04.11.2011 Materialwissenschaften I WiSe 11/12 A brief introduction to band structure and electron transport in materials Priv.-Doz. Dr. Bert Nickel [email protected] Literatur Hunklinger: Solid state physics R. Tilley: Understanding solids 1 04.11.2011 Todays questions • what is the electronic structure of a solid ? • how do electrons behave in a solid ? • what is the origin of metallic semiconducting, and insulating behaviour? Band structures (e) free electron (fcc) 2 04.11.2011 key terms • • • • • • • • • plane wave, standing wave, wave vector k Bragg condition, reduced Brillouin zone dispersion relation w(k) group velocity vg = dw/dk effective mass of an electron Band gap Bloch oscillation Band structure, Pauli principle Fermi energy, Fermi wave length Waves: definition of terms wave vector k : (2p/lX, 2p/lY, 2p/lZ) plane wave : E(x > 0,t) = E0 exp i(wt - k.r) phase velocity : v=w/k two interfering plane waves : E = 2 E0 exp i(w0t - k0.r) cos [(dwt - dk.r)/2] group velocity : vg = dw/dk group velocity 3 04.11.2011 E (Amplitude) Waves: definition of terms t=0 1 t 0 -1 0 1 2 3 x in units of wave length l 4 dispersion relation: free electron in a constant field Energy Energy (k) = 2k2/(2m) Wave vector (k) 4 04.11.2011 two counter propagating waves form a standing wave E (Amplitude) E = 2 exp i (wt) cos(k.r) t=0 1 0 -1 t = T/2 0 1 2 3 x in units of wave length l 4 1 the two solutions 0 -1 0 E (Amplitude) E (Amplitude) n1 n2 1 2 3 n n x 1 in2 units of wave length l k = Pp/a , P = 1, 2, 3, ... Bragg condition 4 1 0 -1 0 1 2 3 x in units of wave length l 4 5 04.11.2011 Energy electron in an ideal crystal Energy gap -2 -1 0 1 k in units of (p/a) 2 E in units of E Brillouin zone 5 4 3 2 1 0 -2 -1 0 1 k in units of (p/a0) 2 6 04.11.2011 reduced zone scheme extended zone scheme repeated zone scheme Energy Band structure and Pauli‘s principle EF Empty band Filled band -2 -1 0 1 k in units of (p/a) 2 7 04.11.2011 Energy Effect of an applied field on electrons in a crystal EF -2 -1 0 1 k in units of (p/a) 2 Energy example: Na (3s1) crystal EF = 8.13 eV -2 a = 0.423 nm -0.877 0.877 -1 0 1 k in units of kBRAGG 2 8 04.11.2011 Band structures (e) free electron (fcc) Energie in eV Art Material 0K 300 K C (als Diamant) indirekt 5,4 5,46–6,4 Si indirekt 1,17 1,12 Ge indirekt 0,75 0,67 Se direkt 1,74 indirekt 2,36 IV-IV-Verbindungen SiC 3C 9 04.11.2011 III-V-Verbindungen InP direkt 1,42 1,27 InAs direkt 0,43 0,355 InSb direkt 0,23 0,17 InN direkt 0,7 InxGa1-xN direkt 0,7–3,37 GaN direkt 3,37 GaP 3C indirekt 2,26 GaSb direkt 0,81 0,69 GaAs direkt 1,52 1,43 AlxGa1-xAs x<0,4 ,x>0,4 direkt indirekt 1,42–2,16 II-VI-Verbindungen TiO2 ZnO direkt ZnS ZnSe 3,03 3,2 3,436 3,37 3,56 direkt 2,70 CdS 2,42 CdSe 1,74 CdTe 1,45 10
© Copyright 2026 Paperzz