Structural studies of lipid systems Regine Willumeit Hamburg, 22.10.2012 Introduction What is important to know about lipids? What can be measured? Example for structure determination 1 Lipids are important for: Cells -> membranes As co-factors or as HDL (lipoproteins) Joints Crystallisation in sensors Polymeric implants (MPC polymers) Biomembranes 2 Lipids in Cells @Lehninger Biochemistry Composition of an Erythrocyte Membrane PE PC unknown unknown cell recognition PS apoptosis signal intra celluar signals @Lehninger Biochemistry 3 Lipid Names Phospholipids = 4 letter code first two letter: chains last two letter: head group POPC: Palmitoyl-Oleoyl Phosphatidyl Cholin Structure of a Phospholipid PE PC PS 4 Structure of a Phospholipid: Headgroups neutral neutral Zeta Potential: PC = 0 neutral negative charge PE = -25 PG = -60 mV @Avanti Polar Lipids Phosphatidylcholine (Symmetric Fatty Acid) 1,2-Diacyl-sn-Glycero-3-Phosphocholine Biomembranes (Saturated Series) Carbon Number 3:0 4:0 5:0 6:0 7:0 8:0 9:0 10:0 11:0 12:0 13:0 14:0 15:0 16:0 Trivial IUPAC M.W. Propionoyl Butanoyl Pentanoyl Caproyl Heptanoyl Capryloyl Nonanoyl Capryl Undecanoyl Lauroyl Tridecanoyl Myristoyl Pentadecanoyl Palmitoyl Trianoic Tetranoic Pentanoic Hexanoic Heptanoic Octanoic Nonanoic Decanoic Undecanoic Dodecanoic Tridecanoic Tetradecanoic Pentadecanoic Hexadecanoic 369.35 397.41 425.46 453.51 481.57 509.62 537.67 565.73 593.78 621.84 649.89 677.94 706.00 734.05 16:0 [(CH3)4] Phytanoyl 3,7,11,15-tetra methylhexadecanoic 846.27 17:0 18:0 19:0 20:0 21:0 22:0 23:0 24:0 Heptadecanoyl Stearoyl Nonadecanoyl Arachidoyl Heniecosanoyl Behenoyl Trucisanoyl Lignoceroyl Heptadecanoic Octadecanoic Nonadecanoic Eicosanoic Heneicosanoic Docosanoic Trocosanoic Tetracosanoic 762.10 790.16 818.21 846.27 874.32 902.37 930.43 958.48 DM DP 5 @Avanti Polar Lipids Phosphatidylcholine (Symmetric Fatty Acid) 1,2-Diacyl-sn-Glycero-3-Phosphocholine (Unsaturated Series) Biomembranes Carbon Number Trivial IUPAC M.W. 14:1 Myristoleoyl 9-cis-tetradecenoic 673.91 14:1 Myristelaidoyl 9-transtetradecenoic 673.91 16:1 Palmitoleoyl 9-cis-hexadecenoic 730.02 16:1 Palmitelaidoyl 9-transhexadecenoic 730.02 18:1 Petroselinoyl 6-cis-octadecenoic 786.13 18:1 Oleoyl 9-cis-octadecenoic 786.15 18:1 Elaidoyl 9-transoctadecenoic 786.13 18:2 Linoleoyl 9-cis-12-cisoctadecadienoic 782.09 18:3 Linolenoyl 9-cis-12-cis-15cisoctadecatrienoic 778.06 20:1 Eicosenoyl 11-cis-eicosenoic 842.23 20:4 Arachidonoyl 5,8,11,14(all -cis) eicosatetraenoic 830.14 22:1 Erucoyl 13-cis-docosenoic 898.34 22:6 DHA 4,7,10,13,16,19 (all -cis) docosahexaenoic 878.18 24:1 Nervonoyl 15-cistetracosenoic 954.45 @Avanti Polar Lipids Phosphatidylcholine (Asymmetric Fatty Acid) Biomembranes 1-Acyl-2-Acyl-sn-Glycero-3-Phosphocholine Carbon Number 14:0-16:0 1-Acyl 2-Acyl M.W. Myristoyl Palmitoyl 706.00 14:0-18:0 Myristoyl Stearoyl 734.05 16:0-14:0 Palmitoyl Myristoyl 706.00 16:0-18:0 Palmitoyl Stearoyl 762.10 PM PS 16:0-18:1 Palmitoyl Oleoyl 760.09 PO 16:0-18:2 Palmitoyl Linoleoyl 758.07 16:0-20:4 Palmitoyl Arachidonoyl 782.09 16:0-22:6 Palmitoyl Docosahexaenoyl 806.12 18:0-14:0 Stearoyl Myristoyl 734.05 18:0-16:0 Stearoyl Palmitoyl 762.10 18:0-18:1 Stearoyl Oleoyl 788.14 18:0-18:2 Stearoyl Linoleoyl 786.13 18:0-20:4 Stearoyl Arachidonoyl 810.15 18:0-22:6 Stearoyl Docosahexaenoyl 834.17 18:1-14:0 Oleoyl Myristoyl 732.03 18:1-16:0 Oleoyl Palmitoyl 760.09 18:1-18:0 Oleoyl Stearoyl 788.14 SO 6 Biomembranes @Lehninger Biochemistry Amphipatic Molecules in Solution hydrophilic hydrophobic CMC = critical micelle concentration highly diluted system increase of concentration @Lehninger Biochemistry 7 Amphipatic Molecules in Solution POPC POPG inverse POPE DPPE, DPPC, POPC, POPE…. @Lehninger Biochemistry What can be measured? monoolein/water Martin Caffrey & Vadim Cherezov, Nat Protoc. 2009;4(5):706-31. 8 What can be measured? Phase Behaviour of Phospholipids Data Base: LIPIDAT PO=Palmitoyl-oleoyl (16:0-18:1); DP=Dipalmitoyl (16:0) Lamellar Phase Repeat Distance d Bragg-equation: n = 2d·sin Q = 2 k0 sin = 4 sin Seddon Handbook of Biol Physics 1995 9 Small Angle Scattering on Lipid Vesicles also is Diffraction Lipid unilamellar vesicle multilamellar vesicle total ensemble SAS Diffraction http://www.encapsula.com/products_01.html and Lehninger Biochemistry 1. Order Diffraction of POPG Membranes (Neutrons) Intensity Biomembranes q-value 10 1. Order Diffraction of POPG Membranes (Neutrons) Biomembranes Intensity Peaks equidistant Repeat distance = 2 / q Peak Distance = Repeat distance/n n = 1, 2, 3, 4,…. Intensitiesq-value & Phases -> Scattering length density profile 11 Biomembranes (invers) hexagonal phase POPE Membrane (SAXS) Biomembranes (invers) hexagonal phase POPE Membrane (SAXS) Peaks NOT equidistant Repeat distance = 2 / q Peak distance = Repeat distance/n n = 1, 3, 2, 7, 3, 12, 13, … 12 Cubic Phase Seddon Handbook of Biol Physics 1995 Cubic Phase Peaks NOT equidistant Repeat distance = 2 / q Peak distance = Repeat distance/n n = 1, 2, 3, 2, 5, 6, 8, 3, … Seddon Handbook of Biol Physics 1995 13 Sample Preparation Solution of lipids in chloroform or methanol oder mixture Drying of solution to obtain a lipid film Hydratisation of the film with water / solvent Liposomes Drying of vesicles solution on support Multilamellar Layers Example for structure determination Peptide Antibiotics 'Infectious diseases are the leading cause of world-wide and third leading cause of death in the United States' J.M. Hughes, Director of NCID & CDC, 1999 Main problem: fast acquisition of antibiotic resistance by bacteria Possible alternative to 'classic' antibiotics: discovery of natural and synthetic antibiotic peptides Belong to the innate immune system in most species 14 Peptide Antibiotics Biomembranes Melittin Magainins (Xenopus laevis, Bombina variegata) Thionine Plant Defensines (Heuchera sanguinea) Cecropins (Hyalophora cecropia) What is known about Peptide Antibiotics? 'Killing' mechanism: Destruction of cytoplasmic membrane of bacteria NO protein receptor! No resistance?? Hypothesis: physical interaction with the lipids of the membrane 15 The peptide NK-2 NK-lysin Isolated from pig small intestine 78 aminoacids ca. 8.9 kDa 33% identity to a gene product (NKG5) from activated T and NK cell helix 3+4 = NK-2 (res. 39-65) Function: antibacterial, cytotoxic 5 -helices hydrophilic amphipathic hydrophobic 10 positive charges J. Andrä et al. Med Microbiol Immunol 188 (1999) 117-124 Common features of peptide antibiotics: The peptide NK-2 small (15-30 AA) NK-lysin highly amphipathic Isolated from pig small intestine ) charged (positively 78 aminoacids ca. 8.9 kDa NK-2: good antibacterial activity (MIC < 1M) hydrophilic little hemolytic amphipathic activity (>> 10M) 5 -helices little cytotoxicity (>> 10M) 33% identity to a gene product (NKG5) from activated T and NK cell helix 3+4 = NK-2 (res. 39-65) Function: antibacterial, cytotoxic Can we explain Selectivity and hydrophobic Mode of Action10 ? positive charges J. Andrä et al. Med Microbiol Immunol 188 (1999) 117-124 16 Membrane Composition PG Gram-negative E.coli IM S. typhimurium P. cepacia Gram-positive S.aureus B. subtilis PE CL PC SM PS 6 33 18 82 60 82 12 7 0 0 0 0 0 0 0 0 0 0 57 29 0 10 43 47 0 0 0 0 0 0 0 0 70 30 0 0 4 33 15 24 11 13 negative C.albicans Erythrocyte PG = Phosphatidyl-glycerole CL = Cardiolipin SM = Sphingomyeline PE = Phosphatidyl-ethanolamine PC = Phosphatidyl-choline PS = Phosphatidyl-serine SAXS Results: POPC in 10 mM NaPhosphate-Buffer, pH 7.4 17 SAXS Results: DPPC in 10 mM NaPhosphate-Buffer, pH 5.2 pH 5.2 SAXS Results: POPG in Water 18 SAXS Results: POPG in Water DMPG (negative) - FTIR Stiffening Decrease of = Increase of ordering L L DM=Dimyristoyl (14:0) Willumeit et al. BBA 1669 (2005) 125 – 134 s(CH2) = symmetric stretching vibration 19 SAXS Results: POPE in 10 mM Na-Phosphate-Buffer, pH 7.4 POPE + NK-2 (1000:1) POPE NK-2Influence induces a negative of NK-2 on POPEmembrane curvature -> breaking of the membrane! 20 New derivatives of NK-2 NK-2-[CS] Several derivatives, small (15-30 AA), highly amphipathic (positively) charged K I L R G V S K K I M R T F L R R I S K D I L T G K K NK-CS K I L R G V S K K I M R T R L R R I S K D I L T G K K NKCS-[FR] K I L R G V S K K I M R T F L R R I S K K NKCS-[20K] K I L R G V S K K I M R T F L R R NKCS-[17] K I L R G V S K K I M R T F NKCS-[14] L R R I S K D I L T G K K NKCS-[15-27] New derivatives of NK-2 POPE 7.5 POPE+NKCS-[14] 1000:1 7.0 POPE+NKCS-[17] 1000:1 repeat distance [nm] 6.5 POPE+NKCS-[20K] 300:1 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 45 50 55 60 65 70 temperature [°C] 75 80 85 21 Shift of HII transition Activity New derivatives of NK-2 Shift for PE lipids (HII phase) is towards higher temperatures! Use of X-ray scattering to aid the design and delivery of membrane-active drugs G. Pabst • D. Zweytick • R. Prassl • K. Lohner, Eur Biophys J (2012) 41:915–929 How could anaesthetics work? 2 mol% ketamine = IC50 for a channel composed of bent helices 22 Lipid Rafts Areas in membranes with specific lipid and protein composition Combination of glycosphingolipids and protein receptors Usually more densely packed and "floating" in the membrane Homepage of Jarek Majewski of the Lujan Neutron Scattering Center at Los Alamos Regulating the Size and Stabilization of Lipid Raft-like Domains and Using Calcium Ions as Their Probe Or Szekely, Yaelle Schilt, Ariel Steiner, and Uri Raviv, Langmuir 2011, 27, 14767–14775 ratio 1:1:1 POPC DOPC DPPC 23 Self-Assembled Multicompartment Liquid Crystalline Lipid Carriers for Protein, Peptide, and Nucleic Acid Drug Delivery A. ANGELOVA et al., ACCOUNTS OF CHEMICAL RESEARCH 44(2) (2011) 147–156 Molecules included in membrane can lead to channel swelling Decrease in curvature Better storage capabilities Self-Assembled Multicompartment Liquid Crystalline Lipid Carriers for Protein, Peptide, and Nucleic Acid Drug Delivery A. ANGELOVA et al., ACCOUNTS OF CHEMICAL RESEARCH 44(2) (2011) 147–156 Change of structure Release of drug 24 Crystallizing membrane proteins using lipidic mesophases Martin Caffrey & Vadim Cherezov, Nat Protoc. 2009;4(5):706-31. Cholesterol Protein -> precipitant solution -> shift of equilibrium away from stability in the cubic membrane. -> phase separation -> protein molecules diffuse from the continuous bilayered reservoir into the lattice of the advancing crystal face Lipidic cubic phase technologies for membrane protein structural studies Vadim Cherezov, Current Opinion in Structural Biology 2011, 21:559–566 25 Stability of the lipid layers under shear Lubrication of synovial joints is most efficient Friction coefficient in the range of 0.001-0.01 Constant under changing conditions Combination of complex structure of cartilage and self-assembled structures formed by phospholipids and biomacromolecules Four main biological components of synovial fluid albumin proteoglycans such as lubricin and aggrecan polyglycosaminoglycan like hyaluronan surface active phospholipids (SAPLs) M. Kreuzer, M. Reinhardt, J. Stahn, M. Golub, R. Willumeit, R. Dahint, R. Steitz Stability of the lipid layers under shear AMOR, PSI M. Kreuzer, M. Reinhardt, J. Stahn, M. Golub, R. Willumeit, R. Dahint, R. Steitz 26 Thank you for your attention Tresset PMC Biophysics 2009 2:3 doi:10.1186/1757-5036-2-3 / Technical Brief 2012 Volume 4 27
© Copyright 2026 Paperzz