MATHEMATICS Tuesday March 7 2017 Second exercise class 1) Determine the parametric equation and the Cartesian equation of the plane Ο passing through π΄(1,1,1), π΅(1,0, β1), πΆ(0, β1,1). Determine the parametric equation and the Cartesian equation of the line π passing through π·(2,1,0) and orthogonal to Ο. Determine the parametric equation and the Cartesian equation of the plane Ξ² parallel to Ο and passing through πΈ(1, β1,3). 2) Given the matrices 1 0 2 0 β1 1 0 0 0 0 β3 β1 2) 0 β3 β1 π΄=( ) and π΅ = ( β2 β1 1 3 β2 0 1 3 0 0 0 β1 0 2 0 β1 Calculate: - π΄+π΅ - 3π΄ - π‘ππππ(π΅) - π΄π - π΄βπ΅ - π΅βπ΄ 3) Determine, if it is possible, the product between the indicated matrices. 0 1 3 1 - π΄=( ) and π΅ = ( ). 1 β1 0 β2 β1 0 0 1 β1 - π΄=( ) and π΅ = ( 0 β2). 1 0 β2 1 β1 0 1 β1 β1 0 - π΄=( ) and π΅ = ( ). 1 β1 0 β2 1 β1 1 0 1 0 β1 - π΄ = ( 1 0 β3) and π΅ = (β1 2 0 ). 0 3 4 0 1 β2 1 1 0 3 β2 - π΄ = (1 0 β2 ) and π΅ = (1 0 ). β1 2 0 0 β1 0 2 1 β1 - π΄=( ) and π΅ = (β2 0) β1 0 1 β1 - π₯ 1 β1 1 4) Given the matrices π΄ = ( ), π΅ = ( ), find a matrix π = (π¦) such that π΄ β π = π΅. 2 1 3 5) Given the matrix π‘ βπ‘ π΄=( ) 1 1βπ‘ for which value of t the determinant of π΄ is 0? 6) Given the matrix π‘ 6π‘ π΄ = (π‘ 2 + 9 0 2 π‘2 for which value of t the matrix A is symmetric? 2 6 β π‘) 1βπ‘ 7) Calculate the determinant of the following matrices. 2 1 - π΄=( ) 1 β1 5 3 - π΅=( ) 0 2 1 1 β1 - πΆ = (β1 2 β3) β1 3 4 β2 1 β1 - π· = ( 3 2 β1) 1 3 β2 β1 0 0 - πΈ = ( 0 2 0) 0 0 3 5 3 1 - πΉ = (0 β1 β2) 0 0 2 3 0 0 - πΊ = ( 2 1 0) β1 5 4 8) Calculate the inverse of the following matrices. 2 β1 3 1 3 π΄=( ) , π΅ = (0 1 2 ). β1 2 1 β2 β1 9) Determine for which values of Ξ± and Ξ² the following matrices are invertible. π½ 2 0 πΌ 1 π΄=( ), π΅ = ( 0 π½ 2 ). β1 βπΌ π½ 0 π½ 10) Decide if the following vectors in β4 are linearly independent. π£ ββββ1 = (1, β1,0,2), ββββ π£2 = (0, 1, β2,1), ββββ π£3 = (2, 0, β1,0). 11) Decide if the following vectors in β4 are linearly independent. π£ ββββ1 = (3, 1, β1,2), ββββ π£2 = (0, β1,2,1), ββββ π£3 = (6, 3, β4,3). 12) Decide if the following set of point in β2 is independent. π΄(1,1), π΅ = (2,1), πΆ(1, β3). 13) Decide if the following set of point in β3 is independent. π΄(1, β1,1), π΅ = (0, β2,1), πΆ(3,0, β1), π·(2,0,1).
© Copyright 2026 Paperzz