COLLEGE ROUND ONE ⇒ You will have two minutes to evaluate each of the fifteen definite integrals that will displayed one at a time on this screen. All answers must be simplified. At the end of the two minutes, all hands must go up and judges will grade your answers immediately. For each correct answer, you will receive one raffle ticket to be entered for prizes that will be drawn after dinner. At most five participants will move to the finals—to be determined by the total number of correct answers and tiebreaking criteria if necessary. Everyone moving to the finals will receive $25. 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #1 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #1 ∫ 1 (√ 3 ) √ 4 x4 + x3 dx 0 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #1 ∫ 1 (√ 3 0 ) √ 4 x4 + x3 dx ∫1 ( = ) x4/3 + x3/4 dx 0 [ 3x7/3 4x7/4 = + 7 7 ]1 0 = 1 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #2 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #2 ∫ π/2 ( sin x + cos x )2 dx 0 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #2 ∫ π/2 0 ( sin x + cos x ∫ π/2 = ( )2 dx ) sin x + 2 sin x cos x + cos x dx 2 2 0 ∫ π/2 = [ ]π/2 (1 + 2 sin x cos x) dx = x + sin x 0 0 = 2 π+2 π +1= 2 2 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #3 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #3 ∫1 )3 ( 4 x x + 1 dx 3 0 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #3 ∫1 )3 ( 4 x x + 1 dx 3 0 ∫2 [ 1 u3 du = 4 1 [ 4 ]2 u = 16 1 4 u = x + 1, 3 du = 4x dx ] 15 = 16 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #4 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #4 ∫e 1 ( 1 ( )2) dx x 1 + ln x 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #4 ∫e 1 ( 1 ( )2) dx x 1 + ln x ∫1 = 0 [ 1 1 + u2 u = ln x, [ ]1 = arctan u = 1 du = dx x ] 0 π 4 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #5 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #5 ∫4 3 2x dx (x + 2)(x − 2) 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #5 ∫4 3 2x dx (x + 2)(x − 2) ∫4 ( = 3 1 1 + x+2 x−2 ) dx [ ]4 = ln(x + 2) + ln(x − 2) = ln 6 + ln 2 − ln 5 = ln 2 0 1 3 U of S 3 12 5 I N T E G R A T I O N B E E INTEGRAL #6 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #6 ∫ ln 2 xex dx 0 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #6 ∫ ln 2 xex dx 0 [ integrate by parts: u = x du = dx , dv = ex dx ] v = ex [ ]ln 2 ∫ ln 2 = xex − ex dx 0 0 [ ]ln 2 x x = xe − e = 2 ln 2 − 1 = ln 4 − 1 0 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #7 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #7 ∫2 1 2x3 + 3x4 + 4x5 dx 2 x 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #7 ∫2 1 2x3 + 3x4 + 4x5 dx 2 x ∫2 = ( 2 3 ) 2x + 3x + 4x dx 1 [ ]2 2 3 4 = x +x +x 1 = 25 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #8 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #8 ∫ ln 2 0 e2x dx 2x e + 2013 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #8 ∫ ln 2 0 e2x dx 2x e + 2013 ∫ 2017 1 du = du 2 2014 u ]2017 [ ln u = 2 2014 = [ ln 2017 − ln 2014 2 0 1 3 2 U of S u = e2x + 2013, 1 2017 = ln = ln 2 2014 du = 2e2x dx √ ] 2017 2014 I N T E G R A T I O N B E E INTEGRAL #9 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #9 ∫1 0 (√ 1 x2 + 1 )3 dx 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #9 ∫1 0 (√ 1 x2 + 1 )3 dx [ dx = sec2 θ dθ, x = tan θ, ∫ π/4 = 0 ∫ π/4 = 0 2 0 1 3 1 · sec θ dθ = ∫ π/4 2 sec3 θ ] √ x2 + 1 = sec θ 0 1 sec θ dθ √ ]π/4 2 cos θ dθ = sin θ = 0 2 [ U of S I N T E G R A T I O N B E E INTEGRAL #10 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #10 ∫ π/4 tan2 x dx 0 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #10 ∫ π/4 tan2 x dx 0 ∫ π/4 = ( ) 2 sec x − 1 dx 0 [ ]π/4 = tan x − x dx 0 π 4−π = 1− = 4 4 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #11 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #11 ∫1 ( ) ( )2 ( ) 2 x − 2 + x2 + x + 2 dx 0 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #11 ∫1 ( 0 ) ( )2 ( ) 2 x − 2 + x2 + x + 2 dx ∫1 = ( ) 3x + 8 dx 2 0 [ ]1 3 = x + 8x 0 = 9 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #12 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #12 ∫ e2 ln x dx 1 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #12 ∫ e2 ln x dx 1 [ integrate by parts: u = ln x du = [ ]e2 ∫ e2 = x ln x − dx 1 1 x dx , dv = dx ] v = x 1 [ ]e2 = x ln x − x = e2 + 1 1 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #13 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #13 ∫4 1 1 ) dx √ ( √ x x+2 x+1 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #13 ∫4 1 1 ) dx √ ( √ x x+2 x+1 ∫4 1 = √ (√ )2 dx 1 x x+1 [ ∫3 √ 1 =2 du u = x + 1, 2 2 u 1 du = √ du 2 x ] [ 2 ]3 1 = − = u 2 3 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #14 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #14 ∫ π/3 sec x · ln(sec x + tan x) dx 0 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #14 ∫ π/3 sec x · ln(sec x + tan x) dx 0 ∫ ln(2+√3) = [ u du u = ln(sec x + tan x), du = sec x dx ] 0 √ ] ln 2+ 3) u2 ( = = 2 0 [ 2 0 1 3 U of S ( ( √ ) )2 ln 2 + 3 2 I N T E G R A T I O N B E E INTEGRAL #15 READY, GET SET,… 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #15 ∫ π/4 ( x ) x 2 e tan x + e sec x dx 0 2 : 00 2 0 1 3 U of S I N T E G R A T I O N B E E INTEGRAL #15 ∫ π/4 0 ( x ) x 2 e tan x + e sec x dx ∫ π/4 = 0 [ ] d x (e tan x) dx product rule dx [ ]π/4 = ex tan x 0 = eπ/4 2 0 1 3 U of S I N T E G R A T I O N B E E
© Copyright 2026 Paperzz