2013 College Round One

COLLEGE ROUND ONE
⇒
You will have two minutes to evaluate each of the fifteen
definite integrals that will displayed one at a time on this screen.
All answers must be simplified. At the end of the two minutes,
all hands must go up and judges will grade your answers
immediately. For each correct answer, you will receive one raffle
ticket to be entered for prizes that will be drawn after dinner.
At most five participants will move to the finals—to be
determined by the total number of correct answers and
tiebreaking criteria if necessary. Everyone moving to the finals
will receive $25.
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #1
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #1
∫ 1 (√
3
)
√
4
x4 + x3 dx
0
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #1
∫ 1 (√
3
0
)
√
4
x4 + x3 dx
∫1 (
=
)
x4/3 + x3/4 dx
0
[
3x7/3 4x7/4
=
+
7
7
]1
0
= 1
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #2
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #2
∫ π/2
(
sin x + cos x
)2
dx
0
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #2
∫ π/2
0
(
sin x + cos x
∫ π/2
=
(
)2
dx
)
sin x + 2 sin x cos x + cos x dx
2
2
0
∫ π/2
=
[
]π/2
(1 + 2 sin x cos x) dx = x + sin x
0
0
=
2
π+2
π
+1=
2
2
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #3
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #3
∫1
)3
( 4
x x + 1 dx
3
0
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #3
∫1
)3
( 4
x x + 1 dx
3
0
∫2
[
1
u3 du
=
4 1
[ 4 ]2
u
=
16 1
4
u = x + 1,
3
du = 4x dx
]
15
=
16
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #4
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #4
∫e
1
(
1
(
)2) dx
x 1 + ln x
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #4
∫e
1
(
1
(
)2) dx
x 1 + ln x
∫1
=
0
[
1
1 + u2
u = ln x,
[
]1
= arctan u
=
1
du = dx
x
]
0
π
4
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #5
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #5
∫4
3
2x
dx
(x + 2)(x − 2)
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #5
∫4
3
2x
dx
(x + 2)(x − 2)
∫4 (
=
3
1
1
+
x+2 x−2
)
dx
[
]4
= ln(x + 2) + ln(x − 2)
= ln 6 + ln 2 − ln 5 = ln
2 0 1 3
U
of
S
3
12
5
I N T E G R A T I O N
B E E
INTEGRAL #6
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #6
∫ ln 2
xex dx
0
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #6
∫ ln 2
xex dx
0
[
integrate by parts:
u = x
du = dx
,
dv = ex dx
]
v = ex
[ ]ln 2 ∫ ln 2
= xex
−
ex dx
0
0
[
]ln 2
x
x
= xe − e
= 2 ln 2 − 1 = ln 4 − 1
0
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #7
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #7
∫2
1
2x3 + 3x4 + 4x5
dx
2
x
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #7
∫2
1
2x3 + 3x4 + 4x5
dx
2
x
∫2
=
(
2
3
)
2x + 3x + 4x dx
1
[
]2
2
3
4
= x +x +x
1
= 25
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #8
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #8
∫ ln 2
0
e2x
dx
2x
e + 2013
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #8
∫ ln 2
0
e2x
dx
2x
e + 2013
∫ 2017
1
du
=
du
2 2014 u
]2017
[
ln u
=
2 2014
=
[
ln 2017 − ln 2014
2 0 1 3
2
U
of
S
u = e2x + 2013,
1 2017
= ln
= ln
2 2014
du = 2e2x dx
√
]
2017
2014
I N T E G R A T I O N
B E E
INTEGRAL #9
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #9
∫1
0
(√
1
x2 + 1
)3 dx
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #9
∫1
0
(√
1
x2 + 1
)3 dx
[
dx = sec2 θ dθ,
x = tan θ,
∫ π/4
=
0
∫ π/4
=
0
2 0 1 3
1
· sec θ dθ =
∫ π/4
2
sec3 θ
]
√
x2 + 1 = sec θ
0
1
sec θ
dθ
√
]π/4
2
cos θ dθ = sin θ
=
0
2
[
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #10
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #10
∫ π/4
tan2 x dx
0
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #10
∫ π/4
tan2 x dx
0
∫ π/4
=
(
)
2
sec x − 1 dx
0
[
]π/4
= tan x − x
dx
0
π 4−π
= 1− =
4
4
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #11
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #11
∫1 (
)
(
)2
(
)
2
x − 2 + x2 + x + 2
dx
0
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #11
∫1 (
0
)
(
)2
(
)
2
x − 2 + x2 + x + 2
dx
∫1
=
(
)
3x + 8 dx
2
0
[
]1
3
= x + 8x
0
= 9
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #12
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #12
∫ e2
ln x dx
1
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #12
∫ e2
ln x dx
1
[
integrate by parts:
u = ln x
du =
[
]e2 ∫ e2
= x ln x −
dx
1
1
x
dx
,
dv = dx
]
v = x
1
[
]e2
= x ln x − x = e2 + 1
1
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #13
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #13
∫4
1
1
) dx
√ (
√
x x+2 x+1
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #13
∫4
1
1
) dx
√ (
√
x x+2 x+1
∫4
1
= √ (√
)2 dx
1
x x+1
[
∫3
√
1
=2
du u = x + 1,
2
2 u
1
du = √ du
2 x
]
[
2 ]3
1
= −
=
u 2
3
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #14
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #14
∫ π/3
sec x · ln(sec x + tan x) dx
0
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #14
∫ π/3
sec x · ln(sec x + tan x) dx
0
∫ ln(2+√3)
=
[
u du u = ln(sec x + tan x),
du = sec x dx
]
0
√
]
ln
2+
3)
u2 (
=
=
2 0
[
2 0 1 3
U
of
S
( (
√ ) )2
ln 2 + 3
2
I N T E G R A T I O N
B E E
INTEGRAL #15
READY,
GET SET,…
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #15
∫ π/4
( x
)
x
2
e tan x + e sec x dx
0
2 : 00
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E
INTEGRAL #15
∫ π/4
0
( x
)
x
2
e tan x + e sec x dx
∫ π/4
=
0
[
]
d x
(e tan x) dx
product rule
dx
[
]π/4
= ex tan x
0
= eπ/4
2 0 1 3
U
of
S
I N T E G R A T I O N
B E E