PhyrmkmMry, Vol. 26, No. 12,pp. 3103-31IS, 1987. Printedin Great Britain. 6 0031-9422/8753.00+0.00 1987Pqamon Journals Ltd. REVIEW ARTICLE NUMBER 27 A CHEMOSYSTEMATIC ANALYSIS OF TRIBES OF ASTERACEAE INVOLVING SESQUITERPENE LACTONES AND FLAVONOIDS * VICENTE DE P. EMERENCUNO, ZENAIDE S. FERREIRA,MARIA AUXILIADORAC. KAPLAN and OTTO R. GOITLIEB Instituto de Quimica, Universidadc de !%o Paulo, 05508 S&o Paula, SP, Brazil (Rmeiwd 1 July 1986) Key Word Index-Asteraozae; sesquiterpenc &tones; 0-glycosylflavonoidq 0-methylIIavonoids; biochemical evolution. Ah&act-The correlation of oxidation levels and skeletal specializations of sesquiterpene lactones reported to occur in genera of the Asteraceae suggest the distribution of the corresponding tribes along chemical gradients. The evolutionary polarity of these gradients was established by concomitant consideration of the evolutionary replacement of 0-glycosylflavonoids by 0-methylflavonoids. Information on structure and occurrence of sesquiterpene lactones as well as of flavonoids was obtained in a literature survey up to 1984. INTRODUCIION Previous work [2,3] on the oxidation value (0) and the skeletal specialization (S) of sesquiterpene lactones led to the representation of evolutionary advancement parameters for tribes of Asteraceae (EAo, EAs) along two gradients (Fig. 1). However, as is common in chemosystematic work, the evolutionary polarity adopted within the gradients remained hypothetical. The present work aims to apply or even to extend existing methodology in order to verify if and how flavonoid-based data can he used in the solution of the problem. 100 50 EA. Fig. 1. Correlation of EA,, and E4 parameters for sesquiterpene lactones from tribes of Asteraceae, indicated by the three initials of their names given in full in Table 2 and classified into Lactuceae (triangle), Asteroideae group 1 (circles) and Astcroideae group 2 (squares). Also given arc EA,/EA, values. *Part 32 in the series ‘Plant Chemosystematics and Phylogeny’. For part 31 see ref. Cl]. c:no EAo = lOO- CZN DEFINITIONS AND METHODS Evolutionary Advancement Indices for selected taxa (here tribes) with respect to oxidation values of rings A and B of flavonoids (EAo,, EAo,) were determined as described for other classes of compounds 143. Another form of presentation of flavonoid data concerns the bs and Aos values, i.e. the differences between the highest and the lowest oxidation values of rings A and B of tlavonoids isolated from the chosen taxa (here tribes). In order to facilitate comparisons, the EA,, and EAoa values are given in percentages of the highest observed value and the A indices are given in percentages of the largest difference between highest and lowest observed values for a tribe. In the case of sesquiterpene lactones, as in the previous paper [3], not only EAo values (based on the oxidation levels of the compounds) but also EAs values (based on the skeletal specialization of the compounds) are used. Evolutionary Advancement Indices for selected taxa (here tribes) with respect to 0-glycosylflavonoids (EA,), 0-methylflavonoids (EAu) and flavonoids with some of their hydroxyls protected (EA,) are calculated by Equations 1.2 and 3 respectively. N represents the total number of flavonoids (irrespective of the presence and the nature of the substituents) isolated from each of the specieso,b.. . z of a given tribe; n represents the number of flavonoids substituted by at least one 0-glycosyl unit (Eq. I), at least one O-methyl unit (Eq. 2) and possessing specific P values (P = number of protected OH groups/ total number of oxy-groups) (Eq. 3) isolated from each of 0%. I) 3103 & EA,=~CJO~:~ (Eq.2) B EA,=loOc:N (Eq.3) 3104 V. DE P. EMERENCIANO et d. thespeciesu,b.. . z of the same tribe. The determination of these flavonoid parameters is exemplified in Table 1. In the above calculations, tribes are considered to be collections of species. The same applies to ‘number of Table 1. Determination 5 3 OH OH OH OH OH OH OH OH OG OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH 6 occurrences’ (Table 2) i.e. a particular flavonoid, reported for x species of the tribe is counted x times in the calculation of this ‘number’. Flavonoids of all types (aurones, chalcones, flavones, flavonols, dihydro- of llavonoid parameters exemplified by the composition of spe&s (A-P) belonging to Lactuceae Flavonoid substitution 7 2 3 OH OH OH OH OH OG OG OG OH OG OG OG OG OG OG OG 4 OG OG OG OH OH OH Oci OH OH OH OH OH OH OH OH OH OH OH OH N for tribe LAC=16; EAo=100(15/16)-94; OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH 5 Occurrence ingenera Heywodiella Heywoodiella Heywoodiella Hieracium HkTaChun Hferacium H&WCilml Hispidella Loctuca Sonchw Sonchw =WVW~ Zhgopogon lhgopogon Luunea Luunea species n, n, n, a b : 1 1 1 0 0 0 f 01 0 :: 1 0 i j k 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 l/6 l/6 l/6 l/5 O/6 l/5 l/4 l/5 l/5 l/5 l/5 l/5 l/5 l/5 l/3 l/4 1 m xl 0 P EA,=O, EA,=3.13/16~0.195. Table 2. Chemical parameters in percentages for fhvonoids from tribes of Astemceae Number of Tribe EAob, %a Lact-+ 36.5 (0.15) 38.7 (0.16) 95.4 (0.31) 76.7 (0.27) (;I) (Z) Vcrnonieaet 4M An-1 6:) 56.2 (0.23) 59.4 (0.16) Amicineaet As\Jtereaet (0”;:) 35.3 (0.14) Calcnduleae $ Eupatorieaej (Z, 37.7 (0.15) HClhth~$ Inukae$ Tageteac$ (Z) 624 (0.25) 58.5 (0.24) 100.0 (0.41) (?:I 42.8 (0.W 100.0 (0.33) 45.4 (0.11) 224 (0.01) 27.1 (0.03) 57.9 (0.16) 61.5 (0.17) EA, 0 (OZ 97.0 20 71.0 5.0 0 70.0 49.0 54.0 (0: 0 Mutisieaet w, 94.0 75.0 (1.W caKlucact 4Ja (0: 100.0 (1.33) 25.0 (0.33) 100.0 (1.33) (:I 100.0 (1.33) 100.0 (1.33) 100.0 (1.33) (O?; 25.0 (0.33) 20.0 80.0 15.0 79.0 100.0 loo.0 8.0 80.0 44.0 59.0 EA, 31.0 (0.19) 58.0 (0.37) 67.0 (0.46) 53.0 (0.34) oaxmxlces - 16 238 80 13 195 (::, 63.0 (0.4tJ 81.0 (0.52) 620 (0.40) 100.0 (0.64) 10 109 3 180 289 (GY, 28.0 109 68.0 90.0 35.0 33.0 33.0 (CY) 57.0 (0.37) 22 8 +Subfamily Cichoriodeae; subfamily Astcroideae, tgroup 1; $group 2 [7’J. Values of EAoA, EAos [4], Aoo*,Ao, [3] and EA, (in parentheacs) were calculated by the direct application of the respective equations; and transformed into percentages as explained in the text. Sesquiterpenclactones and Ravonoidsof Asteracuz. flavonols) are counted indiscriminately. The data bank for flavonoids of Asteraceae was compiled from surveys of the literature given in two books [S, 63 and completed up to 1984 in the style adopted in the latter of these compendia (Tables 36). 3105 RESULTS The evolutionary histories of rings A and B of flavonoids are not necessarily connected. Indeed both the biosynthetic pathways, respectively the polyketide and Table 3. Flavones and flavonols in Asteraceae, reported between 1981 and 1984 Substitution 5,6,7,4’-Telra-OH 6,7,4’-ki-Me &Me 6,7di-Me 5,6,7,3’,4’.5’-hexa-OH 6,3’di-Me 6,3’,5’-lri-Me 6,3’,4’-lri-Me 6,7,3’.5’-lelra-Me 5,6,7,3’,4’-penta-OH 6,3’,4’-lri-Me 6,7,3’,4’-lelra-Me 6,7,3’&-Me 6.7di-Me 6-Me 7-G 5,7,3’,4’-lelra-OH 3’,4’di-Me 7-G 7,3’di-Me 5,7/V-lri-OH 7-G 6,8di-C-G 7,4’di-Me 4’-Me 8-C-G ‘Idi-G 6,7,3’,4’,5’-penla-OH 6,5’di-Me 6,3’,5’-lri-Me 5,6,7,2’,4’,5’-penla-OH 6,S’di-Me 7,3’,4’,5’-lelra-OH S-Me 5,7,3’,4’.5’-penla-OH 3’,5’dLMe 3,5,6,7,3’,4’-hexa-OH 3.6.3’~k-Me 3,6,7,3’,4’-pen&Me 3,6di-Me 3,6,7,3’-lelra-Me 3,6,7,3’,4’-pen&OH &Me 3,6,7-k-Me *Tribes Ant Plant source Genera Ref. Artemisia Ursinia Artemisia Artemisia 10 11 15 13 14 Artemisia Artemisia Artemisia Artemisia 12 12, 14 15, 12 13 Artemisia Artemisia Artemisia Artemisia Tanacetum Artemisia Artemisia Chrysanthemum Artemisia Artemisia Artemisia Chrysanthemum Artemisia Artemisia chrysanthemum chrysanthemum Matricaria Otanthus Artemisia Artemisia Artemisia Lowanthemum Chrysanthemum 12,17 14 14,18 12, 19,20 21 12, 19 22 23 12 12 12 24,25 20 12 23 23,24 26 26 27 20 20 28 24 Artemisia Artemisia 15 15 Artemisia 15 Artemisia 15 Artemisia 14 Tanacetum Matricaria Achilka Artemisia Tanacehtm Artalrh Artemisia Matricaria Matricaria 21 29 30 31 32 18 33. 34 29 29 V. DE P. EM~RENCL.~NO et al. 3106 Table 3. (Conthud) Subdtution *Tribes 3,6di-Me 6,7diMe 6,3’-&Me 3,5,6,7,4’-penta-OH 6,7-d-Me 3,5,7/I’-telra-OH ~-MC Plant xource Genera Matricaria 35 35 29 ArtekSiR 36 A?%M.dU chrys4mthemum Tanncetwn 12 24 18 36 10 12 32 Artemisfo 15 ArtemisiU 1s Artemisia Arkmisia Artemisia Artemisia Matricaria 15 22 12,31 15 31 38 Artemisia Tanacetum 36 32 Arnica 39 Ati Arnfco 39 39 Amica 39 Arnica An&a 39 39 Gutierrezia Gutierrezh Gutierrezia 40 40 40 HadwvpLF HapropOppw Hwbvpu Gutierrezia Gutierrezia Huplopoppcs Hapkvpuc Huplopappcs Hwlopappw Haplopappcs HupkvpIs Hwlopnppw 40 40 41,42,43 40 40 41,42,43 41, 42.43 41 41 41 41,4z, 45 43,45 MtXt?iCario Marricmia Altemisio ~-MC 3,5,7,3’,4’-pen&OH 3,3’di-Me 3,Ydi-Me 6,7,3,3’-ma-OH 3,6dLMe 3.6,7,3’,4’-penta-OH 3,fLdLMe 395*69798.4’-hcxa-OH 3.6,3’,4’-telra-Me 3,5,6,3’,4’-hexa-OH 3,6,3’,4’-lem-Me 6,7,4’-lri-Me S$di-OH 5,6,7,4’-lelra-OH 6,7di-Me 6-Me 5,7,4’-&i-OH 4’-Me 5,6,7,4’-lelra-OH 6$di-Me &Me 5,47,3’,4’-penta-OH 6,3’di-Me 3,5,6,7.4’-penla-OH 6-Me 6,4’di-Me 3,5,6,7,8,3’,4’,S’-octa-OH 3.6,7,8,4’-pen&Me 395961798,4’-hexa-Me 3,6,8,4’-lelra-Me 3,5,7,3’,4’,5’-hexa-OH Y,Ydi-Me 3,3’,4’-lri-Me 3,S,7,3’,4’-penla-OH 3,3’di-Me-4’~i-Mebut 3,3’di-Me-4’~i-Val 3’-Me 3-G 7ydi-Me 3,3’di-Me 3,7di-Me 3-Me 3-G-3’-Me 3,5,6,7,3’,4’-hexa-OH 3.6dLMe 3.6,4’-k-Me 3,5,7-tri-OH 3-Me 3,5,7,4’-letra-OH 3,5,7,4’-tctra-OH 3-Me Artemisia ChrJWtllheWlUm Artemisia Am Axt Ref. 45 46 46 41 46 Sesquitcrpenc lactonea and llavonoidx of Asteraaac 3107 Table 3. (Contin&) Substitution ,Tlibcs Ref. 43 46 7-Me 3,5,7,3’,4’,5’-hcxa-OH 3.5,6,7,4’-penta-OH 3,6dLMe 5.6.7.8.4’~pen&OH 6.7,8-k-Me 5,6.7,4’-tetra-OH 7,4’dLMe 6-Me 6-G 5,7/l’-tri-OH 7,4’di-Me J-Me 7-Me 6.8di-C-G 5,7,3’,4’-tetra-OH 3’,4’dLMe 3’-Me 4’-Me 3,5,6.7,8,3’,4’-hepta-OH 3,6,7,3’-tetra-Me 3,6,7.8,3’-penta-Me 3,5,6,7,3’,4’,5’-hepta-OH 3,6,7,3’-tetra-Me 3,5,7/I’-k&a-OH 3-Me 7-Me 3-G 3,6,7,8,3’,4’-Hexa-OH 6,7,8,3’-tetra-Me 5,6,7,3’,4’-penta-OH &Me 5.7,3’,4’-tetra-OH 7-G 3,5.7.3’,4’-penta-OH 3,5,6,7.3’,4’-hexa-OH 6-Me 6-Me-7-G 6-Me-7-G 3,5,7,4’-tetra-OH 7-Me 5,7,4’-t&OH 7-G 5,6,7,3’,4’-penta-OH 6,7dLMe 6-Me 6,3’di-Me 6,7,3’,4’-tetra-Me 5,7,3’,4’-tetra-OH 5,6.7.4’-tetra-OH 6,7,4’-tri-Me 6,7di-Me 6-Me 6,4’di-Me 5.7.4’~tri-OH 7-G-4’-Me 5,7,8,4’-tetra-OH 8-Me 5,7,4’-tri-OH 7-G Plant soua Genera H&wvw 42 BoCChoris 47 Bacchmis Hapkwpus Haplopoppus Bacchmis Bacchmis Baccharis Baccharis Hadwvw 47 46 46 48.49 48,49 649 48,49 43 &rcChllTiS 49 42 46 fWwvpcs fWwvpus BilCChiS 50 51 Gutiewezia 50 Gutieweria 15 15 45 BMChlUi.9 52 43 Cenmwea 53 53 Centaurea Centaurea Centaurea 53 53 53 Centaurea Centawea Centawea 53 53 53 Centaurea Centaurea Amberboa Amberboa Amberboa Amberboa AmberbOa Amberboa Cirsium Saussurea Sawurea Cirsfw Cirsium 53 53 55 56 54 54 54 54 57 58 58 57 59 Centaurea 60 Luunea 61,62 centaurea Cic 3108 V. DE P. EMERENCIANO et al. Table 3. (Continued) Substitution 5,7.3’,4’-tetra-OH 7-G 5*6.7.892’,3’,4’,5’,octa-OH 5363798.2’,3’,4’,5’,octa-Me 5,6.7,2’,3’,4’,5’-hepta-OH 5,6,7,2’,3’,4’.5’-hepta-Me 5,6.7,8,2’,4’,5’-hepta-OH 5,6,7,8,2’,4’,5’-hepta-Me 596.7.8.3’,4’-hexa-OH 5,6,7,8,3’,4’-hcxa-Me 5.6,7,8,3’-penta-Me 5.6,7,3’,4’-penta-OH 6.7.4’~tri-Me 6-Me 6,7-di-Me 6.7,4’-tri-Me 6,4’di-Me 6,3’di-Me 5,6,7,4’-tetra-OH 6-Me 6,7,4’-tri-Me 6,7dLMe 6,4’di-Me 5.7,3’.4’-tetra-OH 7-Me *Tribes Eup Plant source Genera Luunea 62 Ageratum 63 Ageratum 63 Ageratum 63 Eupatorium 64 64 Eupatoriw Ldoloena Brickellia Brickellia Brickellia Brickellia Eupatorium Brickellia Brickellia Aristeguetia Brickellia Eupatoriwn Chromolaena 7-G 5.6,7,2’,4’,5’-hexa-OH 6,5’di-Me 3.5,7,3’,4’-pmta-OH 7-Me Stevia BriCkellia Brickellia Chromolaena Euptoriw 3-G 3-G-3’-Me 3-Me 3.7-d&Me 3159697.3’,4’-hexa-OH 6.7.4’~tri-Me 3,6,4’-tri-Me 3.6,7,3’,4’-penta-Me Brickellin 3,6,7,4’-tetra-Me Brickellia BriCkellia Brickellia Brickellia Brickellia Brickellia Symphyopappuc Brickellia 3-G3-Me Brickellia 3-G-6.7-di-Me 3-SO,-6-Me 3-SO,-6,7-di-Me 6.7-di-Me Brickellia BriCkellia Brickellia Eupatoriwn Chromolaena 3.6,7-tri-Me 3,6di-Me-7-G 3,6,3’,4’-tetra-Me 6,7di-Me 3,6,7,3’,4’-penta-OH &Me 3,6,7,4’-tetra-Me 3,6,7,3’-l’-pcnta-Me 3-G-6,7di-Me 3-G-6,7,3’-tri-Me 6,7,4’-t&Me 3-S0,-6,7,4’-t&Me 3,7,3’-tri-Me Ref. Brickellia Brickellia Brickellb Brickellh Brickellia BTiCkellio BridWllh BriCkellia BTidWllia Brfckllia Brickellia Chromolaena 65 66 66 66,67 67 68 67 66.67 69 66 70 70 71 72 73 70 70 66 66 73 73 67 67,71 74 67 67 67 67 67 67 70 70 73 73 73 73 66 66 66 66 66 66 66 75 Scsquiterpene la&ones and llavonoids of Asteraceae 3109 Tabk 3. (Continued) Plant .9ource Substitution *Tribes Ref. 3,5,7-t&OH 3,5,6,7-tetra-OH 6-MC 3.4979893’,4’-hcxa-OH 3,7,8,3’-tetra-Me 3,5,7,4’-tetra-OH 3-G ChWldW?M 76 chr0mo1aeM 76 ChrOmOlW?M 75 s&via 3-Me Acrttopappus 3.7di-G 7-G 3,5,6,7,4’-penta-OH 3-G-6-Me 3-G-6,7di-Me 3,6,7-h-Me 5,6,7.8-tetra-OH 5,6,7,8-tetra-Me-3’,4’-O&H, Eupatorim 71 77 78 78 Euputorium Brickellia Brickdlia Brickellia Ageratum Eupatorium 5,6,7,8.5’-penta-OH 5.6.7.8.5’~penta-OH-3’,4’-O&H, Ageratum Eupatotium c0noc1inium 5,7,4’-hi-OH 7-G 4’-Me 4-G 3.5.6.7.4’~penta-OH 3,7di-Me 7-Me-7-G 3.516.7.3’,4’-hcxa-OH 3-Me-7-SO, 3,6di-Me 3,7di-M&-G 3-Me-6-G 7-G-6,3’di-Me 6-Me-7-G Goyamnthus Eupotorium Eupatorium stevia Hit Neurolaena Neurolaena Neurolaena Neurolaena Neurolaena Neurolaena Neurolaena Clibadiwn Neurolaena Desmanhodium Neurolaena Desmunthodium Clibadium Neurolaena Neurofaena 7-G 3.7~d&Me 3,6-di-Me-7-G 7-G-3’-Me Desmanrhodium Clibadium 3,5,6,7,4’-penta-OH 3-Me 3,7di-G 7-G 3-G Neurokww Ye&Sin0 c1ibadium Ve&?sina Clibadium 3-G 3-G 3,5,7,3’,4’-pen&OH lchthyothere Heliopsis Inu Helichrysum Achyrocline 3-Me 3-G 3,3’di-Me 3-G 3,5,6,7,&penta-OH 6.7,~h-Me 3,6,8-h-Me 3,6.7,&tetra-Me Achymcline PdiCa?.ia DitriChi~ Heltchtysum Achyrocline GlWphaliM Gnaphalium 66,37 66 73 63 64 63 64 79 80 78 78 71 81 82 81 82 81,82,83 82 82,83 84 82 82 81,82,83 85 84 82,83 83 85 84 82 86 84,85 86 88,85 89 90 91 92 92 93 94 95, 96 97 98 99 3110 V. DE P. EMERENCIANO et al. Table 3. (Continued) Substitution *Tribes 3,6,7-t&Me 6.7,~~tri-Me 6,8di-Me 3,7,8-tri-Me 3,5,7,8-tetra-OH 3,7,8-tri-Me 7,8di-Me 3,8di-Me 3,5,7-tri-OH 3-Me 3-Me 3,5,6,7-tetra-OH 3,7di-Me 3,6di-Me 3,5,6,7,3’,4’-hexa-OH 3,6,7,3’,4-penta-Me 3,7di-Me 3.5.7~tri-Me 3,5,7,3’-tetra-Me 3,7,4’-tri-Me 3,5,6,7,4’-penta-OH 3,7di-Me 3-Me&G 3.6.7~k-Me 3,5,7,8,4’-penta-OH 3,7-di-Me 5,6,7,8-tetra-OH 6,7-di-Me 5,6,7,8-tetra-OH 6,7-d&Me 5,7,4’-tri-OH 7-G 4-G 5.7,3’,4’-tetra-OH 7-G 5,6,7,3’,4’-penta-OH 6,3’di-Me 5,7,8-t&OH 7,8di-Me 3,7,4’-tri-OH 3,5,7,4’-tetra-OH 7-Me 3,7-di-Me 3,5,7-tri-OH 7-Me 3,5,7,3’,4’-penta-OH 3,3’di-Me 3,7di-Me Y-Me 3,5,7,3’,4’-penta-OH 3-G 3.5,7,3’-tetrd-OH 3-G-3’-Me 3,5,7,4’-tetra-OH 7-G 3,5,6.7,4’-penta-OH 7-G Mut Sen Tag Plant source Genera Ref. Gnaphalium Helichryswn Helichrysum Achyrocline 100 101 101 102 Achyrocline Achyrocline Helichrysum Gnaphalium Achyrocline Achyrocline Helichrysum 97, 102 97 103 104 92 92 96, 101 Helichrysum Gnaphalium 105 99 Helichrysum Pluchea Pulicaria Pulicaria Pulicaria Pulicaria 106 107 93, 108 93 93 108 Pulicaria Pulicaria Pulicaria 108 108 108 Pluchea 107 Gnaphalium 100 Gnaphaliwn Gnaphalium Helichrysum Gnaphalium Gnaphalium Helichrysum Gnaphalium Gnaphalium loo 104 91 96,104,109 % 96 104 104 Gnaphalium 104 Achyrocline Helichrysum Trixis Trixis Gochnatia 102 109 110 110 111 Trixis 111 Gochnatia Gochnatia Gochnatia 111 111 111 Senecio 112 Senecio Tagetes Tagetes Tagetes Tugetes 112 113 113 113 113 Sesquiterpene &tones 3111 and flavonoids of Asteraceae Table 3. (Continued) *Tribes Substitution 3,5,6,7,3’,4’-hexa-OH 5,6,7,3’,4’-penta-OH 5-Me Plant source Genera Ref. Tagetes 113,114 Tageres 115 l Here and in Tables 46 tribes are represented by the three initial letters of their names (see Table 2). Table 4. Dihydroflavonols in Asteraceae, reported between 1981 and 1984 Substitution 5,7di-OH 7-Me 5,7/l’-t&OH 7-Me 7-G 3,5,7,4’-tetra-OH 7-Me 5,7/V-t&OH 7-Me 3,5,7,3’,4’-pen&OH ~-AC 5,7,3’,4’-tetra-OH 3,5,7,4’-tetra-OH ~-AC+ 5,6,7-t&OH 5,7di-Me-3’,4’-OCH, 5,6,7,3’,4’-pen&OH 5,7,3’.4’-tetra-Me 5,7,3’-&i-Me 5,7-di-OH 3,5,7-tri-OH 3,5,6,7-tetra-OH &Me 5,7/t’-tri-OH 7,4’di-Me 7-Me 4-Me 3,5,6,7,4’-penta-OH 6,4’dii-Me 6,7-di-Me 5,7,3’,4’-tetra-OH 7.4’dLMe 7,3’di-Me 5.74’~tri-OH 7-G Tribes Ant Ast Pup Plant source Genera Artemisia Artemisia chrysanthemum Artemisia Chrysanthemum Artemisia Baccharis BUCChariS Baccharis Baccharis 116 116 Baccharis 116 Ageratum 117 Ageratum 117 117 76 76 chr0ma1aena Mikania Stevia Mikania Mikania the shikimate routes leading to these rings, and the modification reactions are independent [4]. For this reason the chemosystematic parameters (Table 2) refer separately to EAoA and Ao,, and to EAos and Aon. The correlation of Aoa and Aoa (Fig. 2) is instructive, chiefly if 13 13 23 13 23 13.36 116 116 Ageratum Chromolaena Chronwlaena Ver Ref. 76 118 68 119 118 Eupatorium Eupatorium 120 Lychnophora Piptocarpha 121 122 120 compared with Wagenitz’s classification based on morphological criteria [7]. Wagenitz divides the Asteraceae into Cichorioideae (tribe Lactuceae) and Asteroideae. the latter subfamily being further divided into two groups of tribes. Lactuceae 3112 V. DE P. EM~S~ENCIANO et al. Table 5. Chakones in Asteraceae, reported between 1981 and 1984 Plant source Substitution Tribts 3,4’,6’,trkOH 4’-Me+-O,CH, 2’,4’,6’-&i-OH 4’,5’,6’,4,5-penta-OH 4-G 4’,6’,4-hi-OH 4-G 4’,6’,4,5-tctra-OH 4-G 2’,3’,4’,6’,4-pen&OH 5-GclXIlyl 2’,4’,6’-&i-OH 5’-Prenyl 4’-Me-S’-Prenyl 2’,6’dLOH 4’-Prenyl Ref. Eup ApZTattUVl Ch?omOh?lUl 117 76 Hlt CliblldiWn Zinnia 88 123 Clibadium 88 CIibadium 88 Helichrysum 124 Pleiotaxus Pltitprus 125 125 Pleiotaxus 125 Mut Table 6. Auroncs in Astemceae, reported between 1981 and 1984 Substitution Tribts 4,6,3’,4’-tetra-OH6-G 6,3’,4’-k-OH 6-G Hlt Hlt is said to be closer to group 1 and Anthemideae. although placed into group 2 is considered to occupy an intermediate position between both groups. The flavonoid data are consistent with this scheme (Fig 2). Indeed the tribes Vemonieae, Cardueae and Mutisieae, all belonging to Asteroideae group 1, as well as the subfamily Cichorioideae (Lactuceae) contain flavonoids with smaller oxidative variation of both A and B rings; while the tribes Heliantheae, Inuleae, Eupatorieae and Astereae, all belonging to Asteroideae group 2, contain flavonoids with relatively greater oxidative variation of both rings. Only the tribe Senecioneae, considered by Wagenitx to belong to Asteroideae group 2, is exceptional with respect Plant source Genera Clibadiwn Zinnia Cw670 E% l u&It 53.0 50 88 123 to the oxidative variation of its flavonoids. This is not surprising. Sesquiterpene lactone data for Senecioneae are also abberrant (Fig. 1). Jointly with A. values, evolutionary advancement parameters concerning hydroxyl protection for flavonoid containing tribes (EA,) also increase upon passing from tribes of Asteroideae group 1 to tribes of Asteroideae group 2 (Fig. 2). Under the term protection both forms of hydroxyl stabilization, 0-glycosylation and O-methylation, are considered together. It is even more instructive to consider each of these protective devices separately. To this end EA, and EA, values are calculated for each tribe. A graphical correlation of these parameters (Fig 3) shows a surprisingly clear negative correlation. In a general way, upon passing from tribes of Cichorioideae and Astero100 . Ref. i LOC VW l sml . car I A 08 100 Fig. 2 Correlation of AoA and Aoe parameters for flavonoids from tribta of Asteraceac (for meaning of symbols see Fig. 1). Also given are EA, values. Fig. 3. Correlation of EA, and EAMparameters for flavonoids from tribes of Astcraceae (for meaning of symbols see Fig. 1). Scsqtitcrpenc lactones and Bavonoids of Astcraceae ideae group 1 to tribes of Asteroideae group 2,0-glycosylation diminishes in favour of 0-methylation. Again Senecioneae show an aberrant result, producing more 0-glycosylflavonoids and less 0-methyltlavonoids than expected for a tribe of Asteroideae group 2. Upon superimposing for tribes of Asteraaae, flavonoid data (EAJEA,) on the sesquiterpene lactone EAo / EA, correlation (Fig. 1) some striking regularities are observed. Thus Cichorioideae (EA, /EA, =94/O) are also, with respect to flavonoid protection, close to Vernon&e (97/2), a tribe of Asteroideae group 1 in which O-glycosylflavonoids predominate vastly over 0-methylflavonoids. From Vemonieae onwards along gradient 1 a decrease in 0-glycosylation and an increase in 0-methylation of flavonoids is observed: Cardueae (71/5), Mutisieae (O/70). To our knowledge no flavonoids have yet been reported from Liabeae and Arctoteae. An analogous decrease of 0-glycosylflavonoids vs increase of 0-methylflavonoids is observed for the tribes of gradient 2: Anthemideae (49/54), Heliantheae (44/59), Amicineae (20/80), Inuleae (28/68) and Astereae (15/79). Again considering EA, /EA, values, Eupatorieae (8/80) should follow Astereae. This is a relevant fact since Eupatorieae have been placed by Wagenitz into Asteroideae group 2. On sesquiterpene lactone EA, (skeletal specialization based) data Eupatorieae are indeed closely related to Inuleae and Astereae of gradient 1. On sesquiterpene lactone EA, (oxiation value based) data Eupatorieae are closely related to Vernon&e of gradient 1. DISCUSSION Plant antiherbivore defence is only favoured by natural selection when the cost of production is less than the benefit of enhanced protection [8]. If glycosylation of phenolic hydroxyls involves more energy commitment than methylation, a rationale exists for the switch from glycosylation to methylation. The observation, reported for Parthenium species (Asteraceae) [9], is consistent with previous opinions on the nature of primitive and advanced flavonoid characters, such as glycosylation and Omethylation respectively [S, 63. The frequently mentioned ubiquity in the plant kingdom, ease and speed of identification and wealth of data would make characterization of plant taxa along the lines indicated in the present paper a valuable chemosystematic tool. E-specially EA, /EA, ratios may well serve as the long sought for yardstick for the determination ofevolutionary polarity of other classes of micromolecular markers besides sesquiterpene lactones in tribes of Asteraceae. Acknowledgements-This work was supported by CNPq (fellowships to V. de P.E. and M.A.C.K.) and FAPESP(fellowship lo V. de P.E.). The authors are indebted lo Marcia N. Lopes and Eudes S. Veloso for technical assistance. REFERENCES I. Silva, M. F. das G. F. da and Gottlieb. 0. R. (1987) Biochem. Syst. Ecol. 15, 85. 2. Emerenciano, V. de P., Kaplan, M. A. C. and Got&b, 0. R. (1985) Biochem. Syst. Ecol. 13, 145. 3. Emerenciano, V. de P.. Kaplan, M. A. C. and Gottlieb, 0. R. (1987) Biochem Syst. Ecol. 15, (in press). 3113 4. Gottlieb, 0. R. (1982) Micromokcular Ewlution, Systematics and Ecology, an Essay info a Novel Botanical Discipline. Springer, Berlin. 5. Harbome, J. B., Mabry, T. J. and Mabry, H. (eds) (1975) The Flovonoids. Chapman & Hall, London. 6. Harbome, J. B. and Mabry, T. J. (eds) (1982) 7’heFlauonoids. Advances in Research. Chapman & Hall, London. 7. Wagenitz, G. (1976) Ploti Syst. Ewl. US. 29. 8. Coley, P. D., Bryant, J. P. and Chapin III, F. S. (1985) Science 230, 895. 9. Mears, J. A. (1980) Eiochem. Syst. Ecol. 8, 361. IO. Bohlmann, F. Jakupovic, J., Ahmed, M. and Schuster, A. (1983) Phytochemislry 22, 1625. 11. Bohlmann, F. and Gupta, R. K. (1982) Phytochemistry 21, 1309. 12. Yong-Long, L and Mabry, T. J. (1981) Phytochemistry 20, 1389. 13. Hurabielle, M., Et-erle, J. and Paris, M. (1982) Planta Med. 4fi, 124. 14. Bouzid. N., Moulis,C. and Fouraste,L. (1982)Planta Med. 44, 157. 15. Yong-Long, L. and Mabry,T. J. (1982) Phytochemistry 21, 209. 16. Bouzid, N., Fouraste, I., Voirin, B., Favre-Bonvin, J. and Lebreton, P. H. (1982) Phytochemistry 21, 803. 17. Appendino, G, Garibaldi, P. and Nano, G. M. (1983) Phytochemistry 22, 2767. 18. Chemesova, 1. I. (1984) Khim. Prir. Soedin 249. 19. Chemesova, I. I., Belenovskaya, L. M. and Nadezhina, T. P. (1983) Khim. Prir. Soedin 387. 20. Chemesova, I. I., Belenovskaya, L. M. and Markava, L. P. (1983) Khim. Prir. Soedim 384. 21. Ognyanov. I. and Tcdorova, M. (1983) Plunta Med. rS, 181. 22. Aguimagaldi, I. (1982) Parodiana 1,311. 23. Sashida, Y., Nakata, H., Shimomura, H. and Kagaya, M. (1983) Phytochemistry 22, 1219. 24. Wolbis, M. (1981) Acta Pol. Pharm. 38. 705. 25. He, Y. (1982) Beijiw Yixueyan Xyebei 14,259. 26. Redaelli, C.. Formentini, L. and Sataniello, E. (1980) Phytochemistry 19. 985. 27. Yong-Long, L., Mabry, T. J., Lardy, C. and Chopin, J. (1982) Rev. Latinoam. Quim. 13, 56. 28. Sagareihvili, T. G. (1982) Khim. Prir. Soedin 442. 29. Exner, J.. Reichling, J., Cole, T. C. H. and Becker, H. (1981) Planta Med. 41, 198. 30. Oskay, E. (1984) J. Nat. Prod. 47, 742. 31. Lin, H.-M., Li, G.-L. and Wu, H.-Z.( 1981) Yao Hsueh Hsueh Pao 1665. 32. Stepanov, T. A., Glyzin, V. I., Smimova, L. P. and Issikina, A. P. (1981) Khim. Prir. Soedin 519. 33. El-Emary, N. A. and Bohlmann, F. (1980) Phytochemistry 19, 845. 34. Khafagy, S. M.. Al-Yahya, M. A., Ziesche. E. J. and Bohlmann, F. (1983) Phytochemistry 22, 1821. 35. El-Masry, S.. Omar, A. A., Abou-Sheer, M. I. A. and Saleh, M. R. 1. (1981) Pfunta Med. 42, 199. 36. Chandrasekharan, I., Khan, H. A. and Ghanim, A. (1981) Planta Med. 43, 3 10. 37. Rosier, K. H. A. (1984) J. Nat. Prod. 47, 316. 38. Redaelli,C.. Fonnentini, L. and Sataniello, E. (198 1) Plonta Med. 42, 288. 39. Merfort. I. 11984) Planta Med. 50, 107. 40. Bohhnann, F., Grenz, M., Dhar, A. K. and Goodman, M. (1981)Phytochemistry 20, 105. 41. Ayanogly E., Ulubelen, A., Clark. W. D., Brown, G. K., Kerr, R. R. and Mabry, T. J. (1981) Phytochemistry 20.1715. 3114 V. DE P. EMERENCIANO et al. 42. Bittner, M. and Watson, W. H. (1982) Reu. Latinoam Quim. 13, 27. 43. Ates, N., Ulubelen, A., Clark, W. D., Brown, G. K. and Mabry, T. J. (1982) 1. Nat. Prod. 45, 189. 44. Bohlmann, F.. Gupta, R. K., Jakupovic, J., Robinson, H. and King, R. M. (1981) Phytochemistry 20, 1609. 45. Ulubelen, A., Aynoglu, E., Clark, W. D., Brown, G. K. and Mabry, T. J. (1982) J. Nat. Prod. 45, 363. 46. Oksuq S., Ulubelen, A., Clark, W. D., Brown, G. K. and Mabry, T. J. (1981) Rev. Latitwam. Quim. 12, 12. 47. Tonn, C. E., Rossomando, P. C. and Giordano, 0. S. (1982) Phytochemistry 21,2599. 48. Giver, F. J. A., Del Castillo, J. B., Ferrer0 Manresa, M. T., Recimos, S. P. de and Rodriguez Luiz, F. (1982) Rev. L.utinoam. Quim. 13.47. 49. Arriaga Giner, F. G., Barges Del Castillo, J., Ferrer0 Manresa, M. T., Pefia de Recinos, S. and Rodriguez Luiz, L. (1982) Rev. Latinoam. Quim. 13.47. 50. Bittner, M. L., Silva, M. J., Vargas, J. C. and Watson, W. H. (1982) Bul. Sot. Chil. Quim. 27, 291. 51. Faini, F., Castillo, M. and Torrcs, R. (1982) Bol. Sot. Chil. Q&n. 27,276. 52. Faini, F. A., Castillo. M. and Torres, M. R. (1982) J. Nat. Prod. 45.501. 53. Kamanzi. K., Raynaud, J. and Voirin, B. (1982) Pharmazie 37,454. 54. Ulubelen, A. and Okzuz, S. (1982) J. Nat. Prod. 45, 373. 55. Forgacs, P., Desumclois, J. F. and Dubec. J. (1982) Planta Med. 42,284. 56. Rustaiyan, A., Niknejad, A. and Aynehchi, Y. (1981) Plonta Med. 44, 185. 57. Bohlmann, F. and Abraham, W. R. (1981) Phytochemistry 20, 855. 58. Sham’yanov, I. (1983) Khim. Prir. Soedin 7%. 59. Li, Q. (1982) Zhonbcaoyao 13,393. 60. El-Emary, N. A. (1983) Fitoterapia 54, 133. 61. Mansour, R. M. A., Ahmed, A. A. and Saleh, N. A.M. (1983) Phytochemistry 22.2630. 62. Abdel-!&lam, N. A., Sarg, T. M., Omar, A. A., Abdel-Aziz, E. and Khafagy, S. M. (1982) Sci. Pharm. SO, 34. 63. Quijano, L., Calderbn, J. S. and Rios,T. (1982) Phytochemistry 21,2%5. 64. Hem W. and Kulanthaivel, P. (1982) Phytachemistry 21, 2363. 65. Bohlmann, F., Jakupovic, J., King, R. M. and Robinson, H. (1981) Phytochemistry 20, 1613. 66. Ulubclen, A., Timmermann, B. N. and Mabry, T. J. (1980) Phytochemistry 19,905. 67. Timmermann, B. N., Graham, S. A. and Mabry, T. J. (1981) Phytochemistry 20. 1762. 68. Ortega, A., MartinR. and Garcia, C. L. (1980) Rev. Latinoam. Quim. 11,45. 69. Bohlmann, F., Rosenberg, E.. King, R. M. and Robinson, H. (1980) Phytochemistry 19, 977. 70. Amaro. J. M. and Mendez, A. M. (1983) Ret;. Lutirwum. Quim. 14, 86. 71. Rajbandasi, A. and Roberts, M. F. (1983) J. Nat. Prod. 46, 194. 72. Bohlmann, F., Bapuji, M., Jakupovic, J., King, R. M. and Robinson, H. (1982) Phytochemistry 21. 181. 73. Goodwin, R. (1984) J. Nat. Prod. 47,711. 74. Bohlmann, F., Zdero. C.. King, R. M. and Robinson, H. (1981) Phytochemistry 20, 1657. 75. Bohlmann, F., Gupta, R. K., Kin& R. M. and Robinson, H. (1981) Phytochemistry 20, 1417. 76. Bohlmann, F., Singh, P., Jakupovic, J., King, R. M. and Robinson, H. (1982) Phytochemistry 21, 371. 77. Bohlmann, F., Zdero. C., Gupta, R. K., King, R. M. and Robinson, H. (1980) Phytochemistry 19.2695. 78. Ferroso, G. (1983) An. Assoc. Quim. Argent. 71, 327. 79. Herr. W., Govindan, S. V., Riess-Maurer, I., Kreil, B, Wagner, H. Farkas, L. and Strelisky, J. (1980) Phytochemistry 19, 669. 80. Bohlmann, F., Bapuji, M., King, R. M. and Robinson, H. (1982) Phytochemistry 21, 939. 81. Kerr, K. M., Mabry, T. J. and Yoser, S. (1981) Phytochemistry 2.0, 791. 82. Ulubelen, A., Kerr, K. M. and Mabry, T. J. (1980) Phytochemistry 19, 1761. 83. Ulubelen, A., Kerr, K. M. and Mabry, T. J. (1981) Planta Med. 43,95. 84. Bohm, B. A. and Stuessy, T. F. (1981) Phyrochemistry 20, 1053. 85. Bohm, B. A. and Stuesay, T. F. (1981) Phytochemistry 20, 1573. 86. Glennie, C. W. and Jain, S. C. (1980) Phytachemistry 19, 1157. 87. Bohlmann, F. and Zdero. C. (1983) Phytochemistry 22,2877. 88. Bohm, B. A., Berlow, S. and Stuessy, T. F. (1983) Phytochemistry 22, 2743. 89. Bohm, B. A. and Stuesay, T. F. (1982) Phytochemisty 21, 2761. 90. Jadwiazczok, 1. and Debinska-Migas, W. (1981) Ann. Sot. Doetrinae Stud. Acad. Med. Silesiensis 8, 89. 91. Baimukhamedov, M. A. and Nikonov, G. K. (1983) Raszit. Resur. 19, 100. 92. Ferraro, G. E., Norbedo, C. and Coussio, J. D. (1981) Phytochemistry 20. 2053. 93. ECNegoumy, S. I., Mansour, R. M. A. and Saleh. N. A. M. (1982) Phytochemistry 21, 953. 94. Chiappini, I., Fardella, G., Menghini, A. and Rossi, C. (1982) Planta Med. 44, 159. 95. Cubukcu, B. and Bingo], S. (1981) Istambul Univ. Eczacilik Fak. Mecm. 17, 87. %. Cubukcu, B. and Yuksel. V. (1982) J. Nat. Prod. 45, 137. 97. Torrenegra, R. D., Escarria, R. S. and Tenorio, E. (1982) Rev. Lutinoam. Quim. 13.75. 98. Torrenegra, R. D., Escarria. R. S., RalTeelsberger, B. and Achenbach, H. (1980) Phytochemistry 19.2795. 99. Arriaga-Giner, F. J.. Borges Del Castillo, J., FerreroManresa, M. T., Recimos. S. P. and Rodriguez-Luiz, F. (1982) Reu. Z.utinoam. Quim. 13.41. 100. Guerreiro, E., Kavka, J. and Giordano, 0. S. (1982) Phytochemistry 21, 2601. 101. Cubukgl, B. (1982) Gogo, Seri A 6, 83. 102. Torrenegra, G. (1982) Reu. Latinoam. Quim. 13.75. 103. Hlnsel, R., Cybulski, E. V. Cubukcu, B., Mericli, A. H., Bohlmann, F. and Zdero, C. (1980) Phyrochemistry 19,639. 104. Merieli, A. H. (1980) Istombul Unio. Eczacilik Fak. Mecm. 17, 87. 105. Bohlmann, F., Abraham, W. R., Robinson, H. and King, R. M. (1980) Phytochemistry 19, 2475. 106. Bohlmann, F., Abraham, W. R. and Sheldrick, W. S. (1980) Phytochemistry 19, 869. 107. Arriaga-Giner. F. J., Barges Del Castillo, J., FerreroManresa, M. T., Bueno, P. V., Rodriguez-Luiz_ F. and Iraheta, S. V. (1983) Phyrochemistry 22, 1767. 108. Pares, J. 0.. Oksuz, S. Ulubelen, A. and Mabry, T. J. Phytochemistry 20, 2057. 109. Bingol, S. (1984) Sci. Pharm. 52, 127. 110. Bohlmann, F., Suwita, A., Jakupovic, J., King, R. M. and Robinson, H. (1981) Phytochemistry 20, 1649. Sequitcrpenc (1982) Phytochemistry I1 I. Faini, F. (1984) J. Nat. Prod. 47, 552. R. M. A. and Saleh, N. A. (1981) Phytochemistry 112. Mansour, 20, 1180. I 13. 119. Bohlmann, 21, 1169. F., Singh, P., Jakupovic, King, R. M. (1982) Phytochemistry N. A. and Ali, A. A. (1983) Fitoterapia El-Emary, 114. Kaloshina, N. A. and Mazulin, A. V. (1983) 54, 9. 120. Herz, W., Govindan, Khim. Prir. Soedin 104. 115.Bhardwaj. Sharma, G. C. (1980) Phytochembtry F., Zdero, C.,Grenz. H. and King, R. M. (1981) Phytochemistry L., Caldtron. Phyrochemistry 118. Bohlmann, J. S., G6mez, 21, 2575. F.. Adler, A., King, R. M. and Robinson, H. F.. Zdero, C., Robinson, H. and N. (1981) Phyto- F., Zdero, C., King, 19, 2669. J. B., Girya. H. and King. R. M. 19, 2381. (1980) Phytochemistry 123. Harborne, 20, 281. F. and Rios, T. (1982) S. V. and Kumar, (1980) Phytochemistry 122. Bohlmann, 19, 713. M., Dhar. A. K., Robinson, J., Robinson, 21, 705. chemistry 20. 1343. 121. Bohlmann, D. K., Bisht, M. S., Uain, S. C., Mehta. C. K. and 116. Bohlmann, 117. Quijano, 3115 la&ones and flavonoids of Asteraccac R. M. and Robinson, H. A. R., Devi, H:. M. and Lakshmi, N. K. M. (1983) Phytochemistry 22,274l. 124. Bohlmann, F. and Zdero, C. (1980) Phytochemisrry 19,863. 125. Bohlmann, F. and Zdero, C. (1982) Phytochemisrry 21.1434.
© Copyright 2026 Paperzz