MATHEMATICS Tuesday March 7 2017 Second exercise class 1

MATHEMATICS
Tuesday March 7 2017
Second exercise class
1) Determine the parametric equation and the Cartesian equation of the plane Ο€ passing through
𝐴(1,1,1), 𝐡(1,0, βˆ’1), 𝐢(0, βˆ’1,1).
Determine the parametric equation and the Cartesian equation of the line π‘Ÿ passing through
𝐷(2,1,0) and orthogonal to Ο€.
Determine the parametric equation and the Cartesian equation of the plane Ξ² parallel to Ο€ and
passing through 𝐸(1, βˆ’1,3).
2) Given the matrices
1
0
2 0
βˆ’1 1
0 0
0
0
βˆ’3
βˆ’1
2)
0
βˆ’3
βˆ’1
𝐴=(
) and 𝐡 = (
βˆ’2 βˆ’1 1 3
βˆ’2 0
1 3
0 0 0 βˆ’1
0 2 0 βˆ’1
Calculate:
- 𝐴+𝐡
- 3𝐴
- π‘‘π‘Ÿπ‘Žπ‘π‘’(𝐡)
- 𝐴𝑇
- π΄βˆ™π΅
- π΅βˆ™π΄
3) Determine, if it is possible, the product between the indicated matrices.
0 1
3 1
- 𝐴=(
) and 𝐡 = (
).
1 βˆ’1
0 βˆ’2
βˆ’1 0
0 1 βˆ’1
- 𝐴=(
) and 𝐡 = ( 0 βˆ’2).
1 0 βˆ’2
1 βˆ’1
0 1
βˆ’1 βˆ’1 0
- 𝐴=(
) and 𝐡 = (
).
1 βˆ’1
0 βˆ’2 1
βˆ’1 1 0
1 0 βˆ’1
- 𝐴 = ( 1 0 βˆ’3) and 𝐡 = (βˆ’1 2 0 ).
0 3 4
0 1 βˆ’2
1 1 0
3 βˆ’2
- 𝐴 = (1 0 βˆ’2 ) and 𝐡 = (1 0 ).
βˆ’1 2 0
0 βˆ’1
0
2
1 βˆ’1
- 𝐴=(
) and 𝐡 = (βˆ’2 0)
βˆ’1 0
1 βˆ’1
-
π‘₯
1 βˆ’1
1
4) Given the matrices 𝐴 = (
), 𝐡 = ( ), find a matrix 𝑋 = (𝑦) such that 𝐴 βˆ™ 𝑋 = 𝐡.
2 1
3
5) Given the matrix
𝑑
βˆ’π‘‘
𝐴=(
)
1 1βˆ’π‘‘
for which value of t the determinant of 𝐴 is 0?
6) Given the matrix
𝑑
6𝑑
𝐴 = (𝑑 2 + 9 0
2
𝑑2
for which value of t the matrix A is symmetric?
2
6 βˆ’ 𝑑)
1βˆ’π‘‘
7) Calculate the determinant of the following matrices.
2 1
- 𝐴=(
)
1 βˆ’1
5 3
- 𝐡=(
)
0 2
1 1 βˆ’1
- 𝐢 = (βˆ’1 2 βˆ’3)
βˆ’1 3 4
βˆ’2 1 βˆ’1
- 𝐷 = ( 3 2 βˆ’1)
1 3 βˆ’2
βˆ’1 0 0
- 𝐸 = ( 0 2 0)
0 0 3
5 3
1
- 𝐹 = (0 βˆ’1 βˆ’2)
0 0
2
3 0 0
- 𝐺 = ( 2 1 0)
βˆ’1 5 4
8) Calculate the inverse of the following matrices.
2 βˆ’1 3
1 3
𝐴=(
) , 𝐡 = (0 1
2 ).
βˆ’1 2
1 βˆ’2 βˆ’1
9) Determine for which values of Ξ± and Ξ² the following matrices are invertible.
𝛽 2 0
𝛼
1
𝐴=(
),
𝐡 = ( 0 𝛽 2 ).
βˆ’1 βˆ’π›Ό
𝛽 0 𝛽
10) Decide if the following vectors in ℝ4 are linearly independent.
𝑣
βƒ—βƒ—βƒ—βƒ—1 = (1, βˆ’1,0,2), βƒ—βƒ—βƒ—βƒ—
𝑣2 = (0, 1, βˆ’2,1), βƒ—βƒ—βƒ—βƒ—
𝑣3 = (2, 0, βˆ’1,0).
11) Decide if the following vectors in ℝ4 are linearly independent.
𝑣
βƒ—βƒ—βƒ—βƒ—1 = (3, 1, βˆ’1,2), βƒ—βƒ—βƒ—βƒ—
𝑣2 = (0, βˆ’1,2,1), βƒ—βƒ—βƒ—βƒ—
𝑣3 = (6, 3, βˆ’4,3).
12) Decide if the following set of point in ℝ2 is independent.
𝐴(1,1), 𝐡 = (2,1), 𝐢(1, βˆ’3).
13) Decide if the following set of point in ℝ3 is independent.
𝐴(1, βˆ’1,1), 𝐡 = (0, βˆ’2,1), 𝐢(3,0, βˆ’1), 𝐷(2,0,1).