Outline Archaic Genes in Modern Humans Alan R. Rogers I History of thought about archaic admixture I Inferring admixture from derived allele patterns and aDNA. I Inferring admixture from LD in modern DNA. November 30, 2015 Hypotheses of modern human origins Multiregional Modern humans evolved in a worldwide population united by gene flow (Wolpoff 1989). Replacement “A single origin, outward migration of separate stirps, like the sons of Noah, and an empty world to occupy, with no significant threat of adulteration by other gene pools or even evaporating gene puddles” (Howells 1976). Admixture Expansion from a single origin, involving “encounters between populations of modern man and of other forms, with consequent gene flow” (Howells 1976; also: Brauer 1984, Smith et al 1989, Trunkhaus 2005). Fossils From Vindija Cave, Croatia Geneticists on admixture Consensus among geneticists during 1990s: little or no admixture between moderns and archaics. Eswaran et al 2002, 2005: argued for admixture Hawks et al 2006: Small amounts of admixture can have a big effect, because advantageous alleles are most likely to introgress. Green et al 2010: sequenced Neanderthal genome; showed that 1.3–2.7% of European genes came from Neanderthals. [current estimate 1.5–2.1%] Hominin tooth from Denisova Cave, Altai Mtns, southern Siberia Outline Nucleotide site patterns Ancestral allele (0) is shared with chimp. ◦ History of thought about archaic admixture I Inferring admixture from derived allele patterns and aDNA. I Inferring admixture from LD in modern DNA. Eur Afr Nea Chi # Nucleotide Site Pattern ae en an 1 1 0 1 0 1 0 1 1 0 0 0 303,340 103,612 95,347 Mutant allele (1) shared by two human populations. Pattern ae: most common; reflects history of population splits. Patterns en & an: how do they arise? Why does en exceed an? Population tree .... .... ... ... ... .. . .. . .. . ... .... .. . .. .... .... . .. ... .... .... ... ... .. .. . .. . .. . .. .... .... ..... ..... . .. . . . . .. .... .... ..... ..... .... ... ... ... ... ... .. .. ... ... ... ... ... .. . . . . . .. . ........ .... .... .... .... ..... .. . .. ... .... .... .... .... .... . . A E N C A, Africa; E , Europe; N, Neanderthal; C , chimpanzee Incomplete lineage sorting Pattern an Pattern en ... ... ... ... ... ... ... .... ... ... .... ... . . . . . . .. .. ......... ..... .. .. ......... ..... .. . .... ..... .... .. . ...... ..... .... .. ..... ..... .... ... .. ...... ..... .... ... .. ..•........... .... ..... .... .. .......•...... .... ..... .... . . . . . . . . . ... . ... .. ............ .... .... ..... .... .. ............ .... .... ..... .... .. .. ............ ..... .... ..... ..... ..... .. .. ............ ..... .... ..... ..... ..... . . . .. ...... . ... .... ... ... .... ... .. ...... . ... ... ... ... .... ... .. ............. ..... ..... .... .... ..... .... .. ............. ..... ..... .... .... ..... .... . . . . .. . . .. . .. . . .. . . . . . .. . .. .... ..... .... .... ..... .... .... ..... ... .. .... ..... .... .... .... .... .... ..... ... .. .. ..... .... ..... ..... .... ..... .... ..... ..... ..... .. .. ..... .... ..... ..... .... ..... .... ..... ..... ..... . . . . . . . .. ... .. .. ... ... ... .... ... ... .... ... .. ... .. .. ... ... ... ... ... ... .... ... .. ... .. ... ... .. ... ... .. ... ... ... .. ... .. ... ... .. ... ... .. ... ... ... A E N C A E N C 1 0 1 0 0 1 1 0 These two should be equally common Embedded gene genealogy with mutation .... .... .... . .. . ... .... ... .. . ..... ..... ..... . . . . .. ..... ..... ..... .... .. .. .......... ... .... ..... .... .. ... ... ... ... .... ... .. ..... ...... .... ..... ..... ..... . . . . . . . . .. ..•.. ..... ..... .... .... ..... .... .. .. ......... ... ..... ..... .... .... ..... .... . . .. ... .... ... ... ... ... ... .... .. .. ..... ..... .... .... ..... .... ..... ..... ..... . . . .. . .. .. .. . . . . .. .... ... .... ..... .... ... .... .... .... ..... .... ... .... .. ... ... ... .... .... ... ... .... ... A E N C 1 1 0 0 I Genealogy of 4 genes shown in color. I Bullet (•) marks mutation from allele 0 to allele 1. I Descendants of mutant have allele 1; others have 0. I Gene genealogy matches phylogeny I Mutant allele shared by closest relatives, A and E . Nucleotide site patterns again European African Neanderthal Chimpanzee # sites Nucleotide Site Pattern ae en an 1 1 0 1 0 1 0 1 1 0 0 0 303,340 103,612 95,347 Common pattern (ae) reflects history of population splits. Absent admixture, the other two should be equally common Why does en exceed an? Neanderthal admixture inflates en site pattern Admixed locus .. ... .. .... .... .... . .. .. ......... ..... . . . . . . ... ... .. ..... ....... ..... .... . . . . . .. .. .. ........ ... .... .... .... .. .. ..... ..... .... .... ..... .... . . . .. ... . .... ... ... ... ... .. ..... ....... •..... .... ..... ..... ..... . .. . . . . . .. . .. .... .... ... ...... .... .... .... .... .. .. ..... .... ..... ........... ..... .... ..... .... . . . .. ... .. ... .. ................ .... .... ..... ..... .. .. .. ................... ... ... .. ..... ... ..... .........................m . . . .. .. .. .. ... .. .. .. .. ... ... ... A E N C 0 1 1 0 Not admixed .. ... .. .... .... .... . .. .. ......... ..... . . . . . . ... ... .. ........ ....... ..... .... . . .•. . . .. .. .. ........ ... .... .... .... .. .. ............... .... .... ..... .... . . . .. ....... ... ... ... ... ... .. ................. ..... .... ..... ..... ..... . . . . .. .. . . .. . .. ........ .... ... .... .... .... .... .... .. .. ..... ..... .... ..... ..... ..... .... ..... .... . . . .. ... .. .... ... .. ..... ..... .... .... ..... ..... .. ..... ... ..... ..... .............m ............. ... ... ... ... ... . .. .. .. .. .. .. .. .. .. .. .. .. A E N C 0 1 1 0 A statistic for estimating admixture Jne − Jan Jea − Jan 103, 612 − 95, 347 = ≈ 0.0397 303, 340 − 95, 347 λ−δ ∼ m λ−ζ ≈ 1.2m Q = where m is rate of admixture; λ is archaic separation time; δ is time of admixture; ζ is separation time of Africa and Eurasia. Key: A, Africa; E , Europe; N, Neanderthal; C , chimpanzee. Estimate from Neandertal DNA I Denisovan DNA most common in Australia, NG, and Oceania DNA of modern Eurasians is 1.5–2.1% Neandertal (Prüfer et al 2014). I Same is true for modern people of east Asia and Papua New Guinea, but not Africa. Green et al (2010) I Admixture must have occurred after moderns left Africa but before they expanded throughout the world. I Eurasian introgressed segments most similar to Neanderthal from Caucasus. (Prüfer et al 2014) Outline Using LD to discover admixed chromosome segments ◦ History of thought about archaic admixture 1. Recent introgression → modern genomes should contain long segments archaic chromosome. I 2. These segments should differ a lot, because of the long separation time. ◦ Inferring admixture from derived allele patterns and aDNA. Inferring admixture from LD in modern DNA. OAS1 innate immunity locus I two forms of gene in Melanesia: I one shared with rest of world I one only in Melanesia Melanesian OAS1 allele w/i Melanesia Worldwide frequency of Melanesian OAS1 allele Melanesian OAS1 allele is old yet young I I I The 2 alleles differ at many nucleotide sites ⇒ separation time ∼3.4 my. Long (90 kb) LD block ⇒ they’ve been together only ∼25 ky Melanesian allele matches that in Denisovan hominin skeleton. ⇒ archaic admixture into Melanesia Method of Vernot and Akey (2014) 1. S ∗ statistic (Plagnol & Wall 2006) uses modern LD to find candidate introgressed segments. 2. Accept candidate if matches Neanderthal sequence better than chance. 3. Studied 379 Europeans and 286 East Asians. 4. Found 15 Gb introgressed sequence spanning 20% of Neanderthal genome. Neandertal segments in modern genomes red Asians blue Europeans Variation among individuals implies multiple matings between Neanderthals and moderns. (Vernot and Akey 2014) Barrier to gene flow between Neanderthals and moderns Introgressed segments rare in genomic regions where moderns differ greatly from Neanderthals. Neanderthal inserts rare where selection is strong Suggests partial reproductive isolation. Sankararaman et al (2014) Decreasing selection → History of population size from single diploid genomes: the pairwise sequentially Markovian coalescent (PSMC) PSMC with Neanderthal as well as Denisova (Meyer et al 2012) (Prüfer et al 2014) Estimated times to most recent common ancestor (TMRCA) Long stretches of low TMRCA ⇒ recent close inbreeding. (Prüfer et al 2014) Altai Neanderthal was very closely inbred All of these pedigrees are plausible. (Prüfer et al 2014) Long history of small population size Coding sequence variation in archaics Castellano et al (2014) study 17,367 protein-coding genes in several Neanderthals, the Denisovan, and several moderns. Even after removing the effects of inbreeding during the last few generations, the Altai Neandertal is still highly inbred. Neanderthals had low heterozygosity Species Neanderthal Population El Sidrón Vindija Altai Modern African European Asian Tree based on mutations (left) and drift (right) Heterozygosity ×1000 0.143 0.127 0.113 Neighbor-joining tree FST tree 0.507 0.387 0.358 Low heterozygosity ⇒ small population. Long runs of homozygosity ⇒ recent close inbreeding. Castellano et al (2014) Long archaic branches on FST tree ⇒ small population size. Castellano et al (2014) Selection less effective in Neanderthals Selection less effective in Neanderthals Many Neanderthal alleles have large effect on protein structure and are probably deleterious. (Castellano et al 2014) Summary I Different methods yield consistent estimates of archaic admixture. I Populations vary greatly in level of archaic admixture. I Neanderthal: all non-African populations have about same level (1.3–2.7%) of admixture. Suggests that admixture happened in one region. I Denisovan: highest levels found in populations far from Africa. Suggests that admixture accumulated gradually. I Multiple episodes of admixture into Europeans. I Partial barrier to gene flow. I Small archaic populations → many deleterious alleles.
© Copyright 2026 Paperzz