Contacting Problems Associated with Aluminum and Ferro-AIIoy Additions in Steelmaking-Hydrodynamic Aspects R. I. L. GUTHRIE, R. C L I F T , AND H. HENEIN It is c o m m o n p r a c t i c e to drop a l u m i n u m and f e r r o - a l l o y additions into t e e m i n g l a d l e s e i t h e r p r i o r to, or d u r i n g f u r n a c e tapping o p e r a t i o n s . W a t e r model e x p e r i m e n t s a r e d e s c r i b e d in which s p h e r e s of v a r i o u s d i a m e t e r s and specific g r a v i t i e s w e r e dropped f r o m typical i n d u s t r i a l heights into w a t e r . M a x i m u m p e n e t r a t i o n d i s t a n c e s , t r a j e c t o r i e s and r e t e n t i o n t i m e s w e r e m e a s u r e d and c o m p a r e d with t h e o r e t i c a l p r e d i c t i o n s b a s e d on t r a n s i e n t fluid flow. The r e l a t i v e i m p o r t a n c e of steady drag, added m a s s and h i s t o r y f o r c e s w e r e d e m o n s t r a t e d . R e s u l t s i n d i c a t e that i m m e r s i o n t i m e s a r e e x t r e m e l y s h o r t (~1 s) for a l u m i n u m additions and low d e n s i t y f e r r o - a l l o y s . High d e n s i t y f e r r o - a l l o y s r e m a i n i m m e r s e d c o n s i d e r a b l y longer and p e n e t r a t e much d e e p e r . T HE addition of solids to liquid s t e e l baths for a d j u s t i n g s t e e l c h e m i s t r y to r e q u i r e d s p e c i f i c a t i o n s or for cooling p u r p o s e s is c o m m o n s t e e l m a k i n g p r a c t i c e . Specific e x a m p l e s of solid additions to molten s t e e l i n c l u d e the o c c a s i o n a l u s e of s c r a p m e t a l in B . O . F . f u r n a c e s for cooling 'hot' heats, as well as the r e g u l a r u s e of ladle additions of f e r r o - a l l o y s , c a r b o n and a l u m i n u m for alloying a n d / o r deoxidation p u r p o s e s . In g e n e r a l , these alloying additions a r e made to the ladle e i t h e r before or d u r i n g f u r n a c e tapping o p e r a t i o n s . Although much i n f o r m a t i o n has b e e n gathered in the p a s t on the way in which specific d i s s o l v e d a l l o y ing e l e m e n t s i n t e r a c t with oxygen and sulfur in the s t e e l to f o r m o x i d e / s u l f i d e type i n c l u s i o n s (e.g., Ref. 1), the i n i t i a l d i s s o l u t i o n p r o c e s s e s t h e m s e l v e s have b e e n l a r g e l y n e g l e c t e d . However, in o r d e r that o p t i m u m injection methods be identified and some of the p r e s e n t e m p i r i c i s m in plant p r o c e d u r e s be r a t i o n a l i zed, it is n e c e s s a r y to u n d e r s t a n d the b a s i c p h e n o m e n a involved in these f i r s t s t e p s . So far, it has b e e n d e m o n s t r a t e d 2,s that a solid s t e e l s h e l l will i n i t i a l l y f o r m around any object that is i m m e r s e d in a bath of molten s t e e l . Also, provided the m e l t i n g ' p o i n t ' of the addition is lower than the f r e e z i n g ' p o i n t ' of the steel, the object will n o r m a l l y p r o c e e d to melt i n s i d e this shell. 4 Thus, one c o m m o n l y ends up with the s i t u a t i o n of a m o l t e n core of f e r r o a l l o y or a l u m i n u m s u r r o u n d e d by a solid j a c k e t . The j a c k e t then takes an a p p r e c i a b l e t i m e to melt back and r e l e a s e its c o n t e n t s to the bath. Much of this l a t t e r work has c o n c e n t r a t e d on t h e r m a l a s p e c t s , and has supposed that the additions r e m a i n i m m e r s e d during the c o u r s e of t h e i r m e l t i n g h i s t o r y . T h i s will not n e c e s s a r i l y be the c a s e in actual p l a n t p r a c t i c e s , s i n c e many of the additions c o m m o n l y made to t e e m i n g l a d l e s , e t c . a r e l e s s d e n s e than m o l t e n s t e e l and e x p e r i e n c e buoyancy f o r c e s . This is p a r t i c R. I. L. GUTHRIEis Associate Professor, Department of Miningand Metallurgical Engineering,McGiIlUniversity, R. CLIFT is Associate Professor, Department of Chemical Engineering,McGiflUniversity, and H. HENEIN is Research Metallurgist,Sidbec-Dosco, Contrecoeur, Quebec, and was formerly Graduate Student, Department of Mining and MetallurgicalEngineering,McGillUniversity. Manuscript submitted May 16, 1974. METALLURGICALTRANSACTIONS B u l a r l y true of a l u m i n u m whose d e n s i t y is 2.7 g m / c m 3 c o m p a r e d with steel of 7 to 7.2 g m / c m s. PRESENT WORK The work presently described was undertaken to elucidate the h y d r o d y n a m i c effects o c c u r r i n g when alloy additions a r e i n j e c t e d into baths of m o l t e n steel, and sought to e s t a b l i s h m a x i m u m likely depths of p e n e t r a t i o n and r e t e n t i o n t i m e s . Such i n f o r m a t i o n p r o v i d e s u s e f u l i n d i c a t i o n s on the extent or f e a s i b i l i t y of s u b s u r f a c e m e l t i n g for a p a r t i c u l a r alloy additive. In n o r m a l s t e e l m a k i n g p r a c t i c e , alloy additions to a t e e m i n g ladle a r e made d u r i n g f u r n a c e tapping, and e n t e r the s t e e l a f t e r p a s s a g e through alloy chutes located on e i t h e r side of the t e e m i n g l a d l e . T h e s e chutes a r e s t e e l tubes, about 0.3 m I.D., 3 m e t e r s long, making an angle of about 45 deg to the h o r i z o n t a l so as to d i r e c t the additions towards the c e n t e r of the filling ladle. The alloy additions leaving the tube fall in free flight about 2 to 4 m e t e r s before e n t e r i n g the s t e e l . In o r d e r to e x a m i n e the h y d r o d y n a m i c s of such s i t u a t i o n s , some s i m p l i f i c a t i o n s had to be made in the l a b o r a t o r y s c a l e s t u d i e s r e p o r t e d h e r e . In the f i r s t i n s t a n c e , it was decided to c o n s i d e r the c a s e of s p h e r i c a l additions, r a t h e r than i r r e g u l a r l y shaped l u m p s or ingots, so as to s i m p l i f y the equations d e s c r i b i n g s u b s u r f a c e motion and also to take a d v a n tage of the l i t e r a t u r e and theory that is a v a i l a b l e on the motion of s p h e r e s through liquids. F o r s i m i l a r r e a s o n s it was decided to t r e a t the c a s e of additions p e n e t r a t i n g a s t e e l bath v e r t i c a l l y , r a t h e r than t h e i r e n t e r i n g a t u r b u l e n t l y s t i r r e d bath at a slight angle as o c c u r s in p r a c t i c e . F i n a l l y , due to the opacity of liquid m e t a l s , a low t e m p e r a t u r e model was i n i t i a l l y chosen. Thus, wooden s p h e r e s of v a r i o u s d i a m e t e r s and specific g r a v i t i e s w e r e dropped through a i r into a s t a g n a n t column of w a t e r . The r e s u l t i n g s u b s u r f a c e t r a j e c t o r i e s were r e c o r d e d by cinephotography u s i n g a 16mm Bolex Reflex C a m e r a . T h e s e r e s u l t s then allowed an a p p r o p r i a t e h y d r o d y n a m i c m o d e l to be chosen for p r e d i c t i n g t r a j e c t o r i e s , m a x i m u m i m m e r s i o n depths and t i m e s for a wide r a n g e of conditions i n cluding those r e l a t i n g to s t e e l m a k i n g . VOLUME 6B, JUNE 1975-321 D E V E L O P M E N T O F A P R E D I C T I V E MODEL FOR SUBSURFACE MOTION Equation of Motion A n u m b e r of w o r k e r s (often a s s o c i a t e d with b a l l i s t i c s t u d i e s ) have a l r e a d y i n v e s t i g a t e d the p h e n o m e n a o c c u r r i n g when high d e n s i t y s o l i d o b j e c t s e n t e r b a t h s of s t a g n a n t w a t e r . (See r e c e n t r e v i e w s by Birkhoff 6 and May6). F o l l o w i n g the c l a s s i c a l p h o t o g r a p h i c w o r k of W o r t h i n g t o n and C o l e at the t u r n of the c e n t u r y , 7 much of the s u b s e q u e n t r e s e a r c h h a s c o n c e n t r a t e d on s t u d y ing a) c a v i t y f o r m a t i o n when the s o l i d body f i r s t e n t e r s the liquid (e.g., R e f s . 8, 9) and b) the b o d y ' s s u d d e n d e c e l e r a t i o n during, and i m m e d i a t e l y following, e n t r y (e.g., R e f s . 10, 11). T h o s e w o r k e r s (e.g., R e f s . 11, 12) who t r i e d e s t i m a t i n g the d r a g f o r c e s on the body d u r i n g i t s s u b s e q u e n t d o w n w a r d motion t h r o u g h the liquid e i t h e r i g n o r e d added m a s s e f f e c t s , o r c h o s e to d i s r e g a r d s t a n d a r d d r a g c o e f f i c i e n t s a v a i l a b l e in the l i t e r a t u r e in f a v o r of d e v e l o p i n g t h e i r own r a t h e r specific correlations. As a result, their conclusions l a c k g e n e r a l i t y and cannot be u s e f u l l y a p p l i e d to p r e d i c t i n g the motion of a body which is l e s s d e n s e than the liquid into which i t is p r o j e c t e d . A f r e s h a p p r o a c h was t h e r e f o r e t a k e n in the p r e s e n t w o r k to d e t e r m i n e w h e t h e r s u b s u r f a c e motion could be p r e d i c t e d s a t i s f a c t o r i l y on the b a s i s of N e w t o n ' s Second Law of motion, by taking into a c c o u n t the v a r i o u s f o r c e s shown s c h e m a t i c a l l y in F i g . 1, i.e., d (Ms U) = E F [1 ] dt w h e r e Ms i s the m a s s of the s p h e r e , U i s i t s i n s t a n t a n e o u s v e l o c i t y , and F a r e the v a r i o u s f o r c e s a c t i n g on the body. The d i r e c t i o n s of t h e s e f o r c e s a r e i n d i c a t e d in F i g . 1, and the v a r i o u s t e r m s a r e : 1) The weight of the s p h e r e , FG = Msg. 2} The buoyancy f o r c e , FB = Mg, w h e r e M i s the m a s s of liquid d i s p l a c e d by the s p h e r e . 3) The d r a g d u e to the r e l a t i v e v e l o c i t y b e t w e e n s p h e r e and liquid, FD = (CD~d~pUI UI ) / 8 w h e r e d is the d i a m e t e r of the s p h e r e , U i s i t s v e l o c i t y t h r o u g h the liquid, p i s the liquid d e n s i t y , and CD is the d r a g c o e f f i c i e n t for s t e a d y motion t a b u l a t e d , for e x a m p l e , by L a p p l e and S h e p h e r d ? 3 4) The " a d d e d m a s s " t e r m , F A = CAM .(dU/dt), w h i c h a l l o w s for the f a c t that a c c e l e r a t i o n of the s p h e r e a l s o a c c e l e r a t e s liquid a r o u n d it. T h i s r e s u l t s in a m o m e n t u m l o s s to the s u r r o u n d i n g fluid. Two a l t e r n a t i v e e s t i m a t e s a r e a v a i l a b l e for FA, depending on w h e t h e r the a d d e d m a s s c o e f f i c i e n t , CA, i s e q u a t e d to i t s c l a s s i c a l v a l u e of 1/214'1s o r i s a s s u m e d to v a r y with p a r t i c l e v e l o c i t y and a c c e l e r a t i o n in the m a n n e r d e s c r i b e d by O d a r and H a m i l t o n . 16 5) The " h i s t o r y " t e r m , FH = Ctt(d2/4)~d'-~fot(dU/dr) (d'r/td'-t-Z-r-T),which a t t e m p t s to a c c o u n t for the d e p e n d ence of the i n s t a n t a n e o u s d r a g on the s t a t e of d e v e l o p m e n t of fluid motion a r o u n d the s p h e r e . The h i s t o r y t e r m t h e r e f o r e d e p e n d s upon the p a s t a c c e l e r a t i o n o r d e c e l e r a t i o n of the body. Two e s t i m a t e s for FH a r e a v a i l a b l e , depending on w h e t h e r the h i s t o r y c o e f f i c i ent, CB, i s a s s i g n e d i t s c l a s s i c a l v a l u e of 6, 14,~s o r a l l o w e d to v a r y with v e l o c i t y and a c c e l e r a t i o a f f R e w r i t i n g Eq. [1 ], dU = Msg Ms-~ Mg-FD 322-VOLUME 6B, JUNE 1975 -FA -FH [21 Fig. 1--Forces on a sphere accelerating through a liquid (schematic). and i n s e r t i n g g e o m e t r i c f a c t o r s , s t e a d y d r a g , a d d e d m a s s , and h i s t o r y c o e f f i c i e n t s , 7rd3 d U - g ~__ (P - Ps) --~" P s "-~ = ^ CD~d2pUfUl d2 r"='--_, r t / d U \ 8 dr -c"~Tv~P~ Jo ~,-d-7-) ~-~. ~ ~d 3 d U - t.A -~--p -~- [3] Also U dz = d--t- [4] w h e r e z i s the d i s t a n c e of the Lowest point of the s p h e r e below the s u r f a c e . The i n i t i a l conditions for E q s . [3] and [4] a r e t--o, z = 0 , U = U o is] w h e r e Uo is the s p h e r e e n t r y v e l o c i t y . Since Eq. [3] i s too c o m p l e x f o r a n a l y t i c a l solution, n u m e r i c a l p r o c e d u r e s w e r e adopted to p r e d i c t v a l u e s of s p h e r e v e l o c i t y , U, and i n s t a n t a n e o u s depth of i m m e r s i o n , z, a s functions of i m m e r s i o n t i m e , t. (See Appendix). It i s a p p r o p r i a t e to note h e r e that if the h i s t o r y t e r m in Eq. [3] is d i s c a r d e d , the equation can be s i m p l i fied to r e a d : dU CDpUI Ul (Ps + CAp) ~ = - ( P - Ps)g - 3 4d [6] or METALLURGICAL TRANSACTIONS B dU_ ( 1 - y ) g 3CDUrUF dt - ( ~ - ~ - A - ~ - 4d(y + CA) [7] w h e r e ~, = Ps/P. EXPERIMENTAL PROCEDURES In o r d e r to ~ s t the adequacy of the equations outlined above for d e s c r i b i n g p a r t i c l e motion through a liquid, wooden s p h e r e s of v a r i o u s d i a m e t e r s ranging b e t w e e n 0.95 and 5.08 c m s . , (3/8 to 2 in.), and v a r i o u s s p e c i f i c g r a v i t i e s (0.35 to 0.8) w e r e dropped f r o m h e i g h t s of 2.13 and 3.57 m e t e r s r e s p e c t i v e l y into a 1.37 m deep, 0.46m d i a m tank of P . V . C . filled with w a t e r . A B o l e x R e f l e x C a m e r a o p e r a t i n g at 54 f r a m e s / s r e c o r d e d the s e q u e n c e of e v e n t s as the s p h e r e p e n e t.rated the w a t e r , sank to its m a x i m u m depth and then s t a r t e d to r i s e back to the s u r f a c e . No spin was i m - p a r t e d to the s p h e r e s as a r e s u l t of the d r o p p i n g m e c h a n i s m , which c o n s i s t e d of a s p r i n g - l o a d e d p l a t f o r m which quickly opened when the tension on the s p r i n g w a s r e l e a s e d . A P . V . C . Guide Tube was u s e d for the s m a l l e r b a l l s to a i m t h e i r e n t r y about 2 in. away from, and slightly to one side of, a m e a s u r i n g r u l e . Subsequent f r a m e by f r a m e a n a l y s i s of the f i l m then p r o v i d e d the n e c e s s a r y data on t r a j e c t o r i e s for the s e l e c t i o n of an a p p r o p r i a t e m a t h e m a t i c a l m o d e l . The bottoms of the s p h e r e s w e r e u s e d to define the l o c i of the t r a j e c t o r i e s . E x p e r i m e n t a l R e s u l t s and S e l e c t i o n of M a t h e m a t i c a l Model for T r a j e c t o r y P r e d i c t i o n s F i g . 2 shows a t y p i c a l s e q u e n c e for a 3.65 c m d i a m wooden s p h e r e having a density of 0.711 g c m -3, d r o p ped f r o m a height of 3.57 m into w a t e r . The b a c k - Fig. 2--Typical series of hydrodynamic events for a 3.65 cm diam wooden sphere having a density of 0.711 g e m -z dropped from a height of 3.57 meters into a 0.46 m diam tank of water. Subscripts denote frame number (Camera speed = 54 f.p.s.) METALLURGICALTRANSACTIONS B VOLUME 6B,JUNE 1975-323 ground scale is marked in intervals of 0.I feet (Surveyor's rule). F r a m e 0, corresponding to time zero, shows the sphere just about to enter the water, its reflection just below the water line being clearly evident. Frames 2, 4 and 6 demonstrate the rapidity of initial entry, as well as the formation and collapse of a large entrained air cavity. F r a m e 16, 0.296 s after initial entry, marks the m a x i m u m depth of penetration, (32 cms), while F r a m e 57 shows the sphere about to resurface 1.05 s after initial entry. It is interesting to note the spectacular entry period prior to cavity collapse (which represents about 10 pct of the total immersion time) and the evanescence of the r e m a i n i n g s m a l l e n t r a i n e d a i r c a v i t y during the r e s t of the d e s c e n t p e r i o d . F i g . 3 shows s o m e t y p i c a l e x p e r i m e n t a l and t h e o r e t i c a l t r a j e c t o r i e s for two s p h e r e s d r o p p e d into w a t e r . T h e t e r m ' t r a j e c t o r y ' i s u s e d h e r e in the s e n s e of the depth of the o b j e c t below the s u r f a c e us t i m e ( i . e . , no lateral motion is implied). The experimental results shown in Fig. 3(a) refer to a 4.77 c m diam sphere with a solid/liquid density ratio, y, of 0.351, while those in Fig. 3(b) correspond to a sphere with a y = 0.716 and diameter of 1.07 cm. A s seen, in both cases, penetration into the liquid is rapid, as evidenced by the steepness of the curves close to time zero. The rapid entries are followed by decelerating penetrations until buoyancy forces finally reverse the direction of motion and the spheres accelerate towards their terminal rising velocities. The m a x i m u m i m m e r sion time is considered reached when the top of the sphere surfaces. Five possible mathematical models were considered. They involved the following treatment of the drag terms in Eq. [3]: 1) CA = 2) CA = 0.5, C A = 6.0, CD v a r i a b l e , CH = v a r i a b l e , 3) C A = 0.5, no h i s t o r y , CD CD 4) CA = v a r i a b l e , no h i s t o r y , CD 5) No added m a s s , no h i s t o r y , CD Fig. 3--Experimental and theoretical trajectories of spheres dropped into water. Figures on theoretical trajectories indicate model number. (a) d = 4.77 cm. Ps = 0.351 gm/ce, U0 = 6.29 vs. s -l. (b) d = 1.07 cm. Ps = 0.716 gm/cc, U0 = 6.15 m. S-i. 324-VOLUME 6B, JUNE 1975 T h e c o r r e s p o n d i n g five p r e d i c t e d t r a j e c t o r i e s f o r c o m p a r i s o n with the e x p e r i m e n t a l r e s u l t s have b e e n l a b e l l e d , 1, 2, 3, 4 and 5, r e s p e c t i v e l y , in F i g s . 3(a) and (b). I t i s i m m e d i a t e l y e v i d e n t that c u r v e s 2 and 4, b a s e d on O d a r and H a m i l t o n ' s v a r y i n g c o e f f i c i e n t s for CA and C//, show s i g n i f i c a n t d i s c r e p a n c i e s , in that p r e d i c t e d m a x i m u m d e p t h s and i m m e r s i o n t i m e s a r e o v e r e s t i m a t e d . S i m i l a r l y , c u r v e 5 b a s e d p u r e l y on s t e a d y s t a t e d r a g with no h i s t o r y o r added m a s s t e r m s s e r i o u s l y u n d e r e s t i m a t e s m a x i m u m d e p t h s and immersion times. H o w e v e r , u s e of the c o n s t a n t c l a s s i c a l added m a s s c o e f f i c i e n t ( m o d e l s 1 and 3) g i v e s p e n e t r a t i o n d e p t h s and i m m e r s i o n t i m e s within 10 p c t of t h o s e o b s e r v e d . T h e e f f e c t of including h i s t o r y d r a g i s s e e n by c o m p a r Jag c u r v e s 1 and 3 in F i g s . 3(a) and (b) r e s p e c t i v e l y . The r e a s o n s f o r the d i f f e r e n t e f f e c t of h i s t o r y d r a g on s p h e r e s of low and high s p e c i f i c g r a v i t i e s a r e d i s c u s s e d in the A p p e n d i x . H o w e v e r , i t i s c l e a r f r o m e a c h c a s e that even though the i n c l u s i o n of a h i s t o r y d r a g t e r m m a y b r i n g the o v e r a l l s h a p e of the t r a j e c t o r y c l o s e r to that o b s e r v e d , the e f f e c t on p r e d i c t e d m a x i m u m depth and i m m e r s i o n t i m e i s m i n i m a l . T h e s e r u n s , and the o t h e r s e x a m i n e d , t h e r e f o r e , i n d i c a t e t h a t adequate p r e d i c t i o n s can be made on the b a s i s of m o d e l 3, which i g n o r e s h i s t o r y e f f e c t s and t a k e s a c o n s t a n t added m a s s c o e f f i c i e n t of 0.5. It thus c o r r e s ponds to Eq. [7], with CA : 1 / 2 . F i g . 4 shows p r e d i c t e d and e x p e r i m e n t a l c u r v e s f o r b a l l s of 1.07, 2.69 and 4.88 c m d i a m r e s p e c t i v e l y , and = 0.71 d r o p p e d in f r e e f a l l f r o m a height of 3.57 m e t e r s . In c a l c u l a t i n g i n i t i a l e n t r y v e l o c i t i e s , account w a s t a k e n of a i r r e s i s t a n c e d u r i n g the s p h e r e ' s d e s c e n t to the liquid s u r f a c e . T h i s c o r r e c t i o n d e c r e a s e d e n t r y v e l o c i t i e s below t h a t f o r u a r e s i s t e d motion (i.e., Uo = ~ ) by 1 to 5 p c t depending on s p h e r e d i a m e t e r and d e n s i t y . A s s e e n f r o m F i g . 4, l a r g e r b a l l s s i n k d e e p e r and s t a y in l o n g e r . The a g r e e m e n t with m o d e l 3 i s a g a i n quite s a t i s f a c t o r y in view of v a r i a b i l i t y in the e x p e r i m e n t a l d a t a . F i g . 5 shows a p l o t of m a x i m u m depths of p e n e t r a tion v s s p h e r e d i a m e t e r for s o l i d / l i q u i d d e n s i t y r a t i o s METALLURGICAL TRANSACTIONS B of 0.72 and 0.365. The solid and broken c u r v e s r e p r e sent t h e o r e t i c a l p r e d i c t i o n s for spheres r e l e a s e d 2.13 and 3.57 m e t e r s above the liquid surface, and again show good a g r e e m e n t with the experimental data. S i m i l a r l y , good a g r e e m e n t is achieved in Fig. 6 where maximum i m m e r s i o n t i m e s a r e plotted v s s p h e r e d i a m e t e r and c o m p a r e d with t h e o r e t i c a l p r e d i c t i o n s . It may be noted that v e r y tittle effect of height of drop on maximum depths or i m m e r s i o n times is either observed or p r e d i c t e d . Discussion of Mathematical Model As seen f r o m the p r e c e d i n g section, h i s t o r y effects a r e only of minor i m p o r t a n c e in determining p a r t i c l e t r a j e c t o r i e s under p r e s e n t c i r c u m s t a n c e s . It is equally c l e a r that added mass effects assume s i m i l a r Fig. 4 - - T r a j e c t o r i e s of s p h e r e s d r o p p e d into w a t e r : e x p e r i m e n t a l , and p r e d i c t e d by model 3. (a) d = 1.07 cm, Ps = 0.716 gm,/cc, U 0 = 7.74 m s -1. ( b ) d = 2 . 6 9 cm, Ps = 0 . 7 1 1 g m / c c , U 0 = 8.09 m s -1. ( c ) d = 4.88 c m , Ps = 0 . 7 2 7 g m / c c , U 0 = 8.21 m s -i. Fig. 5 - - M a x i m u m depth of p e n e t r a t i o n (cm) v s addition (cm); e x p e r i m e n t a l v a l u e s c o m p a r e d with p r e d i c t e d c u r v e s b a s e d on model 3. METALLURGICAL TRANSACTIONS B importance to steady d r a g f o r c e s in d e t e r m i n i n g the depth and time of i m m e r s i o n , and cannot be ignored. The fact that model 3 (CA = 0.5, CH =0, CD = CD) gives such r e l i a b l e p r e d i c t i o n s is quite s u r p r i s i n g in view of the complex phenomena o c c u r r i n g during a s p h e r e ' s descent through a liquid. In all c a s e s , l a r g e cavities of a i r w e r e e n t r a i n e d for about the f i r s t half of their descent (i.e., Fig. 2). Consequently the flow around their r e a r sections bore l i t t l e r e s e m b l a n c e to experimental conditions for which steady d r a g data have been obtained. The a g r e e m e n t between c u r v e s 3 and the e x p e r i m e n t a l t r a j e c t o r i e s in F i g s . 3(a) and (b) may therefore be p a r t l y fortuitous and r e s u l t from compensating e r r o r s in the steady d r a g and added m a s s t e r m s , both of which a r e l a r g e during the initial descent stage through the liquid. However, it is interesting to note that the p r e s e n t work m o r e c l e a r l y distinguishes the p r a c t i c a l m e r i t s between assigning a constant added m a s s coefficient of 0.5 and that of incorporating a v a r i a b l e added m a s s t e r m as proposed by Odar an d Hamilton. 16 Odar subsequently showed '7 that their v a r i a b l e coefficients gave r e l i a b l e p r e d i c t i o n s for buoyant s p h e r e s a c c e l e r a t i n g f r o m r e s t through a stagnant fluid. Clift e t al. ~a r e p e a t e d s i m i l a r e x p e r i m e n t s and found that good t r a j e c t o r y p r e d i c t i o n s could also be made by taking the standard constant coefficients for CA and Ctt. Taken with the findings of the p r e s e n t work, it would s e e m that the c l a s s i c a l values for CA and CH a r e more a p p r o p r i a t e and can be applied to more complex motions than has p r e v i o u s l y been supposed. Finally, it is a p p r o p r i a t e to d i s c u s s the r e a s o n s for the s h o r t i m m e r s i o n depths and t i m e s p r e d i c t e d by model 5 v s the longer, more c o r r e c t v a l u e s when added m a s s is taken into account. In the l a t t e r case, the sphere entering with a velocity Uo e s s e n t i a l l y entrains an added m a s s of liquid whose volume is equal to half that of the s p h e r e (i.e., M A = 1//2pVs, Ms = PsVs). By imparting some of its momentum to this liquid, the s p h e r e must slow down, its new v e l o c ity being MsUo U~ (gVls+ M A ) [8] Since the steady d r a g t e r m is s m a l l e r at lower v e l o c i t i e s , the s p h e r e (and its a s s o c i a t e d liquid) is then Fig. 6--Immersion times (s) vs addition size (cm); experimental values compared with predicted curves based on model 3. VOLUME 6B, JUNE 1975-325 a b l e to p e n e t r a t e d e e p e r and s t a y in l o n g e r than a s p h e r e with no added m a s s . In the l a t t e r e a s e , the s p h e r e ' s v e l o c i t y does not d e c r e a s e on impact; s i n c e d r a g f o r c e s a r e a p p r o x i m a t e l y p r o p o r t i o n a l to Uz in t h i s high R e y n o l d s N u m b e r r a n g e (CD ~ constant), it l o s e s i t s downward m o m e n t u m too r a p i d l y , r e s u l t i n g in too s h o r t i m m e r s i o n d e p t h s and t i m e s . S i m i l a r a r g u m e n t s exl~lain why p e n e t r a t i o n depths a r e not much i n c r e a s e d by d r o p p i n g the s p h e r e s f r o m a h e i g h t of 3.58 vs 2.12 m e t e r s . EXTENSION O F W A T E R M O D E L TO STEELMAKIN G CONDITIONS Since the e x p e r i m e n t s u s i n g w a t e r i n d i c a t e that r e l i a b l e t r a j e c t o r y p r e d i c t i o n s m a y be obtained on the b a s i s of m o d e l 3, and s i n c e a l l the g o v e r n i n g d i m e n s i o n l e s s g r o u p s for p a r t i c l e s p r o j e c t e d into s t e e l c o i n c i d e with the r a n g e c o v e r e d by the p r e s e n t e x p e r i m e n t s in w a t e r , good p r e d i c t i o n s c a n be m a d e on the d e p t h s and i m m e r s i o n t i m e s of a l l o y a d d i t i o n s d r o p p e d into s t e e l b a t h s . Thus, r e f e r r i n g to Eq. [7] which d e s c r i b e s the s p h e r e ' s motion (CI-1 = O, CA = 0.5, CD) it i s s e e n that the i m p o r t a n t d i m e n s i o n l e s s p a r a m e t e r s a r e a) the s o l i d / l i q u i d d e n s i t y r a t i o n , Y, and b) the s t a n d a r d d r a g coefficient, CD. Since CD is s o l e l y a function of Re, the R e y n o l d s N u m b e r ( s e e A p pendix), and s i n c e the k i n e m a t i c v i s c o s i t y of s t e e l [v = ( y / p ) ~ 0.064/7 = 0.00914] a l m o s t c o i n c i d e s with that of w a t e r (~0.01), R e y n o l d s N u m b e r s and d r a g c o e f f i c i e n t s a r e a l m o s t the s a m e in both s y s t e m s (for a given d and Uo). Thus, by d e l i b e r a t e l y c h o o s i n g s p h e r e d i a m e t e r s and s o l i d A i q u i d d e n s i t y r a t i o s c o v e r i n g the r a n g e of i n t e r e s t in s t e e l m a k i n g p r a c t i c e , c l o s e matching w a s a s s u r e d . S i m i l a r l y , F r o u d e N u m b e r (UZ/gL) matching w a s a c h i e v e d by d r o p p i n g the s p h e r e s f r o m the heights u s e d i n d u s t r i a l l y . A l s o , although the s u r f a c e t e n s i o n s of s t e e l and w a t e r a r e m a r k e d l y d i f f e r e n t , s u r f a c e e n t r y e f f e c t s should be r n i n i m a l in both i n s t a n c e s . T a k i n g the p a r t i c u l a r e x a m p l e shown in F i g . 2 which c r e a t e s a c a v i t y h a v ing a m a x i m u m s u r f a c e a r e a about 38 t i m e s the c r o s s s e c t i o n a l a r e a of the s p h e r e , the r a t i o of the s u r f a c e e n e r g y r e q u i r e m e n t s (38aTrd2/4) to the e n t r y k i n e t i c e n e r g y (psU~ 97ra~/12) i s 114 r Inserting approp r i a t e v a l u e s (114 • 71/0.711 • 3.65 • (815) 2) shows the r a t i o to be 0.0047, which i s obviously n e g l i g i b l e . One can m a k e s i m i l a r a r g u m e n t s for a l l o y s p r o j e c t e d into s t e e l b a t h s even though i t s s u r f a c e t e n s i o n is much g r e a t e r than w a t e r (~1000 d y n e s / c m ) s i n c e the i m p o r t a n t r a t i o of p h y s i c a l ~ p a r a m e t e r s is r and Ps would be 4.98 g p e r cm- in this c a s e . One m a y note that the d i m e n s i o n l e s s g r o u p i n g (PsLU2/a) is s i m i l a r to the W e b e r N o . (p/LU2/cr) which i n d i c a t e s the r a t i o of i n e r t i a l to s u r f a c e t e n s i o n f o r c e s in a liquid system. It should be noted that the p r e s e n t w o r k d o e s not t a k e into account t h e r m a l e f f e c t s , such a s the f o r m a tion of a s o l i d s t e e l s h e e l a r o u n d the o b j e c t . If t h e s e a r e included (through s i m u l t a n e o u s solution of the a p p r o p r i a t e p a r t i a l d i f f e r e n t i a l equations for h e a t t r a n s f e r with the h y d r o d y n a m i c equations p r e s e n t e d h e r e ; s e e Ref. 4), it t u r n s out t h a t the i n c r e a s e d s t e a d y d r a g f o r c e r e s u l t i n g f r o m a s p h e r e ' s growth is m o r e than c o m p e n s a t e d by an i n c r e a s e in the added m a s s t e r m . The net r e s u l t , for a l u m i n u m , is s l i g h t l y 326-VOLUME 6B, JUNE 1975 l o n g e r i m m e r s i o n t i m e s and p e n e t r a t i o n depths about 4 p c t l e s s than those p r e s e n t l y p r e d i c t e d . R e c e n t high t e m p e r a t u r e e x p e r i m e n t a l w o r k h a s c o n f i r m e d t h i s l a t t e r point. ~9 F o r i n s t a n c e , a 2.5 c m d i a m s p h e r e of a l u m i n u m d r o p p e d f r o m 3 m e t e r s w i l l r e m a i n i m m e r s e d for 0.39 s vs 0.31 s for an e q u i v a l e n t wooden s p h e r e . DISCUSSION OF RESULTS OF APPLICABILITY TO STEELMAKING It i s r e a l i z e d that the p r e s e n t e x p e r i m e n t s i n v o l v ing s p h e r e s d r o p p e d f r o m v a r i o u s heights into s t a g nant liquids r e p r e s e n t an a p p r o x i m a t i o n of m a n y h y d r o d y n a m i c e v e n t s in s t e e l m a k i n g p r a c t i c e s i n c e , a) the d e o x i d i z e r s may f i r s t p a s s through a s l a g l a y e r in the filling l a d l e b) a l a r g e n u m b e r of o b j e c t s m a y fall s i m u l t a n e ously c) e n t r a i n m e n t in the p o u r i n g s t r e a m is p o s s i b l e d) t u r b u l e n t liquid motions in the filling l a d l e m u s t modify t r a j e c t o r i e s to v a r y i n g e x t e n t s depending on the o b j e c t ' s 7 r a t i o . It i s equally c l e a r that a full s c a l e w a t e r m o d e l of the s y s t e m could a n s w e r many of t h e s e a s p e c t s . Howe v e r , in the m e a n t i m e , it is w o r t h noting t h a t r e c e n t w o r k on the t r a j e c t o r i e s of a l u m i n u m s p h e r e s d r o p p e d into s t e e l b a t h s , 19 showed that a 1 c m thick l a y e r of s l a g had no effect in inhibiting s t e e l s h e l l f o r m a t i o n . A l s o , although the p r e s e n t w o r k i s r e s t r i c t e d to s i n g l e s p h e r e s , i t i s known that for high R e y n o l d s n u m b e r s t y p i c a l of the p r e s e n t s i t u a t i o n , the o b j e c t s have to be in e x t r e m e l y c l o s e p r o x i m i t y b e f o r e t h e r e i s any a p p r e c i a b l e i n c r e a s e in d r a g . 2~ M o r e o v e r , such e f f e c t s would s e r v e only to r e d u c e i m m e r s i o n t i m e s s t i l l f u r t h e r . F i n a l l y , although an addition e n t r a i n e d in a tapping s t r e a m should p e n e t r a t e much m o r e d e e p l y than one e n t e r i n g a s t a g n a n t bath, q u a l i t a t i v e w o r k 19 i n d i c a t e s that it should have a s t r o n g t e n d e n c y to move away f r o m this l o c a l i z e d high v e l o c i t y r e g i o n in the ladle and r e s u r f a c e in the n o r m a l way s h o r t l y afterwards. To conclude, the a u t h o r s c o n s i d e r that the p r e s e n t m o d e l l i n g w o r k r e p r e s e n t s a good f i r s t a p p r o x i m a t i o n to a c t u a l e v e n t s , and c l e a r l y d e m o n s t r a t e s the type of h y d r o d y n a m i c contacting p r o b l e m s involved when s o l i d a d d i t i o n s a r e made to s t e e l b a t h s . Thus, r e f e r r i n g to F i g s . 4 and 5, it is s e e n t h a t a s o l i d e n t e r i n g a liquid having a 7 r a t i o of 0.365 w i l l s i n k about 13 c m s (5 in) and r e s u r f a c e 0.2 s a f t e r entry, even when d r o p p e d through a i r f r o m a height of 3.58 m e t e r s . T h i s 7 c o r r e s p o n d s a p p r o x i m a t e l y to an a l u m i n u m addition in s t e e l . Although s u b s u r f a c e m e l t i n g is d e s i r a b l e for good r e c o v e r y and p r o c e s s c o n t r o l , it is v e r y u n l i k e l y u n d e r such c o n d i t i o n s , and one m u s t a n t i c i p a t e s e v e r e ( s l a g / a i r ) - a l u m i n u m i n t e r a c t i o n s for a l l n o r m a l p r o c e d u r e s , at any addition s i z e s . S i m i l a r c o n s i d e r a t i o n s would apply to a l l o y a d d i t i o n s such a s 25 p c t F e - S i (7 = 0.39 to 0.58), Z r - S i (7 = 0.48 to 0.52) and 50 p c t F e - S i (7 = 0.58 to 0.67). A l l o y s such a s f e r r o m a n g a n e s e a r e s o m e w h a t d i f f e r e n t s i n c e they have 7 r a t i o s in the r a n g e 0.9 to 1.04 and would p e n e t r a t e c o n s i d e r a b l y d e e p e r and s t a y i m m e r s e d much l o n g e r . In o r d e r to p r o v i d e a c o m p r e h e n s i v e s e t of p r e d i c METALLURGICAL TRANSACTIONSB tions for steelmaking and to extrapolate outside the ranges covered by the present water model experiments, computer predictions based on model 3 were run, taking the density of liquid steel as 7.0 g per cm-3 and its viscosity as 6.4 cP. Fig. 7 demonstrates the effect of drop height (or entry velocity) on immersion depths and times for 5 cm diam spheres of ferromanganese (apparent density 6.72 g per cm-3) and aluminum (p = 2.7) entering steel. As seen, predictions have been made far beyond the heights normally feasible (or desirable!) in practice. The results indicate very clearly the difficulty of maintaining low density alloy additions immersed, even when they are subjected to very high entry velocities. For example, a 5 cm diam aluminum sphere, dropped from a height of 100 meters with an entry velocity of 44 meters/s (145 ft/s) would only penetrate 1 meter (3.3 ft) and would remain immersed for 1.4 s. In the case of a ferromanganese addition with a density of 6.72 g per cm-3 maximumdepths of penetration and total immersion times would be considerably increased compared to aluminum, i.e., 2.4 meters and 11.2 s. Striking confirmation of these predictions is provided by the recent work of Tanoue et al. at who have developed a new method for adding aluminum to their ladles at the Wakayama and Kashirna Works in Japan. Known as the "Aluminumbullet shooting method", their results showed that somewhat improved yields and markedly better process control could be achieved over previous standard practice by using a rotary chamber type "shooter" to fire a continuousstream of bullets intofillingladles. Takinga specific example from Fig. 20 of Ref. 21, they show that a 5 cm diam bullet projected to adepth of i meter in still water will remain immersed for 2.4 s. This time compares closely with the 1.4 s immersion time predicted for a 5 cm diam sphere. It also suggests that carefully designed adding pieces can remain immersed almost twice as long as spheres projected to equivalent depths. Fig. 7--Effect of height of drop (or entry velocity) on immersion times and maximum depth for 5 cm spheres of ferromanganese and aluminum in steel. METALLURGICALTRANSACTIONS B Fig. 8 p r e s e n t s m a x i m u m depths of p e n e t r a t i o n for 15 and 25 cm diam alloy additions v s alloy addition density for m o r e n o r m a l e n t r y v e l o c i t i e s of 7.67 meters/s. Fig. 9 p r e s e n t s s i m i l a r plots, giving m a x i m u m i m m e r s i o n t i m e s v s alloy addition d e n s i t y . The e n t r y v e l o c i t y quoted c o r r e s p o n d s to u n r e s i s t e d f r e e f a l l of o b j e c t s f r o m a height of 3 m e t e r s above the bath. As in the c a s e of Fig. 7, F i g s . 8 and 9 a r e p l o t t e d on a s e m i - l o g a r i t h m i c b a s i s to c o v e r the wide r a n g e of depths and i m m e r s i o n t i m e s p r e d i c t e d . As one might expect, depths and i m m e r s i o n t i m e s i n c r e a s e r a p i d l y for those additions having d e n s i t i e s c l o s e to m o l t e n s t e e l . Thus, for alloy additions such as f e r r o m a n g a n e s e , with nominal or a p p a r e n t d e n s i t i e s in the r e g i o n of 6.95 for instance, i m m e r s i o n t i m e s of 80 s and depths of 90 c m a r e a c h i e v e d . T h i s i n d i c a t e s that such additions will, in p r a c t i c e , have l i t t l e t e n d e n c y to s u r f a c e and should g e n e r a l l y follow the liquid s t e e l flow p a t t e r n s during the c o u r s e of t h e i r m e l t i n g h i s t o r y in a filling l a d l e . Fig. 8--Effect of density ratio on maximum penetration for spheres entering steel at 7.67 m per s -1. VOLUME 6B,JUNE [975-327 APPENDIX A s mentioned in the text, the full equation d e s c r i b ing the s p h e r e ' s s u b s u r f a c e m o t i o n (i.e., E q s . [3] and [4 9 i s too c o m p l e x for a n a l y t i c a l solution, and n u m e r i c a l p r o c e d u r e s m u s t be adopted for the p r e d i c t i o n of s p h e r e v e l o c i t y , U, and i n s t a n t a n e o u s depth, z, a s a function of i m m e r s i o n t i m e . In v i e w of the c o m p l e x i t i e s involved in the full equation a r a t h e r high p o t e n t i a l for e r r o r s e x i s t e d . C o n s e q u e n t l y two i n d e p e n d e n t n u m e r i c a l p r o c e d u r e s w e r e d e v e l o p e d for c r o s s - c h e c k ing p u r p o s e s ; a g r e e m e n t to b e t t e r than 5 p c t w a s obtained f o r p r e d i c t e d t r a j e c t o r i e s . The f i r s t p r o c e d u r e involved a s i m p l e n u m e r i c a l s o l u t i o n of Eq. [7] (CA = 0.5, CH = 0, CD =CD), u s i n g the s t a n d a r d v a l u e s of CD r e p o r t e d by L a p p l e and S h e p h e r d ~a and A c h e n b a c h . aa Thus, a t any p a r t i c u l a r t i m e i n s t a n t d u r i n g the s p h e r e ' s i m m e r s i o n , the v e l o c i t y U w a s u s e d to c a l c u l a t e the R e y n o l d s N u m b e r . L i n e a r i n t e r p o l a t i o n u s i n g l i s t e d v a l u e s z3'22 of CD for the v a l u e s on e i t h e r s i d e of the R e y n o l d s N u m b e r in q u e s t i o n then gave the r e q u i r e d v a l u e of CD. In n u m e r i c a l f o r m , Eq. [7] thus r e a d s : U'= u-(l-y)gat 3CDUIUIAt [AI] (T + 1/2) - 4 d (7 + 1/2) with z" = z + 05(U + U')At [A2] w h e r e U" and z" r e p r e s e n t the new v a l u e s of U and Z, a f t e r At s . An i t e r a t i v e r o u t i n e t a k i n g a t = 10 "~ s e c o n d s then p r o v e d s a t i s f a c t o r y in p r e d i c t i n g s p h e r e t r a j e c t o r i e s . F i n a l l y , initiale n t r y w a s taken into a c c o u n t v i a E q . [8] and g r a d u a l e n t r y e f f e c t s i g n o r e d . In the s e c o n d r o u t i n e , the following p r o c e d u r e s w e r e a d o p t e d for the c a l c u l a t i o n of the d r a g c o e f f i c i e n t , CD a d d e d m a s s c o e f f i c i e n t , CA, and h i s t o r y c o e f f i c i e n t , CH. cv Fig. 9--Effect of density ratio on immersion time for spheres entering steel at 7.67 m per s "1. By the s a m e token, it is a p p a r e n t that a l u m i n u m a d d i t i o n s have l i t t l e chance of s u b s u r f a c e m e l t i n g u n d e r normal p r a c t i c e . 1) The c o r r e l a t i n g p o l y n o m i a l s given by D a v i e s z~ w e r e u s e d for Re < 104. 2) F r o m R e = 104 to the c r i t i c a l R e y n o l d s N u m b e r of a p p r o x i m a t e l y 3 • l 0 S (Ref. 22), the equation of Clift and Gauvin a4 w a s u s e d , w h i l e a b o v e the c r i t i c a l R e y n o l d s N u m b e r , c u r v e s w e r e f i t t e d to the d a t a of A c h e n b a c h . aa CA CONCLUSIONS 1) The i n j e c t i o n of a l l o y a d d i t i o n s into s t a g n a n t s t e e l b a t h s can be s i m u l a t e d with good a c c u r a c y by d r o p p i n g wooden s p h e r e s of a p p r o p r i a t e s p e c i f i c g r a v i t y f r o m the s a m e height into w a t e r . 2) Good t h e o r e t i c a l p r e d i c t i o n s can be m a d e on s p h e r e t r a j e c t o r i e s and i m m e r s i o n t i m e s by taking into a c c o u n t s t a n d a r d d r a g and a d d e d m a s s e f f e c t s . 3) D r a g f o r c e s r e l a t i n g to the p r e v i o u s h i s t o r y of the o b j e c t ' s motion a r e s m a l l u n d e r p r e s e n t c i r c u m s t a n c e s and can be i g n o r e d . 4) A l l o y a d d i t i o n s of low d e n s i t y (e.g., A1, F e - S i , etc.) should e x h i b i t v e r y s h o r t i m m e r s i o n t i m e s (1 s), even when i n j e c t e d at high v e l o c i t i e s (50 m p e r s-~), on a c c o u n t of a r a p i d l o s s in m o m e n t u m and high buoyancy f o r c e s . 5) A t y p i c a l high d e n s i t y a l l o y a d d i t i o n (e.g., 5 c m d i a m F e - M n , p 6.96) should r e m a i n i m m e r s e d for about a minute in a bath of s t a g n a n t s t e e l . 328-VOLUME 6B, JUNE 1975 The c l a s s i c a l v a l u e of 0.514 w a s t r i e d , and a l s o the c o r r e l a t i o n s p r o p o s e d by O d a r and H a m i l t o n . z6 c~ T h e c l a s s i c a l v a l u e of 6.0 '4'z5 w a s t r i e d , and a l s o the O d a r and H a m i l t o n c o r r e l a t i o n s . .6 The s o l u t i o n of E q s . [3] and [4] then u s e d p r e v i o u s l y d e v e l o p e d n u m e r i c a l p r o c e d u r e s zs for c a l c u l a t i o n of U and z a s functions of t allowing for the h i s t o r y t e r m . F o r the e a r l y s t a g e s of m o t i o n c o r r e s p o n d i n g to i n c o m p l e t e s u b m e r s i o n ( i . e . , z -< d), the d r a g t e r m s w e r e r e d u c e d by m u l t i p l y i n g by the f r a c t i o n of the s p h e r e v o l u m e i m mersed: f- z2(3d - 2) d3 [A3] ADowance w a s a l s o made for i n i t i a l e n t r y in the added m a s s t e r m . Eq. [3] in the t e x t then b e c a m e (0 <-z<-d), METALLURGICAL TRANSACTIONS B LIST O F S Y M B O L S ~d ~ dU ua~ --~- Ps-~-/-= - g - ~ - (fP - Os) - f C o d. - ~tfCA pUI U I 7rd3 - ~ pU) d2 ( t (dg~ dr - fcH--4~4-~-ffff ~o k - ~ / 4 7 =- T 9 [A4] Multiplyingby 12/~d2p and rearranging then gives 2d (7 + f C A ) - ddU - [ = - 2 g d ( f - 7) - 1.SfCD U[ UI - 12CA~Z(d - Z) .['~" r t / d V \ dr - 3 f C H ~ ~P jo ~-~-} ~ / t - r . [A5] To account for entry in the history integral, the veloci t y w a s a s s u m e d to c h a n g e i m p u l s i v e l y f r o m z e r o to [7o a t t = 0; i . e . , d U / d t t o o k t h e f o r m of a D i r a c d e l t a f u n c t i o n a t t = 0. W h e n t h e h i s t o r y t e r m w a s i g n o r e d , the resulting equations were solved by the standard R u n g e - K u t t a - M e r s o n p r o c e s s . 2~ Explanation for Predicted History Effects in Fig. 3 R e f e r r i n g to E q . [3], i t m a y b e n o t e d t h a t d U / d r i s negative so that the history drag is negative with res p e c t to t h e d i r e c t i o n i n d i c a t e d in F i g . 1; i.e., h i s t o r y ( l i k e a d d e d m a s s ) g e n e r a l l y a c t e d s o a s to c a r r y t h e sphere further into the liquid. F o r t h e low d e n s i t y r a t i o ( F i g . 3(a)), d U / d t i s v e r y large following entry and the negative history drag is s i g n i f i c a n t d u r i n g t h e e a r l y s t a g e s of t h e t r a j e c t o r y . H o w e v e r , a t l o n g e r t i m e s t h e c o n t r i b u t i o n s of t h e d e celeration to the history integral decays so that the initial impulsive acceleration term at t = 0 (corresp o n d i n g to i n i t i a l c o n t a c t w i t h t h e f l u i d a n d e q u a l to Uo/,/T) t h e n t a k e s o v e r , m a k i n g t h e h i s t o r y d r a g positive. Therefore the predicted maximum depths o c c u r s o o n e r t h a n in t h e a b s e n c e of h i s t o r y . F o r t h e l a T g e r d e n s i t y r a t i o h o w e v e r ( F i g . 3(b)), t h e d e c e l e r a tion was more gradual with time so that the history drag remained negative except for very short times. It should be noted that although the added mass term has full theoretical justification both at high and low R e y n o l d s n u m b e r s (i.e., ~ - i n v i s c i d ( p o t e n t i a l ) a n d c r e e p i n g f l o w s , r e s p e c t i v e l y ) , t h e f o r m of t h e h i s t o r y term is only strictly applicable for "creeping flow". Nevertheless, for a sphere accelerating from rest, i n c l u s i o n of b o t h FA a n d FH h a s b e e n s h o w n to g i v e a c c u r a t e p r e d i c t i o n s of t h e m o t i o n u p to h i g h R e *7'la and the history drag is then generally more important than added mass. However, the present situation, w h i c h i n v o l v e s t h e m o t i o n of a b o d y p r o j e c t e d i n t o a liquid, is characterized by a large initial Reynolds number. It was then uncertain whether the creeping flow c o n c e p t of a h i s t o r y d r a g i s v a l i d o r e v e n a p p l i cable. The model experiments and predicted trajectories served to resolve this question for the present case. ACKNOWLEDGMENTS T h e a u t h o r s a r e i n d e b t e d to t h e N a t i o n a l R e s e a r c h of C a n a d a f o r f i n a n c i a l s u p p o r t of t h i s w o r k . METALLURGICAL TRANSACTIONS B CA CD CH d F FA FB FD FG FH g h M Ms t U Uo Uo" Y ~t t, p Ps a r Added mass coefficient Steady state drag coefficient History coefficient Sphere diameter Drag force(s) Drag force from 'added mass' Buoyancy force acting on sphere Drag force from steady translation F o r c e of g r a v i t y a c t i n g o n s p h e r e ( i . e . , w e i g h t ) Drag force resulting from history term Gravitational constant H e i g h t of d r o p t h r o u g h a i r M a s s of w a t e r d i s p l a c e d by s p h e r e M a s s of s p h e r e Time Velocity Impact velocity R e d u c e d i m p a c t v e l o c i t y t a k i n g a d d e d m a s s into account Solid/liquid density ratio Viscosity Kinematic viscosity D e n s i t y of l i q u i d D e n s i t y of s o l i d Surface tension Time (dummy variable in history term) REFERENCES 1. W. Crafts and D. C. Hilty: ElectricIce Steel Proc.AIME, 1953, voL 11, pp. 121-50. 2. R. I. L. Guthiie and L. Gourtsoyannis: C.LM. Quarterly, 197l, vol. 10, no. 1, pp. 37-46. 3. L. Gourtsoy~mnisand R. I. L. Guthde: 1972, C.I.M. Conference, Halifax, Nova Scotia. 4. L. Gourtsoyannis,H. Henein,and R. t. L. Guthrie: PhysicalChemistry of Production or Use of Alloy Additives, John Farrell,ed., pp. 45-67, T.M.S., A.I.M.E., 1974. 5. G. Birkhoff and E. H. ZarantoneUo:Jets, Wakesand Cavities, AcademicPress, New York, 1959. 6. A. May:J. Hydronautics, 1970,vol. 4, p. 140. 7. A. M. Worthingtonand R. S. Cole: Phil Trans. Roy. Soc., 1900, vol. 194, p. 175. 8. A. May:J. A ppt Phy&, 1951, vol. 22, p. 1219. 9. A. May: J. Appl Phys., 1952, vol. 23, p. 1362. I0. M. Shiffman and D. C. Spencer: A.M.P. Report 42, 2R, National Defence Research Committee, 1945. 11. E. G. Richardson:Pro~ Phys. Soe., 1948, vol. 61, p. 352. 12. A. May and J. C. WoodhuU:J. Appl Phys., 1948,vol. 19, p. 1109. 13. C. E. Lapple and C. B. Shepherd: Ind. Eng. Chem., 1940, vol. 32, pp. 605-17. 14. L. D. landau and E. M. Lifshitz: Fluid Mechanics, Pergamon Press, London, 1959. 15. A. B. Bassett: Phil Teans.Roy. Soc., 1888, vol. 179, p. 43. 16. F. Odar andW. S. Hamilton:Z FluidMedt, 1964, vol. 18, p. 302. 17. F. Odar: J. FluidMech., 1966, vol. 25, p. 591. 18. R. Clift, F. A. Adamji,and W. R. Richards: Int. Conf. on Particle Technology, 1973 (liT ResearchInstitute, Chicago), pp. 130-36. 19. H. Henein: McGiUUniversity,Montreal, P. Q., Unpublishedresearch, 1974. 20. L. B. Torobin and W. H. Gauvin: Can.Z Chem. Eng., 1961, vol. 39, p. 113. 21. T. Tanoue, Y. Umeda, H. Ichikawa, and T. Aoki: The Sumitomo Search No. 9, May, 1973, pp. 74-87, also N.O.H~.C., Atlantic City, New Jersey, May 1974. 22. E. Achenbach:J. FluidMeclt, 1972, voL 54, p. 565. 23. C. N. Davies:Proc.Roy. Soc., 1945, vol. 57, p. 259. 24. R. Clift and W. H. Gauvin: Can.J. o[Chen~ Eng., 197I, vol. 49, p. 439. 25. G. N. Lance:NumericalMethodsfor High Speed Computers, Iliffe and Sons, London, 1960. VOLUME 6B,JUNE 1975-329
© Copyright 2026 Paperzz