a chemosystematic analysis of tribes of asteraceae - IQ-USP

PhyrmkmMry, Vol. 26, No. 12,pp. 3103-31IS, 1987.
Printedin Great Britain.
6
0031-9422/8753.00+0.00
1987Pqamon Journals Ltd.
REVIEW ARTICLE NUMBER 27
A CHEMOSYSTEMATIC ANALYSIS OF TRIBES OF ASTERACEAE
INVOLVING SESQUITERPENE LACTONES AND FLAVONOIDS *
VICENTE DE
P.
EMERENCUNO,
ZENAIDE
S.
FERREIRA,MARIA AUXILIADORAC. KAPLAN and OTTO R. GOITLIEB
Instituto de Quimica, Universidadc de !%o Paulo, 05508 S&o Paula, SP, Brazil
(Rmeiwd 1 July 1986)
Key Word Index-Asteraozae; sesquiterpenc &tones; 0-glycosylflavonoidq 0-methylIIavonoids; biochemical
evolution.
Ah&act-The
correlation of oxidation levels and skeletal specializations of sesquiterpene lactones reported to occur
in genera of the Asteraceae suggest the distribution of the corresponding tribes along chemical gradients. The
evolutionary polarity of these gradients was established by concomitant consideration of the evolutionary replacement
of 0-glycosylflavonoids by 0-methylflavonoids. Information on structure and occurrence of sesquiterpene lactones as
well as of flavonoids was obtained in a literature survey up to 1984.
INTRODUCIION
Previous work [2,3] on the oxidation value (0) and the
skeletal specialization (S) of sesquiterpene lactones led
to the representation of evolutionary advancement parameters for tribes of Asteraceae (EAo, EAs) along two
gradients (Fig. 1). However, as is common in chemosystematic work, the evolutionary polarity adopted within the
gradients remained hypothetical. The present work aims
to apply or even to extend existing methodology in order
to verify if and how flavonoid-based data can he used in
the solution of the problem.
100
50
EA.
Fig. 1. Correlation of EA,, and E4 parameters for sesquiterpene lactones from tribes of Asteraceae, indicated by the three
initials of their names given in full in Table 2 and classified into
Lactuceae (triangle), Asteroideae group 1 (circles) and Astcroideae group 2 (squares). Also given arc EA,/EA, values.
*Part 32 in the series ‘Plant Chemosystematics and Phylogeny’. For part 31 see ref. Cl].
c:no
EAo = lOO-
CZN
DEFINITIONS AND METHODS
Evolutionary Advancement Indices for selected taxa
(here tribes) with respect to oxidation values of rings A
and B of flavonoids (EAo,, EAo,) were determined as
described for other classes of compounds 143. Another
form of presentation of flavonoid data concerns the bs
and Aos values, i.e. the differences between the highest and
the lowest oxidation values of rings A and B of tlavonoids
isolated from the chosen taxa (here tribes). In order to
facilitate comparisons, the EA,, and EAoa values are
given in percentages of the highest observed value and the
A indices are given in percentages of the largest difference
between highest and lowest observed values for a tribe. In
the case of sesquiterpene lactones, as in the previous paper
[3], not only EAo values (based on the oxidation levels of
the compounds) but also EAs values (based on the
skeletal specialization of the compounds) are used.
Evolutionary Advancement Indices for selected taxa
(here tribes) with respect to 0-glycosylflavonoids (EA,),
0-methylflavonoids
(EAu) and flavonoids with some
of their hydroxyls protected (EA,) are calculated by
Equations 1.2 and 3 respectively. N represents the total
number of flavonoids (irrespective of the presence and the
nature of the substituents) isolated from each of the
specieso,b..
. z of a given tribe; n represents the number
of flavonoids substituted by at least one 0-glycosyl unit
(Eq. I), at least one O-methyl unit (Eq. 2) and possessing
specific P values (P = number of protected OH groups/
total number of oxy-groups) (Eq. 3) isolated from each of
0%. I)
3103
&
EA,=~CJO~:~
(Eq.2)
B
EA,=loOc:N
(Eq.3)
3104
V.
DE
P. EMERENCIANO
et d.
thespeciesu,b..
. z of the same tribe. The determination
of these flavonoid parameters is exemplified in Table 1.
In the above calculations, tribes are considered to be
collections of species. The same applies to ‘number of
Table 1. Determination
5
3
OH
OH
OH
OH
OH
OH
OH
OH
OG
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
6
occurrences’ (Table 2) i.e. a particular flavonoid, reported
for x species of the tribe is counted x times in the
calculation of this ‘number’. Flavonoids of all types
(aurones, chalcones, flavones, flavonols, dihydro-
of llavonoid parameters exemplified by the composition of spe&s (A-P) belonging to Lactuceae
Flavonoid substitution
7
2
3
OH
OH
OH
OH
OH
OG
OG
OG
OH
OG
OG
OG
OG
OG
OG
OG
4
OG
OG
OG
OH
OH
OH
Oci
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
N for tribe LAC=16; EAo=100(15/16)-94;
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
5
Occurrence
ingenera
Heywodiella
Heywoodiella
Heywoodiella
Hieracium
HkTaChun
Hferacium
H&WCilml
Hispidella
Loctuca
Sonchw
Sonchw
=WVW~
Zhgopogon
lhgopogon
Luunea
Luunea
species
n,
n,
n,
a
b
:
1
1
1
0
0
0
f
01
0
::
1
0
i
j
k
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
l/6
l/6
l/6
l/5
O/6
l/5
l/4
l/5
l/5
l/5
l/5
l/5
l/5
l/5
l/3
l/4
1
m
xl
0
P
EA,=O, EA,=3.13/16~0.195.
Table 2. Chemical parameters in percentages for fhvonoids from tribes of Astemceae
Number of
Tribe
EAob,
%a
Lact-+
36.5
(0.15)
38.7
(0.16)
95.4
(0.31)
76.7
(0.27)
(;I)
(Z)
Vcrnonieaet
4M
An-1
6:)
56.2
(0.23)
59.4
(0.16)
Amicineaet
As\Jtereaet
(0”;:)
35.3
(0.14)
Calcnduleae $
Eupatorieaej
(Z,
37.7
(0.15)
HClhth~$
Inukae$
Tageteac$
(Z)
624
(0.25)
58.5
(0.24)
100.0
(0.41)
(?:I
42.8
(0.W
100.0
(0.33)
45.4
(0.11)
224
(0.01)
27.1
(0.03)
57.9
(0.16)
61.5
(0.17)
EA,
0
(OZ
97.0
20
71.0
5.0
0
70.0
49.0
54.0
(0:
0
Mutisieaet
w,
94.0
75.0
(1.W
caKlucact
4Ja
(0:
100.0
(1.33)
25.0
(0.33)
100.0
(1.33)
(:I
100.0
(1.33)
100.0
(1.33)
100.0
(1.33)
(O?;
25.0
(0.33)
20.0
80.0
15.0
79.0
100.0
loo.0
8.0
80.0
44.0
59.0
EA,
31.0
(0.19)
58.0
(0.37)
67.0
(0.46)
53.0
(0.34)
oaxmxlces
-
16
238
80
13
195
(::,
63.0
(0.4tJ
81.0
(0.52)
620
(0.40)
100.0
(0.64)
10
109
3
180
289
(GY,
28.0
109
68.0
90.0
35.0
33.0
33.0
(CY)
57.0
(0.37)
22
8
+Subfamily Cichoriodeae; subfamily Astcroideae, tgroup 1; $group 2 [7’J.
Values of EAoA, EAos [4], Aoo*,Ao, [3] and EA, (in parentheacs) were calculated by the direct application of the
respective equations; and transformed into percentages as explained in the text.
Sesquiterpenclactones and Ravonoidsof Asteracuz.
flavonols) are counted indiscriminately. The data bank for
flavonoids of Asteraceae was compiled from surveys of the
literature given in two books [S, 63 and completed up to
1984 in the style adopted in the latter of these compendia
(Tables 36).
3105
RESULTS
The evolutionary histories of rings A and B of flavonoids are not necessarily connected. Indeed both the
biosynthetic pathways, respectively the polyketide and
Table 3. Flavones and flavonols in Asteraceae, reported between 1981 and 1984
Substitution
5,6,7,4’-Telra-OH
6,7,4’-ki-Me
&Me
6,7di-Me
5,6,7,3’,4’.5’-hexa-OH
6,3’di-Me
6,3’,5’-lri-Me
6,3’,4’-lri-Me
6,7,3’.5’-lelra-Me
5,6,7,3’,4’-penta-OH
6,3’,4’-lri-Me
6,7,3’,4’-lelra-Me
6,7,3’&-Me
6.7di-Me
6-Me
7-G
5,7,3’,4’-lelra-OH
3’,4’di-Me
7-G
7,3’di-Me
5,7/V-lri-OH
7-G
6,8di-C-G
7,4’di-Me
4’-Me
8-C-G
‘Idi-G
6,7,3’,4’,5’-penla-OH
6,5’di-Me
6,3’,5’-lri-Me
5,6,7,2’,4’,5’-penla-OH
6,S’di-Me
7,3’,4’,5’-lelra-OH
S-Me
5,7,3’,4’.5’-penla-OH
3’,5’dLMe
3,5,6,7,3’,4’-hexa-OH
3.6.3’~k-Me
3,6,7,3’,4’-pen&Me
3,6di-Me
3,6,7,3’-lelra-Me
3,6,7,3’,4’-pen&OH
&Me
3,6,7-k-Me
*Tribes
Ant
Plant source
Genera
Ref.
Artemisia
Ursinia
Artemisia
Artemisia
10
11
15 13
14
Artemisia
Artemisia
Artemisia
Artemisia
12
12, 14
15, 12
13
Artemisia
Artemisia
Artemisia
Artemisia
Tanacetum
Artemisia
Artemisia
Chrysanthemum
Artemisia
Artemisia
Artemisia
Chrysanthemum
Artemisia
Artemisia
chrysanthemum
chrysanthemum
Matricaria
Otanthus
Artemisia
Artemisia
Artemisia
Lowanthemum
Chrysanthemum
12,17
14
14,18
12, 19,20
21
12, 19
22
23
12
12
12
24,25
20
12
23
23,24
26
26
27
20
20
28
24
Artemisia
Artemisia
15
15
Artemisia
15
Artemisia
15
Artemisia
14
Tanacetum
Matricaria
Achilka
Artemisia
Tanacehtm
Artalrh
Artemisia
Matricaria
Matricaria
21
29
30
31
32
18
33. 34
29
29
V. DE P. EM~RENCL.~NO
et al.
3106
Table 3. (Conthud)
Subdtution
*Tribes
3,6di-Me
6,7diMe
6,3’-&Me
3,5,6,7,4’-penta-OH
6,7-d-Me
3,5,7/I’-telra-OH
~-MC
Plant xource
Genera
Matricaria
35
35
29
ArtekSiR
36
A?%M.dU
chrys4mthemum
Tanncetwn
12
24
18
36
10
12
32
Artemisfo
15
ArtemisiU
1s
Artemisia
Arkmisia
Artemisia
Artemisia
Matricaria
15
22
12,31
15 31
38
Artemisia
Tanacetum
36
32
Arnica
39
Ati
Arnfco
39
39
Amica
39
Arnica
An&a
39
39
Gutierrezia
Gutierrezh
Gutierrezia
40
40
40
HadwvpLF
HapropOppw
Hwbvpu
Gutierrezia
Gutierrezia
Huplopoppcs
Hapkvpuc
Huplopappcs
Hwlopappw
Haplopappcs
HupkvpIs
Hwlopnppw
40
40
41,42,43
40
40
41,42,43
41, 42.43
41
41
41
41,4z, 45
43,45
MtXt?iCario
Marricmia
Altemisio
~-MC
3,5,7,3’,4’-pen&OH
3,3’di-Me
3,Ydi-Me
6,7,3,3’-ma-OH
3,6dLMe
3.6,7,3’,4’-penta-OH
3,fLdLMe
395*69798.4’-hcxa-OH
3.6,3’,4’-telra-Me
3,5,6,3’,4’-hexa-OH
3,6,3’,4’-lem-Me
6,7,4’-lri-Me
S$di-OH
5,6,7,4’-lelra-OH
6,7di-Me
6-Me
5,7,4’-&i-OH
4’-Me
5,6,7,4’-lelra-OH
6$di-Me
&Me
5,47,3’,4’-penta-OH
6,3’di-Me
3,5,6,7.4’-penla-OH
6-Me
6,4’di-Me
3,5,6,7,8,3’,4’,S’-octa-OH
3.6,7,8,4’-pen&Me
395961798,4’-hexa-Me
3,6,8,4’-lelra-Me
3,5,7,3’,4’,5’-hexa-OH
Y,Ydi-Me
3,3’,4’-lri-Me
3,S,7,3’,4’-penla-OH
3,3’di-Me-4’~i-Mebut
3,3’di-Me-4’~i-Val
3’-Me
3-G
7ydi-Me
3,3’di-Me
3,7di-Me
3-Me
3-G-3’-Me
3,5,6,7,3’,4’-hexa-OH
3.6dLMe
3.6,4’-k-Me
3,5,7-tri-OH
3-Me
3,5,7,4’-letra-OH
3,5,7,4’-tctra-OH
3-Me
Artemisia
ChrJWtllheWlUm
Artemisia
Am
Axt
Ref.
45 46
46
41
46
Sesquitcrpenc lactonea and llavonoidx of Asteraaac
3107
Table 3. (Contin&)
Substitution
,Tlibcs
Ref.
43
46
7-Me
3,5,7,3’,4’,5’-hcxa-OH
3.5,6,7,4’-penta-OH
3,6dLMe
5.6.7.8.4’~pen&OH
6.7,8-k-Me
5,6.7,4’-tetra-OH
7,4’dLMe
6-Me
6-G
5,7/l’-tri-OH
7,4’di-Me
J-Me
7-Me
6.8di-C-G
5,7,3’,4’-tetra-OH
3’,4’dLMe
3’-Me
4’-Me
3,5,6.7,8,3’,4’-hepta-OH
3,6,7,3’-tetra-Me
3,6,7.8,3’-penta-Me
3,5,6,7,3’,4’,5’-hepta-OH
3,6,7,3’-tetra-Me
3,5,7/I’-k&a-OH
3-Me
7-Me
3-G
3,6,7,8,3’,4’-Hexa-OH
6,7,8,3’-tetra-Me
5,6,7,3’,4’-penta-OH
&Me
5.7,3’,4’-tetra-OH
7-G
3,5.7.3’,4’-penta-OH
3,5,6,7.3’,4’-hexa-OH
6-Me
6-Me-7-G
6-Me-7-G
3,5,7,4’-tetra-OH
7-Me
5,7,4’-t&OH
7-G
5,6,7,3’,4’-penta-OH
6,7dLMe
6-Me
6,3’di-Me
6,7,3’,4’-tetra-Me
5,7,3’,4’-tetra-OH
5,6.7.4’-tetra-OH
6,7,4’-tri-Me
6,7di-Me
6-Me
6,4’di-Me
5.7.4’~tri-OH
7-G-4’-Me
5,7,8,4’-tetra-OH
8-Me
5,7,4’-tri-OH
7-G
Plant soua
Genera
H&wvw
42
BoCChoris
47
Bacchmis
Hapkwpus
Haplopoppus
Bacchmis
Bacchmis
Baccharis
Baccharis
Hadwvw
47
46
46
48.49
48,49
649
48,49
43
&rcChllTiS
49
42
46
fWwvpcs
fWwvpus
BilCChiS
50
51
Gutiewezia
50
Gutieweria
15
15
45
BMChlUi.9
52
43
Cenmwea
53
53
Centaurea
Centaurea
Centaurea
53
53
53
Centaurea
Centawea
Centawea
53
53
53
Centaurea
Centaurea
Amberboa
Amberboa
Amberboa
Amberboa
AmberbOa
Amberboa
Cirsium
Saussurea
Sawurea
Cirsfw
Cirsium
53
53
55
56
54
54
54
54
57
58
58
57
59
Centaurea
60
Luunea
61,62
centaurea
Cic
3108
V. DE
P.
EMERENCIANO et al.
Table 3. (Continued)
Substitution
5,7.3’,4’-tetra-OH
7-G
5*6.7.892’,3’,4’,5’,octa-OH
5363798.2’,3’,4’,5’,octa-Me
5,6.7,2’,3’,4’,5’-hepta-OH
5,6,7,2’,3’,4’.5’-hepta-Me
5,6.7,8,2’,4’,5’-hepta-OH
5,6,7,8,2’,4’,5’-hepta-Me
596.7.8.3’,4’-hexa-OH
5,6,7,8,3’,4’-hcxa-Me
5.6,7,8,3’-penta-Me
5.6,7,3’,4’-penta-OH
6.7.4’~tri-Me
6-Me
6,7-di-Me
6.7,4’-tri-Me
6,4’di-Me
6,3’di-Me
5,6,7,4’-tetra-OH
6-Me
6,7,4’-tri-Me
6,7dLMe
6,4’di-Me
5.7,3’.4’-tetra-OH
7-Me
*Tribes
Eup
Plant source
Genera
Luunea
62
Ageratum
63
Ageratum
63
Ageratum
63
Eupatorium
64
64
Eupatoriw
Ldoloena
Brickellia
Brickellia
Brickellia
Brickellia
Eupatorium
Brickellia
Brickellia
Aristeguetia
Brickellia
Eupatoriwn
Chromolaena
7-G
5.6,7,2’,4’,5’-hexa-OH
6,5’di-Me
3.5,7,3’,4’-pmta-OH
7-Me
Stevia
BriCkellia
Brickellia
Chromolaena
Euptoriw
3-G
3-G-3’-Me
3-Me
3.7-d&Me
3159697.3’,4’-hexa-OH
6.7.4’~tri-Me
3,6,4’-tri-Me
3.6,7,3’,4’-penta-Me
Brickellin
3,6,7,4’-tetra-Me
Brickellia
BriCkellia
Brickellia
Brickellia
Brickellia
Brickellia
Symphyopappuc
Brickellia
3-G3-Me
Brickellia
3-G-6.7-di-Me
3-SO,-6-Me
3-SO,-6,7-di-Me
6.7-di-Me
Brickellia
BriCkellia
Brickellia
Eupatoriwn
Chromolaena
3.6,7-tri-Me
3,6di-Me-7-G
3,6,3’,4’-tetra-Me
6,7di-Me
3,6,7,3’,4’-penta-OH
&Me
3,6,7,4’-tetra-Me
3,6,7,3’-l’-pcnta-Me
3-G-6,7di-Me
3-G-6,7,3’-tri-Me
6,7,4’-t&Me
3-S0,-6,7,4’-t&Me
3,7,3’-tri-Me
Ref.
Brickellia
Brickellia
Brickellb
Brickellh
Brickellia
BTiCkellio
BridWllh
BriCkellia
BTidWllia
Brfckllia
Brickellia
Chromolaena
65
66
66
66,67
67
68
67
66.67
69
66
70
70
71
72
73
70
70
66
66
73
73
67
67,71
74
67
67
67
67
67
67
70
70
73
73
73
73
66
66
66
66
66
66
66
75
Scsquiterpene
la&ones and llavonoids of Asteraceae
3109
Tabk 3. (Continued)
Plant .9ource
Substitution
*Tribes
Ref.
3,5,7-t&OH
3,5,6,7-tetra-OH
6-MC
3.4979893’,4’-hcxa-OH
3,7,8,3’-tetra-Me
3,5,7,4’-tetra-OH
3-G
ChWldW?M
76
chr0mo1aeM
76
ChrOmOlW?M
75
s&via
3-Me
Acrttopappus
3.7di-G
7-G
3,5,6,7,4’-penta-OH
3-G-6-Me
3-G-6,7di-Me
3,6,7-h-Me
5,6,7.8-tetra-OH
5,6,7,8-tetra-Me-3’,4’-O&H,
Eupatorim
71
77
78
78
Euputorium
Brickellia
Brickdlia
Brickellia
Ageratum
Eupatorium
5,6,7,8.5’-penta-OH
5.6.7.8.5’~penta-OH-3’,4’-O&H,
Ageratum
Eupatotium
c0noc1inium
5,7,4’-hi-OH
7-G
4’-Me
4-G
3.5.6.7.4’~penta-OH
3,7di-Me
7-Me-7-G
3.516.7.3’,4’-hcxa-OH
3-Me-7-SO,
3,6di-Me
3,7di-M&-G
3-Me-6-G
7-G-6,3’di-Me
6-Me-7-G
Goyamnthus
Eupotorium
Eupatorium
stevia
Hit
Neurolaena
Neurolaena
Neurolaena
Neurolaena
Neurolaena
Neurolaena
Neurolaena
Clibadiwn
Neurolaena
Desmanhodium
Neurolaena
Desmunthodium
Clibadium
Neurolaena
Neurofaena
7-G
3.7~d&Me
3,6-di-Me-7-G
7-G-3’-Me
Desmanrhodium
Clibadium
3,5,6,7,4’-penta-OH
3-Me
3,7di-G
7-G
3-G
Neurokww
Ye&Sin0
c1ibadium
Ve&?sina
Clibadium
3-G
3-G
3,5,7,3’,4’-pen&OH
lchthyothere
Heliopsis
Inu
Helichrysum
Achyrocline
3-Me
3-G
3,3’di-Me
3-G
3,5,6,7,&penta-OH
6.7,~h-Me
3,6,8-h-Me
3,6.7,&tetra-Me
Achymcline
PdiCa?.ia
DitriChi~
Heltchtysum
Achyrocline
GlWphaliM
Gnaphalium
66,37
66
73
63
64
63
64
79
80
78
78
71
81
82
81
82
81,82,83
82
82,83
84
82
82
81,82,83
85
84
82,83
83
85
84
82
86
84,85
86
88,85
89
90
91
92
92
93
94
95, 96
97
98
99
3110
V. DE P. EMERENCIANO et al.
Table
3. (Continued)
Substitution
*Tribes
3,6,7-t&Me
6.7,~~tri-Me
6,8di-Me
3,7,8-tri-Me
3,5,7,8-tetra-OH
3,7,8-tri-Me
7,8di-Me
3,8di-Me
3,5,7-tri-OH
3-Me
3-Me
3,5,6,7-tetra-OH
3,7di-Me
3,6di-Me
3,5,6,7,3’,4’-hexa-OH
3,6,7,3’,4-penta-Me
3,7di-Me
3.5.7~tri-Me
3,5,7,3’-tetra-Me
3,7,4’-tri-Me
3,5,6,7,4’-penta-OH
3,7di-Me
3-Me&G
3.6.7~k-Me
3,5,7,8,4’-penta-OH
3,7-di-Me
5,6,7,8-tetra-OH
6,7-di-Me
5,6,7,8-tetra-OH
6,7-d&Me
5,7,4’-tri-OH
7-G
4-G
5.7,3’,4’-tetra-OH
7-G
5,6,7,3’,4’-penta-OH
6,3’di-Me
5,7,8-t&OH
7,8di-Me
3,7,4’-tri-OH
3,5,7,4’-tetra-OH
7-Me
3,7-di-Me
3,5,7-tri-OH
7-Me
3,5,7,3’,4’-penta-OH
3,3’di-Me
3,7di-Me
Y-Me
3,5,7,3’,4’-penta-OH
3-G
3.5,7,3’-tetrd-OH
3-G-3’-Me
3,5,7,4’-tetra-OH
7-G
3,5,6.7,4’-penta-OH
7-G
Mut
Sen
Tag
Plant source
Genera
Ref.
Gnaphalium
Helichryswn
Helichrysum
Achyrocline
100
101
101
102
Achyrocline
Achyrocline
Helichrysum
Gnaphalium
Achyrocline
Achyrocline
Helichrysum
97, 102
97
103
104
92
92
96, 101
Helichrysum
Gnaphalium
105
99
Helichrysum
Pluchea
Pulicaria
Pulicaria
Pulicaria
Pulicaria
106
107
93, 108
93
93
108
Pulicaria
Pulicaria
Pulicaria
108
108
108
Pluchea
107
Gnaphalium
100
Gnaphaliwn
Gnaphalium
Helichrysum
Gnaphalium
Gnaphalium
Helichrysum
Gnaphalium
Gnaphalium
loo
104
91
96,104,109
%
96
104
104
Gnaphalium
104
Achyrocline
Helichrysum
Trixis
Trixis
Gochnatia
102
109
110
110
111
Trixis
111
Gochnatia
Gochnatia
Gochnatia
111
111
111
Senecio
112
Senecio
Tagetes
Tagetes
Tagetes
Tugetes
112
113
113
113
113
Sesquiterpene &tones
3111
and flavonoids of Asteraceae
Table 3. (Continued)
*Tribes
Substitution
3,5,6,7,3’,4’-hexa-OH
5,6,7,3’,4’-penta-OH
5-Me
Plant source
Genera
Ref.
Tagetes
113,114
Tageres
115
l Here and in Tables 46
tribes are represented by the three initial letters of their
names (see Table 2).
Table 4. Dihydroflavonols in Asteraceae, reported between 1981 and 1984
Substitution
5,7di-OH
7-Me
5,7/l’-t&OH
7-Me
7-G
3,5,7,4’-tetra-OH
7-Me
5,7/V-t&OH
7-Me
3,5,7,3’,4’-pen&OH
~-AC
5,7,3’,4’-tetra-OH
3,5,7,4’-tetra-OH
~-AC+
5,6,7-t&OH
5,7di-Me-3’,4’-OCH,
5,6,7,3’,4’-pen&OH
5,7,3’.4’-tetra-Me
5,7,3’-&i-Me
5,7-di-OH
3,5,7-tri-OH
3,5,6,7-tetra-OH
&Me
5,7/t’-tri-OH
7,4’di-Me
7-Me
4-Me
3,5,6,7,4’-penta-OH
6,4’dii-Me
6,7-di-Me
5,7,3’,4’-tetra-OH
7.4’dLMe
7,3’di-Me
5.74’~tri-OH
7-G
Tribes
Ant
Ast
Pup
Plant source
Genera
Artemisia
Artemisia
chrysanthemum
Artemisia
Chrysanthemum
Artemisia
Baccharis
BUCChariS
Baccharis
Baccharis
116
116
Baccharis
116
Ageratum
117
Ageratum
117
117
76
76
chr0ma1aena
Mikania
Stevia
Mikania
Mikania
the shikimate routes leading to these rings, and the
modification reactions are independent [4]. For this
reason the chemosystematic parameters (Table 2) refer
separately to EAoA and Ao,, and to EAos and Aon. The
correlation of Aoa and Aoa (Fig. 2) is instructive, chiefly if
13
13
23
13
23
13.36
116
116
Ageratum
Chromolaena
Chronwlaena
Ver
Ref.
76
118
68
119
118
Eupatorium
Eupatorium
120
Lychnophora
Piptocarpha
121
122
120
compared with Wagenitz’s classification based on morphological criteria [7].
Wagenitz divides the Asteraceae into Cichorioideae
(tribe Lactuceae) and Asteroideae. the latter subfamily
being further divided into two groups of tribes. Lactuceae
3112
V.
DE
P.
EM~S~ENCIANO
et al.
Table 5. Chakones in Asteraceae, reported between 1981 and 1984
Plant source
Substitution
Tribts
3,4’,6’,trkOH
4’-Me+-O,CH,
2’,4’,6’-&i-OH
4’,5’,6’,4,5-penta-OH
4-G
4’,6’,4-hi-OH
4-G
4’,6’,4,5-tctra-OH
4-G
2’,3’,4’,6’,4-pen&OH
5-GclXIlyl
2’,4’,6’-&i-OH
5’-Prenyl
4’-Me-S’-Prenyl
2’,6’dLOH
4’-Prenyl
Ref.
Eup
ApZTattUVl
Ch?omOh?lUl
117
76
Hlt
CliblldiWn
Zinnia
88
123
Clibadium
88
CIibadium
88
Helichrysum
124
Pleiotaxus
Pltitprus
125
125
Pleiotaxus
125
Mut
Table 6. Auroncs in Astemceae, reported between 1981 and 1984
Substitution
Tribts
4,6,3’,4’-tetra-OH6-G
6,3’,4’-k-OH 6-G
Hlt
Hlt
is said to be closer to group 1 and Anthemideae. although
placed into group 2 is considered to occupy an intermediate position between both groups. The flavonoid data are
consistent with this scheme (Fig 2). Indeed the tribes
Vemonieae, Cardueae and Mutisieae, all belonging to
Asteroideae group 1, as well as the subfamily Cichorioideae (Lactuceae) contain flavonoids with smaller oxidative variation of both A and B rings; while the tribes
Heliantheae, Inuleae, Eupatorieae and Astereae, all
belonging to Asteroideae group 2, contain flavonoids
with relatively greater oxidative variation of both rings.
Only the tribe Senecioneae, considered by Wagenitx to
belong to Asteroideae group 2, is exceptional with respect
Plant source
Genera
Clibadiwn
Zinnia
Cw670
E%
l u&It 53.0
50
88
123
to the oxidative variation of its flavonoids. This is not
surprising. Sesquiterpene lactone data for Senecioneae
are also abberrant (Fig. 1).
Jointly with A. values, evolutionary advancement
parameters concerning hydroxyl protection for flavonoid
containing tribes (EA,) also increase upon passing from
tribes of Asteroideae group 1 to tribes of Asteroideae
group 2 (Fig. 2). Under the term protection both forms of
hydroxyl stabilization, 0-glycosylation and O-methylation, are considered together. It is even more instructive
to consider each of these protective devices separately. To
this end EA, and EA, values are calculated for each tribe.
A graphical correlation of these parameters (Fig 3) shows
a surprisingly clear negative correlation. In a general way,
upon passing from tribes of Cichorioideae and Astero100
.
Ref.
i
LOC
VW
l sml
.
car
I
A 08
100
Fig. 2 Correlation of AoA and Aoe parameters for flavonoids
from tribta of Asteraceac (for meaning of symbols see Fig. 1).
Also given are EA, values.
Fig. 3. Correlation of EA, and EAMparameters for flavonoids
from tribes of Astcraceae (for meaning of symbols see Fig. 1).
Scsqtitcrpenc
lactones and Bavonoids of Astcraceae
ideae group 1 to tribes of Asteroideae group 2,0-glycosylation diminishes in favour of 0-methylation. Again
Senecioneae show an aberrant result, producing more
0-glycosylflavonoids and less 0-methyltlavonoids than
expected for a tribe of Asteroideae group 2.
Upon superimposing for tribes of Asteraaae, flavonoid data (EAJEA,) on the sesquiterpene lactone EAo /
EA, correlation (Fig. 1) some striking regularities are
observed. Thus Cichorioideae (EA, /EA, =94/O) are also,
with respect to flavonoid protection, close to Vernon&e
(97/2), a tribe of Asteroideae group 1 in which O-glycosylflavonoids predominate vastly over 0-methylflavonoids.
From Vemonieae onwards along gradient 1 a decrease in
0-glycosylation and an increase in 0-methylation of
flavonoids is observed: Cardueae (71/5), Mutisieae (O/70).
To our knowledge no flavonoids have yet been reported
from Liabeae and Arctoteae. An analogous decrease of
0-glycosylflavonoids vs increase of 0-methylflavonoids
is observed for the tribes of gradient 2: Anthemideae
(49/54), Heliantheae (44/59), Amicineae (20/80), Inuleae
(28/68) and Astereae (15/79). Again considering EA, /EA, values, Eupatorieae (8/80) should follow Astereae.
This is a relevant fact since Eupatorieae have been placed
by Wagenitz into Asteroideae group 2. On sesquiterpene
lactone EA, (skeletal specialization based) data Eupatorieae are indeed closely related to Inuleae and
Astereae of gradient 1. On sesquiterpene lactone EA,
(oxiation value based) data Eupatorieae are closely
related to Vernon&e of gradient 1.
DISCUSSION
Plant antiherbivore defence is only favoured by natural
selection when the cost of production is less than the
benefit of enhanced protection [8]. If glycosylation of
phenolic hydroxyls involves more energy commitment
than methylation, a rationale exists for the switch from
glycosylation to methylation. The observation, reported
for Parthenium species (Asteraceae) [9], is consistent with
previous opinions on the nature of primitive and advanced flavonoid characters, such as glycosylation and Omethylation respectively [S, 63. The frequently mentioned
ubiquity in the plant kingdom, ease and speed of identification and wealth of data would make characterization of
plant taxa along the lines indicated in the present paper a
valuable chemosystematic tool. E-specially EA, /EA,
ratios may well serve as the long sought for yardstick for
the determination ofevolutionary polarity of other classes
of micromolecular markers besides sesquiterpene
lactones in tribes of Asteraceae.
Acknowledgements-This work was supported by CNPq (fellowships to V. de P.E. and M.A.C.K.) and FAPESP(fellowship lo V.
de P.E.). The authors are indebted lo Marcia N. Lopes and Eudes
S. Veloso for technical assistance.
REFERENCES
I. Silva, M. F. das G. F. da and Gottlieb. 0. R. (1987) Biochem.
Syst. Ecol. 15, 85.
2. Emerenciano, V. de P., Kaplan, M. A. C. and Got&b, 0. R.
(1985) Biochem. Syst. Ecol. 13, 145.
3. Emerenciano, V. de P.. Kaplan, M. A. C. and Gottlieb, 0. R.
(1987) Biochem Syst. Ecol. 15, (in press).
3113
4. Gottlieb, 0. R. (1982) Micromokcular
Ewlution, Systematics and Ecology, an Essay info a Novel Botanical
Discipline. Springer, Berlin.
5. Harbome, J. B., Mabry, T. J. and Mabry, H. (eds) (1975) The
Flovonoids. Chapman & Hall, London.
6. Harbome, J. B. and Mabry, T. J. (eds) (1982) 7’heFlauonoids.
Advances in Research. Chapman & Hall, London.
7. Wagenitz, G. (1976) Ploti Syst. Ewl. US. 29.
8. Coley, P. D., Bryant, J. P. and Chapin III, F. S. (1985)
Science 230, 895.
9. Mears, J. A. (1980) Eiochem. Syst. Ecol. 8, 361.
IO. Bohlmann, F. Jakupovic, J., Ahmed, M. and Schuster, A.
(1983) Phytochemislry 22, 1625.
11. Bohlmann, F. and Gupta, R. K. (1982) Phytochemistry 21,
1309.
12. Yong-Long, L and Mabry, T. J. (1981) Phytochemistry 20,
1389.
13. Hurabielle, M., Et-erle, J. and Paris, M. (1982) Planta Med.
4fi, 124.
14. Bouzid. N., Moulis,C. and Fouraste,L. (1982)Planta Med.
44, 157.
15. Yong-Long, L. and Mabry,T. J. (1982) Phytochemistry 21,
209.
16. Bouzid, N., Fouraste, I., Voirin, B., Favre-Bonvin, J. and
Lebreton, P. H. (1982) Phytochemistry 21, 803.
17. Appendino, G, Garibaldi, P. and Nano, G. M. (1983)
Phytochemistry 22, 2767.
18. Chemesova, 1. I. (1984) Khim. Prir. Soedin 249.
19. Chemesova, I. I., Belenovskaya, L. M. and Nadezhina, T. P.
(1983) Khim. Prir. Soedin 387.
20. Chemesova, I. I., Belenovskaya, L. M. and Markava, L. P.
(1983) Khim. Prir. Soedim 384.
21. Ognyanov. I. and Tcdorova, M. (1983) Plunta Med. rS, 181.
22. Aguimagaldi, I. (1982) Parodiana 1,311.
23. Sashida, Y., Nakata, H., Shimomura, H. and Kagaya, M.
(1983) Phytochemistry 22, 1219.
24. Wolbis, M. (1981) Acta Pol. Pharm. 38. 705.
25. He, Y. (1982) Beijiw Yixueyan Xyebei 14,259.
26. Redaelli, C.. Formentini, L. and Sataniello, E. (1980)
Phytochemistry 19. 985.
27. Yong-Long, L., Mabry, T. J., Lardy, C. and Chopin, J.
(1982) Rev. Latinoam. Quim. 13, 56.
28. Sagareihvili, T. G. (1982) Khim. Prir. Soedin 442.
29. Exner, J.. Reichling, J., Cole, T. C. H. and Becker, H. (1981)
Planta Med. 41, 198.
30. Oskay, E. (1984) J. Nat. Prod. 47, 742.
31. Lin, H.-M., Li, G.-L. and Wu, H.-Z.( 1981) Yao Hsueh Hsueh
Pao 1665.
32. Stepanov, T. A., Glyzin, V. I., Smimova, L. P. and Issikina,
A. P. (1981) Khim. Prir. Soedin 519.
33. El-Emary, N. A. and Bohlmann, F. (1980) Phytochemistry
19, 845.
34. Khafagy, S. M.. Al-Yahya, M. A., Ziesche. E. J. and
Bohlmann, F. (1983) Phytochemistry 22, 1821.
35. El-Masry, S.. Omar, A. A., Abou-Sheer, M. I. A. and Saleh,
M. R. 1. (1981) Pfunta Med. 42, 199.
36. Chandrasekharan, I., Khan, H. A. and Ghanim, A. (1981)
Planta Med. 43, 3 10.
37. Rosier, K. H. A. (1984) J. Nat. Prod. 47, 316.
38. Redaelli,C.. Fonnentini, L. and Sataniello, E. (198 1) Plonta
Med. 42, 288.
39. Merfort. I. 11984) Planta Med. 50, 107.
40. Bohhnann, F., Grenz, M., Dhar, A. K. and Goodman, M.
(1981)Phytochemistry 20, 105.
41. Ayanogly E., Ulubelen, A., Clark. W. D., Brown, G. K.,
Kerr, R. R. and Mabry, T. J. (1981) Phytochemistry 20.1715.
3114
V. DE P. EMERENCIANO
et al.
42. Bittner, M. and Watson, W. H. (1982) Reu. Latinoam Quim.
13, 27.
43. Ates, N., Ulubelen, A., Clark, W. D., Brown, G. K. and
Mabry, T. J. (1982) 1. Nat. Prod. 45, 189.
44. Bohlmann, F.. Gupta, R. K., Jakupovic, J., Robinson, H.
and King, R. M. (1981) Phytochemistry 20, 1609.
45. Ulubelen, A., Aynoglu, E., Clark, W. D., Brown, G. K. and
Mabry, T. J. (1982) J. Nat. Prod. 45, 363.
46. Oksuq S., Ulubelen, A., Clark, W. D., Brown, G. K. and
Mabry, T. J. (1981) Rev. Latitwam. Quim. 12, 12.
47. Tonn, C. E., Rossomando, P. C. and Giordano, 0. S. (1982)
Phytochemistry 21,2599.
48. Giver, F. J. A., Del Castillo, J. B., Ferrer0 Manresa, M. T.,
Recimos, S. P. de and Rodriguez Luiz, F. (1982) Rev.
L.utinoam. Quim. 13.47.
49. Arriaga Giner, F. G., Barges Del Castillo, J., Ferrer0
Manresa, M. T., Pefia de Recinos, S. and Rodriguez Luiz, L.
(1982) Rev. Latinoam. Quim. 13.47.
50. Bittner, M. L., Silva, M. J., Vargas, J. C. and Watson, W. H.
(1982) Bul. Sot. Chil. Quim. 27, 291.
51. Faini, F., Castillo, M. and Torrcs, R. (1982) Bol. Sot. Chil.
Q&n. 27,276.
52. Faini, F. A., Castillo. M. and Torres, M. R. (1982) J. Nat.
Prod. 45.501.
53. Kamanzi. K., Raynaud, J. and Voirin, B. (1982) Pharmazie
37,454.
54. Ulubelen, A. and Okzuz, S. (1982) J. Nat. Prod. 45, 373.
55. Forgacs, P., Desumclois, J. F. and Dubec. J. (1982) Planta
Med. 42,284.
56. Rustaiyan, A., Niknejad, A. and Aynehchi, Y. (1981) Plonta
Med. 44, 185.
57. Bohlmann, F. and Abraham, W. R. (1981) Phytochemistry
20, 855.
58. Sham’yanov, I. (1983) Khim. Prir. Soedin 7%.
59. Li, Q. (1982) Zhonbcaoyao 13,393.
60. El-Emary, N. A. (1983) Fitoterapia 54, 133.
61. Mansour, R. M. A., Ahmed, A. A. and Saleh, N. A.M. (1983)
Phytochemistry 22.2630.
62. Abdel-!&lam, N. A., Sarg, T. M., Omar, A. A., Abdel-Aziz, E.
and Khafagy, S. M. (1982) Sci. Pharm. SO, 34.
63. Quijano, L., Calderbn, J. S. and Rios,T. (1982) Phytochemistry 21,2%5.
64. Hem W. and Kulanthaivel, P. (1982) Phytachemistry 21,
2363.
65. Bohlmann, F., Jakupovic, J., King, R. M. and Robinson, H.
(1981) Phytochemistry 20, 1613.
66. Ulubclen, A., Timmermann, B. N. and Mabry, T. J. (1980)
Phytochemistry 19,905.
67. Timmermann, B. N., Graham, S. A. and Mabry, T. J. (1981)
Phytochemistry 20. 1762.
68. Ortega, A., MartinR. and Garcia, C. L. (1980) Rev.
Latinoam. Quim. 11,45.
69. Bohlmann, F., Rosenberg, E.. King, R. M. and Robinson, H.
(1980) Phytochemistry 19, 977.
70. Amaro. J. M. and Mendez, A. M. (1983) Ret;. Lutirwum.
Quim. 14, 86.
71. Rajbandasi, A. and Roberts, M. F. (1983) J. Nat. Prod. 46,
194.
72. Bohlmann, F., Bapuji, M., Jakupovic, J., King, R. M. and
Robinson, H. (1982) Phytochemistry 21. 181.
73. Goodwin, R. (1984) J. Nat. Prod. 47,711.
74. Bohlmann, F., Zdero. C.. King, R. M. and Robinson, H.
(1981) Phytochemistry 20, 1657.
75. Bohlmann, F., Gupta, R. K., Kin& R. M. and Robinson, H.
(1981) Phytochemistry 20, 1417.
76. Bohlmann, F., Singh, P., Jakupovic, J., King, R. M. and
Robinson, H. (1982) Phytochemistry 21, 371.
77. Bohlmann, F., Zdero. C., Gupta, R. K., King, R. M. and
Robinson, H. (1980) Phytochemistry 19.2695.
78. Ferroso, G. (1983) An. Assoc. Quim. Argent. 71, 327.
79. Herr. W., Govindan, S. V., Riess-Maurer, I., Kreil, B,
Wagner, H. Farkas, L. and Strelisky, J. (1980) Phytochemistry 19, 669.
80. Bohlmann, F., Bapuji, M., King, R. M. and Robinson, H.
(1982) Phytochemistry 21, 939.
81. Kerr, K. M., Mabry, T. J. and Yoser, S. (1981) Phytochemistry 2.0, 791.
82. Ulubelen, A., Kerr, K. M. and Mabry, T. J. (1980) Phytochemistry 19, 1761.
83. Ulubelen, A., Kerr, K. M. and Mabry, T. J. (1981) Planta
Med. 43,95.
84. Bohm, B. A. and Stuessy, T. F. (1981) Phyrochemistry 20,
1053.
85. Bohm, B. A. and Stuesay, T. F. (1981) Phytochemistry 20,
1573.
86. Glennie, C. W. and Jain, S. C. (1980) Phytachemistry 19,
1157.
87. Bohlmann, F. and Zdero. C. (1983) Phytochemistry 22,2877.
88. Bohm, B. A., Berlow, S. and Stuessy, T. F. (1983) Phytochemistry 22, 2743.
89. Bohm, B. A. and Stuesay, T. F. (1982) Phytochemisty 21,
2761.
90. Jadwiazczok, 1. and Debinska-Migas, W. (1981) Ann. Sot.
Doetrinae Stud. Acad. Med. Silesiensis 8, 89.
91. Baimukhamedov, M. A. and Nikonov, G. K. (1983) Raszit.
Resur. 19, 100.
92. Ferraro, G. E., Norbedo, C. and Coussio, J. D. (1981)
Phytochemistry 20. 2053.
93. ECNegoumy, S. I., Mansour, R. M. A. and Saleh. N. A. M.
(1982) Phytochemistry 21, 953.
94. Chiappini, I., Fardella, G., Menghini, A. and Rossi, C. (1982)
Planta Med. 44, 159.
95. Cubukcu, B. and Bingo], S. (1981) Istambul Univ. Eczacilik
Fak. Mecm. 17, 87.
%. Cubukcu, B. and Yuksel. V. (1982) J. Nat. Prod. 45, 137.
97. Torrenegra, R. D., Escarria, R. S. and Tenorio, E. (1982)
Rev. Lutinoam. Quim. 13.75.
98. Torrenegra, R. D., Escarria. R. S., RalTeelsberger, B. and
Achenbach, H. (1980) Phytochemistry 19.2795.
99. Arriaga-Giner, F. J.. Borges Del Castillo, J., FerreroManresa, M. T., Recimos. S. P. and Rodriguez-Luiz, F.
(1982) Reu. Z.utinoam. Quim. 13.41.
100. Guerreiro, E., Kavka, J. and Giordano, 0. S. (1982)
Phytochemistry 21, 2601.
101. Cubukgl, B. (1982) Gogo, Seri A 6, 83.
102. Torrenegra, G. (1982) Reu. Latinoam. Quim. 13.75.
103. Hlnsel, R., Cybulski, E. V. Cubukcu, B., Mericli, A. H.,
Bohlmann, F. and Zdero, C. (1980) Phyrochemistry 19,639.
104. Merieli, A. H. (1980) Istombul Unio. Eczacilik Fak. Mecm.
17, 87.
105. Bohlmann, F., Abraham, W. R., Robinson, H. and King,
R. M. (1980) Phytochemistry 19, 2475.
106. Bohlmann, F., Abraham, W. R. and Sheldrick, W. S. (1980)
Phytochemistry 19, 869.
107. Arriaga-Giner. F. J., Barges Del Castillo, J., FerreroManresa, M. T., Bueno, P. V., Rodriguez-Luiz_ F. and
Iraheta, S. V. (1983) Phyrochemistry 22, 1767.
108. Pares, J. 0.. Oksuz, S. Ulubelen, A. and Mabry, T. J.
Phytochemistry
20, 2057.
109. Bingol, S. (1984) Sci. Pharm. 52, 127.
110. Bohlmann, F., Suwita, A., Jakupovic, J., King, R. M. and
Robinson, H. (1981) Phytochemistry 20, 1649.
Sequitcrpenc
(1982) Phytochemistry
I1 I. Faini, F. (1984) J. Nat. Prod. 47, 552.
R. M. A. and Saleh, N. A. (1981) Phytochemistry
112. Mansour,
20, 1180.
I 13.
119. Bohlmann,
21, 1169.
F., Singh, P., Jakupovic,
King, R. M. (1982) Phytochemistry
N. A. and Ali, A. A. (1983) Fitoterapia
El-Emary,
114. Kaloshina,
N. A. and Mazulin,
A. V. (1983)
54, 9.
120. Herz, W., Govindan,
Khim. Prir.
Soedin 104.
115.Bhardwaj.
Sharma, G. C. (1980) Phytochembtry
F., Zdero, C.,Grenz.
H. and King, R. M. (1981) Phytochemistry
L., Caldtron.
Phyrochemistry
118. Bohlmann,
J. S., G6mez,
21, 2575.
F.. Adler, A., King,
R. M. and Robinson,
H.
F.. Zdero,
C., Robinson,
H. and
N. (1981) Phyto-
F., Zdero,
C., King,
19, 2669.
J. B., Girya.
H. and King. R. M.
19, 2381.
(1980) Phytochemistry
123. Harborne,
20, 281.
F. and Rios, T. (1982)
S. V. and Kumar,
(1980) Phytochemistry
122. Bohlmann,
19, 713.
M., Dhar. A. K., Robinson,
J., Robinson,
21, 705.
chemistry 20. 1343.
121. Bohlmann,
D. K., Bisht, M. S., Uain, S. C., Mehta. C. K. and
116. Bohlmann,
117. Quijano,
3115
la&ones and flavonoids of Asteraccac
R. M. and Robinson,
H.
A. R., Devi, H:. M. and Lakshmi,
N. K. M. (1983) Phytochemistry
22,274l.
124. Bohlmann,
F. and Zdero, C. (1980) Phytochemisrry 19,863.
125. Bohlmann,
F. and Zdero, C. (1982) Phytochemisrry
21.1434.