Section 17.2 Nonhomogeneous Linear Equations EX.1 The auxiliary equation is r2 − 2r − 3 = 0 ⇒ (r − 3)(r + 1) = 0 ⇒ r = 3 or r = −1. Then the complementary solution is yc = C1 e3x + C2 e−x , C1 , C2 ∈ R. Take the particular solution yp = A sin 2x + B cos 2x. Then yp = A sin 2x + B cos 2x, yp0 = 2A cos 2x − 2B sin 2x, yp00 = −4A sin 2x − 4B cos 2x, yp00 − 2yp0 − 3yp = (−7A + 4B) sin 2x + (−4A − 7B) cos 2x = cos 2x. So we have −7A + 4B = 0 and −4A − 7B = 1 and A = y = yc + yp = C1 e3x + C2 e−x − −4 65 and B = −7 . 65 So the general solution is 4 7 sin 2x − cos 2x, C1 , C2 ∈ R. 65 65 EX.3 The auxiliary equation is r2 +9 = 0 ⇒ (r+3i)(r−3i) = 0 ⇒ r = 3i or r = −3i. Then the complementary solution is yc = C1 cos 3x + C2 sin 3x, C1 , C2 ∈ R. Take the particular solution yp = Ae−2x . Then yp = Ae−2x , yp0 = −2Ae−2x , yp00 = 4Ae−2x , yp00 + 9yp = 13Ae−2x = e−2x . So we have 13A = 1 and A = 1 . 13 So the general solution is y = yc + yp = C1 cos 3x + C2 sin 3x + 1 1 −2x e , C1 , C2 ∈ R. 13 EX.5 The auxiliary equation is r2 − 4r + 5 = 0 ⇒ r = 2 ± i. Then the complementary solution is yc = e2x (C1 cos x + C2 sin x), C1 , C2 ∈ R. Take the particular solution yp = Ae−x . Then yp = Ae−x , yp0 = −Ae−x , yp00 = Ae−x , yp00 − 4yp + 5yp = 10Ae−x = e−x . So we have 10A = 1 and A = 1 . 10 So the general solution is y = yc + yp = e2x (C1 cos x + C2 sin x) + 1 −x e , C1 , C2 ∈ R. 10 EX.13 The auxiliary equation is r2 − r − 2 = 0 ⇒ r = 2 or − 1. Then the complementary solution is yc = C1 e2x + C2 e−x , C1 , C2 ∈ R. So that we can take the trial solution as yp = (Ax + B) ex cos x + (Cx + D) ex sin x. EX.15 The auxiliary equation is r2 − 3r + 2 = 0 ⇒ (r − 2)(r − 1) = 0 ⇒ r = 2 or 1. Then the complementary solution is yc = C1 e2x + C2 ex , C1 , C2 ∈ R. So that we can take the trial solution as yp = Axex + B cos x + C sin x. 2 EX.19 (a) The auxiliary equation is 4r2 + 1 = 0 ⇒ (2r + i)(2r − i) = 0 ⇒ r = ± 2i . Then the complementary solution is 1 1 yc = C1 cos x + C2 sin x, C1 , C2 ∈ R. 2 2 Take the particular solution yp = A cos x + B sin x. Then yp = A cos x + B sin x, yp0 = −A sin x + B cos x, yp00 = −A cos x − B sin x, 4yp00 + yp = −3A cos x − 3B sin x = cos x. So we have −3A = 1 and −3B = 0 and A = − 31 and B = 0. So the general solution is y = yc + yp = C1 cos x x 1 + C2 sin − cos x, C1 , C2 ∈ R. 2 2 3 (b) From (a) we know the complementary solution is yc = C1 cos x2 + C2 sin x2 , C1 , C2 ∈ R. Set y1 = cos x2 and y2 = sin x2 . We have y1 y20 − y2 y10 = 21 cos2 + 12 sin2 x2 = 12 . Thus, by the product-to-sum identity, cos x · sin x2 1 1 3 0 u1 = − = − sin x − sin x , 1 4 2 2 4· 2 cos x · cos x2 1 3 1 0 u2 = = cos x + cos x , 1 4 2 2 4· 2 x 2 and 3 1 1 1 x − cos x , u1 = = cos 6 2 2 2 Z 1 3 1 1 0 u2 = u2 dx = sin x + sin x . 6 2 2 2 Z u01 dx Thus x x yp = u1 (x) cos + u2 (x) sin 2 2 1 3 1 1 1 1 3 1 1 2 1 2 = cos x cos x − cos x + sin x sin x + sin x 6 2 2 2 2 6 2 2 2 2 1 3 1 3 1 1 1 1 = cos x cos x + sin x sin x − cos2 x − sin2 x 6 2 2 2 2 2 2 2 1 1 1 = cos x − cos x = − cos x. 6 2 3 Then the general solution is y = yc + yp = C1 cos x x 1 + C2 sin − cos x, C1 , C2 ∈ R. 2 2 3 3 EX.21 (a) The auxiliary equation is r2 − 2r + 1 = 0 ⇒ r = 1. Then the complementary solution is yc = C1 ex + C2 xex , C1 , C2 ∈ R. Take the particular solution yp = Ae2x . Then yp = Ae2x , yp0 = 2Ae2x , yp00 = 4Ae2x , yp00 − 2yp0 + yp = Ae2x = e2x . So we have A = 1. And the general solution is y = yc + yp = C1 ex + C2 xex + e2x , C1 , C2 ∈ R. (b) From (a) we know the complementary solution is yc = C1 ex + C2 xex , C1 , C2 ∈ R. Set y1 = ex and y2 = xex . Then y1 y20 − y2 y10 = e2x and so u01 x Z = −xe ⇒ u1 (x) = −xex dx = −(x − 1)ex , Z 0 x u2 = e ⇒ u2 (x) = ex dx = ex . Thus, yp (x) = (1 − x)e2x + xe2x = e2x and the general solution is y = yc + yp = C1 ex + C2 xex + e2x , C1 , C2 ∈ R. EX.23 The auxiliary equation is r2 + 1 = 0 ⇒ r = ±i. Then the complementary solution is yc = C1 cos x + C2 sin x, C1 , C2 ∈ R. Set y1 = cos x and y2 = sin x. Then y1 y20 − y2 y10 = 1 and so Z sec2 x sin x 0 u1 = − = − sec x tan x ⇒ u1 (x) = − sec x tan xdx = − sec x, 1 Z sec2 x cos x π 0 u2 = = sec x ⇒ u2 (x) = sec xdx = ln (sec x + tan x) f or 0 < x < . 1 2 4 Thus, yp (x) = − sec x · cos x + ln |sec x + tan x| · sin x = ln (sec x + tan x) · sin x − 1 and the general solution is y = yc + yp = C1 cos x + C2 sin x + ln (sec x + tan x) · sin x − 1, C1 , C2 ∈ R. EX.25 The auxiliary equation is r2 −3r+2 = 0 ⇒ (r−2)(r−1) = 0 ⇒ r = 1 or r = 2. Then the complementary solution is yc = C1 ex + C2 e2x , C1 , C2 ∈ R. Set y1 = ex and y2 = e2x . Then y1 y20 − y2 y10 = e3x and so Z −e2x −e−x −e−x 0 u1 = = ⇒ u (x) = dx = ln(1 + e−x ), 1 −x 3x −x −x (1 + e )e 1+e 1+e Z x x e ex ex + 1 e −x −x u02 = = ⇒ u (x) = dx = ln( ) − e = ln 1 + e − e−x . 2 (1 + e−x )e3x e3x + e2x e3x + e2x ex Thus, yp (x) = ex ln(1 + e−x ) + e2x ln 1 + e−x − ex , and the general solution is y = yc + yp = ex C1 + ln(1 + e−x ) − 1 + e2x C2 + ln 1 + e−x , C1 , C2 ∈ R. EX.27 The auxiliary equation is r2 − 2r + 1 = 0 ⇒ r = 1. Then the complementary solution is yc = C1 ex + C2 xex , C1 , C2 ∈ R. Set y1 = ex and y2 = xex . Then y1 y20 − y2 y10 = e2x and so Z ex xex 1+x x x 1 2 0 = − ⇒ u (x) = − dx = − ln(1 + x2 ) u1 = − 1 2x 2 2 e 1+x 1+x 2 Z x ex e 1 1 2 u02 = 1+x = ⇒ u2 (x) = dx = tan−1 x. 2x 2 e 1+x 1 + x2 Thus, 1 yp (x) = − ex ln(1 + x2 ) + xex tan−1 x 2 and the general solution is 1 2 −1 y = yc + yp = e C1 + C2 x − ln(1 + x ) + x tan x , C1 , C2 ∈ R. 2 x 5
© Copyright 2026 Paperzz