to the sensor [20, 16, 17]. the Harris points are
shown in figure 4:
32
Special Issue of International Journal of Computer Applications (0975 – 8887)
on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012
6. CONCLUSION
Image 1
In these papers, we treated the problem of camera selfcalibration plan, using only two points of interest, which
is the projection of the vertices of a triangle in each
image. These points will be used to estimate the
homography matrix between images and the projection
matrix for each pair of image, leading to the end to a
system of nonlinear equations for determining the intrinsic
parameters of camera. Our technique therefore allows the
camera self-calibration with a 2D scene known, with a
simple, reliable and robust compared to other methods.
Image 2
7. REFERENCES
Image 1
[1]
A.Saaidi, A.Halli, H.Tairi and K.Satori. Self –
Calibration Using a Particular Motion of Camera.
To appear in Wseas Transaction on Computer
Research. Issue 4, Vol. 3, April 2008.
[2]
P.Sturm, A case against Kruppa's equations for
camera self-calibration, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol.
22, Issue 10, pp. 1199-1204, October 2000.
[3]
Manolis I.A. Lourakis and R.Deriche. Camera selfcalibration using the kruppa equations and the
SVD of the fundamental matrix: the case of
varying intrinsic parameters. Technical Report
3911, INRIA, 2000.
[4]
P.Gurdjos and P.Sturm. Methods and Geometry for
Plane-Based Self-Calibration. CVPR, pp. 491-496,
2003.
[5]
A. Saaidi, A. Halli, H. Tairi and K. Satori. SelfCalibration Using a Planar Scene and
Parallelogram.
ICGST-GVIP,
ISSN
1687398X,February 2009
[6]
P.Gurdjos, A.Crouzil and R.Payrissat. Another
Way of Looking at Plane-Based Calibration: The
Centre Circle Constraint. ECCV, 2002
[7]
B.Triggs. Autocalibration from planar sequences,
In Proceedings of 5th European Conference on
Computer Vision, Freiburg, Allemagne, Juin 1998.
[8]
P.F.Sturm and S.J.Maybank. On Plane-Based
Camera Calibration: A General Algorithm,
Singularities, Applications. In Proceedings of the
CVPR-IEEE, Vol. 1, pp. 432-437, 1999.
[9]
Z.Zhang. A Flexible New Technique for camera
Calibration. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 22, No.11, pp.
1330-1334, 2000.
[10]
M.Wilczkowiak, E.Boyer, P.Sturm. Camera
Calibration and 3D Reconstruction from Single
Images Using Parallelepipeds. In ICCV,
Vancouver, Canada, pp. 142-148, July 2001.
[11]
M.A.Fischler et R.C.Bolles. Random sample
consensus: A paradigm for model fitting with
applications to image analysis and automated
Image 3
Figure 4. The Harris points
For matching points detected by Harris in the three
images, we used ZNCC correlation measure which is
invariant to linear changes in local luminance, these are
presented in Figure 5:
57
105
116
85 102
115
89
94 108
106
93104
95
101
82
78
96
77
177
166
153
171203
164
162
272
275
243 266
277
213239 273
216
199
228
144
172
264
174
148
180 223
257
187 229
240
145181
135
263
109
210
157
107
173206
260
158
134
140
215
224
236
249
150
86
254
169 204 237
252
184
72
185
195 225
65
127
188
61
128
217
205
66
62
124
182
192
183
57
178
67 87
167
121 155
37
24
20
25
30
149 189
98 125
136
99 130
7 105
116
85 102
115
89
94 108
106
254
93 104
95101
82
78
77 96
333
270
327
301
4047
14
100
63 91
810
110
159
22
39
41 5873
12
15
314
317
79
23
48
142
151
34
9
331
126
200
304
179
131
212
231
259 280
51
221
253
80
117
170
193
1829
31
45
129
322
230
55 70
214
255
284
88 103
141
197
274
302
310
186
233
295
313 323
332
81
118
71
244 267
111
298
146
285
56
278
21
122
64
74
198222
139
147
28 38 46
238
160194
289 309
330
59
90
50
54
137
201227
245
33 42
76
84
311 325
262279
119
161
250
287303
83
112
207 235
4 6 1627
132
175
165
4453
196
256
290
296
318
241
143
133
60
305
131932
75
247
163
226
312
319
49
123
291
176202
329
211234
251
265
281
52 68
292
154
17 35
168
114138
219248
299
326
261
269
293
306 320
283
190
11 26
288
113
120 152 191
208232
258276
300
246
335
69
282
297
209
321
324
271
286
220
242 268
294308
315
36
92
43
218
97
156
1
2
3
301
272
275
243 266
277
213239
273
216
199
264
144172
174
148
257
180 223
187 229
240
145 181
135
263
109
210
157
173 206
260
107
158
134
140
215
224
236
72
249
86
150
204 237
169
252
184
185
65
195 225
127
188 217
61
128
205
66
62
124
182
192
183
178
57
167
67 87
121 155
334
316
328
307
177 5
166
153
171203
164
162
37
125
24
136
316
189
98
20
130
25
99
328
307
30
270
327
4047
100
1810
14
63
91
110
159
314
41
22
39
2 12
15
79
151
304 317
331
73
142
48
126
179
200
23
34
259
9
131
212
280
253
221
193
322
51
117
170
284
231
70
80
230
255 274
129
214
1829
31
45
55228
302
141
197
295
310
332
88 103
233
313 323
118
244 267
298
278
285
71
81
111
146 186
222
198
56
122
64
74
238
21
139
147
309
330
2838 46
289
160
245
227
90
201
54
59 76
137
311 325
50
68 250
194
262279
33
287 303
84
119
3
207 235
83
132161
165
175
318
112
256 4 290
6
196
241
16 2729642
4453
305
133
143
312 319
247
291
329
226
60
123
163
211
1319
251
32
234
265
281
292
49
202
299
154
168
326
52
219
261
269
293
58 75
114
306
176 320
172635
283
190
248
288
335
258276
208232
300
113 138
152 191
11
246
282
297
321
324
209
149 120
271
286
220
242 268 294308
315 69
36
92
43
97
218
156
Image 1
57
105
116
85 102
115
89
94 108
106
93104
95
101
82
78
96
77
177
166
153
171203
164
162
334
333
Image 2
2
333
57
53
56
269
3
54
41 48
37
49
36
272
275
243 266
277
213239 273
216
199
228
144
172
264
174
148
180 223
257
187 229
240
145181
263
109135
210
157
107
173
260
158 206
134
140
215
224
236
249
150
86
254
169 204 237
252
184
72
185
195 225
65
127
188
61
128
217
205
66
62
124
182
192
183
57
178
67 87
167
121 155
208
210
175 201
212
209
148
88 108134
82
127
92 110
189
114 157
67 89 107
121 162 192
115
90
198
58
97
109139
194
6578
8498
147
50
158
170
182
25
187
44
46
106 137 171
185
118
196
119
130 159
122
149
22
73
138
26
70
116
117
104
20
27
66
95
334
236
13
143 5
47
154
254
181 207
250 266
75
245 261
52
265
200
205
240
239
270
246
259
150
123
71
99
23
242
260
11
10
234
86
165
268
38
145
186 215
219
241
251
32
155
253262
72
193 113
76
230
14
128
163
146
235
220
6174
167
213
132
176202
267
39
16
85
101
120
248255
19 30
156
224
133
172
40 5562
31
231252 264
6881
91
124
222
197214
135161
24
33
183
100
8
129
79
169
232
225
256
177
243
18
83
140
188
15
63
35
43
111
173
227
153
257
190
141
179
42 59 7787103131
216
228
160
6
184
199
237
144
168
244
271263
34
102
204
112136
195
218
17
69
223
249 258
2128
151 180
238
105
191211
226
125
217
233
8094
178
142166
221
206
93 126
229247
60
64
174 203
164
152
29
12
45
4
51
7
9
96
1
37
24
20
25
30
149 189
98 125
136
316
99 130
328
307
270
327
301
4047
14
100
63 91
810
110
159
22
39
41 5873
2
12
15
314
317
79
23
48
142
151
34
9
331
126
200
304
179
131
212
231
259
280
51
221
253
80
117
170
193
1829
31
45
129
322
230
3
55 70
214
255 274
284
88 103
141
197
302
310
186
233
295
313 323
332
81
118
71
244 267
111
298
146
285
56
278
21
122
64
74
198222
139
147
28 38 46
238
160
289
309
330
59
90
50
54
137
201
245
33 42
76
194 227
84 112
311 325
262279
119
161
250
287303
83
207 235
4 6 1627
132
175
165
4453
196
256
290
296
318
241
143
133
60 75
305
131932
247
163
226
312319
49
123
291
176202
329
211
234
251
265
281
52 68
292
154
17 35
168
114138
219
299
326
261
269
293
306 320
283
190
11 26
248
288
113
120 152 191
208232
258276
300
246
335
69
282
297
209
321
324
271
286
220
242 268 294308
315
36
92
43
218
97
156
1
Image 1
Image 3
Figure 5. The Matched points
The homographies between images and projections
matrixes of a triangle (define by two vertices from interest
points, the third vertices is not used) in all images are
calculated, in short the resolution of a non-linear equation
system permits to estimate elements of the image of the
absolute conic and to calculate the intrinsic camera
parameters.
Table 2 presents the initial result and optimal intrinsic
parameters of the camera of two scenes:
Table 2: Initial And Optimal Solution Of The
Intrinsic Camera Parameters.
Initial solution
Optimal solution
f

u0
v0
1125
1175
1
0.92
256
261
256
263
33
Special Issue of International Journal of Computer Applications (0975 – 8887)
on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012
cartography. Graphics and Image Processing, Juin
1981.
[12]
C.Harris et M.Stephens. A combined Corner et
Edge Detector. 4th Alvey vision Conference. pp.
147-151, 1988.
[13]
M.Lhuillier
and
L.Quan.
Quasi-dense
reconstruction from image sequence. ECCV, 2002.
[14]
A.Saaidi, H.Tairi and K.Satori. Fast Stereo
Matching Using Rectification and Correlation
Techniques. ISCCSP, Second International
Symposium on Communications, Control and
Signal Processing, Marrakech, Morrocco, March
2006.
[15]
[16]
[17]
J.More.
The
levenberg-marquardt
algorithm,implementation
and
theory.
In
G.A.Watson, editor, Numerical Analysis, Lecture
Notes in Mathematics 630. Springer-Verlag, 1977.
A.Saaidi. Contribution à l’Amélioration des
Méthodes et des Algorithmes d’Autocalibrage des
cameras, pour la Reconstruction des Scènes
Tridimensionnelle. Thèse de doctorat, FSDM,
Maroc, 2010.
N.Elakkad, A.Baataoui, A.El abderrahmani,
A.Saaidi et K.Satori. « Etude Comparative des
détecteurs des points d’intérêt »WCCCS 11,2011.
[18]
A.Baataoui, M.Merras, N.Elakkad, I.El batteoui
N.Elakkad, A.El abderrahmani, A.Saaidi et
K.Satori. « Nouvelle Méthode De Calibrage De
Caméra CCD Par Une Scène Plane Inconnue »
WCCCS 11,2011.
[19]
A.Baataoui,N.Elakkad,N.Elakkad,
A.El
abderrahmani, A.Saaidi et K.Satori. « Etude
Compartive des Méthodes de Mise en
Correspondance» JDTIC ,2011
[20]
C. Schmid. Appariement d'Images par Invariants
Locaux de Niveaux de Gris. Thèse de Doctorat,
INPG, France, 1996.
[21]
A.El abderrahmani, A.Saaidi, K. Satori., "Robust
Technique for Self-Calibration of Cameras based
on a Circle". ICGST-GVIP, Vol 10, Issue 5,
December 2010
[22]
A.El abderrahmani, A.Saaidi, K. Satori., “Planar
Self-Calibration with Less Constraint". IJCST, Vol
2, Issue 2, June 2011
[23]
Adnane EL-ATTAR, Mohemed KARIM, Hamid
TAIRI, Silviu IONITA “a robust multistage
algorithm for camera self-calibration dealing with
varying intrinsic parameters” JATIT 15th October
2011.Vol.32 No.1
34