www.sciencemag.org/content/355/6327/aag1789/suppl/DC1 Supplementary Materials for The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport Elizabeth O’Brien, Marilyn E. Holt, Matthew K. Thompson, Lauren E. Salay, Aaron C. Ehlinger, Walter J. Chazin,* Jacqueline K. Barton* *Corresponding author. Email: [email protected] (J.K.B.); [email protected] (W.J.C.) Published 24 February 2017, Science 355, aag1789 (2017) DOI: 10.1126/science.aag1789 This PDF file includes: Figs. S1 to S17 Tables S1 and S2 References Fig. S1. DNA binding for WT and mutant p58C. WT and mutant p58C domains have similar DNA binding affinities with low micromolar dissociation constants. Affinities were measured in aerobic conditions by fluorescence anisotropy of FITC-labeled DNA substrates in 20 mM MES, pH 6.5, 50 mM NaCl. Background was subtracted from anisotropy values prior to plotting. KD values are mean ± SD over n=3 measurements for each variant. Fig. S2. Cyclic voltammetry (A) and Square Wave Voltammetry (B) signals of p58C bound to of well-matched (WM) DNA or DNA containing an abasic site (AB DNA) in the duplex segment, in the presence and absence of an NTP pool. The p58C domain displays a reversible redox signal centered at 140-150mV vs. NHE in the presence of ss/dsDNA and 500μM [ATP]. This suggests that the [4Fe4S] cluster in DNA primase is capable of undergoing reversible redox activity when the enzyme is in its active form, bound to DNA and NTPs. All electrochemistry was performed in anaerobic conditions with a Ag/AgCl reference, on 10μM [p58C] in 20mM Tris, pH 7.2, 75mM NaCl. Cyclic voltammetry scan rate: 100mV/s, square wave voltammetry scan frequency: 15 Hz. Fig. S4. P58C does not produce a redox signal on ss/dsDNA in the absence of electrochemical alteration. CV performed in anaerobic conditions on 16μM p58C using a Ag/AgCl reference electrode, in 20mM Tris buffer, pH 7.2, 75mM NaCl. CV scans were conducted at a 100mV/s scan rate. Fig. S5. A) Iterative oxidation reactions on a single DNA-modified multiplex electrode surface. Oxidation reactions of p58C indicate that charge passes, converting a reduced species to an oxidized species at an applied potential of +412mV vs. NHE. This shows that after reduction in CV, p58C can be oxidized again on a DNA-modified surface. B) Charge transfer (nC) in the cathodic peak signal for each CV scan of the iteratively oxidized p58C sample. Charge transfer increases during iterative oxidations, due to more p58C available at the DNA/solution interface during later trials. C) Plot of CV charge transfer for iterative oxidation steps. Charge transfer in CV peak increases over iterative scans, suggesting that electrochemical oxidation brings more p58C to the ss/dsDNA substrate. Electrochemistry performed on 16μM p58C in 20mM Tris, pH 7.2, 75mM NaCl. CV scans performed at 100mV/s scan rate. A B Y309 Y345 Y347 Fig. S6. Comparison of p58C structures obtained with two different crystallization conditions. A) Superposition of the two p58C structures, 5F0Q (red) and 3LQ9 (blue). B) Expanded region of the 5F0Q structure showing the distribution of the three conserved tyrosine residues that make up the proposed charge transport pathway. Fig. S8. Structural comparison of WT and mutant p58C. A)Superposition of the WT p58C (PDB 3L9Q) and Y347F p58C (PDB 5DQO) structures. B) Superposition of the WT p58C (PDB 3L9Q) and Y345F p58C (PDB 517M) structures. In both panels, WT p58C is colored blue and the tyrosine to phenylalanine mutant is red. Fig. S9. CV scans of p58C Y345F. A) Electrochemically unaltered p58C tyrosine mutants display no electrochemical signal on DNA. B) Electrochemically oxidized p58C tyrosine mutants display a cathodic peak between -150mV and -160mV vs. NHE after oxidation at an applied potential of +412mV vs. NHE; the peak signal is smaller than that observed for wild type. C) Tyrosine mutants of p58C display no redox signal on DNA after electrochemical reduction at an applied potential of 188mV vs. NHE. All scans performed on 16μM p58C variant, in 20mM Tris, pH 7.2, 75mM NaCl, at a 100mV/s scan rate. P58C Y345F is shown as a representative example of the mutants. Fig. S10. Iterative Oxidations, followed by CV scans, of p58C Y345F on a single electrode surface. A) Three bulk electrolysis reactions at an applied potential of +412mV vs. NHE were performed in immediate succession on a single electrode surface. B) CV scans after each successive oxidation. Charge transfer in the cathodic peak was 4.1nC, 5.3nC, and 6.3nC during oxidations 1, 2, and 3, respectively. The mutant p58C thus shows the same general trend as WT but transfers less charge in bulk electrolysis and subsequent CV on the DNA-modified surface. All scans performed on 16μM p58C variant, in 20mM Tris, pH 7.2, 75mM NaCl, at a 100mV/s scan rate. P58C Y345F is shown as a representative example of the mutants. Figure S11. Change in potential value for cathodic peak after p58C oxidation, WT and tyrosine mutants of p58C. Potential measurements from three CV trials after p58C electrochemical oxidation show that the WT potential is more negative on average, but the difference between WT and mutant p58C cannot be determined to a significant degree outside the margin of error. This suggests that the mutants are more likely to be in the reduced [4Fe4S]2+ state than the WT protein with an intact charge transfer pathway, as expected. Potential values are reported as mean ± SD over n= 5 trials. 0 WT p58C -0.05 Ered (V vs. NHE) p58C Y345L -0.1 -0.15 -0.2 -0.25 -0.3 -1.2 -1 -0.8 -0.6 -0.4 log (Scan Rate) -0.2 0 Figure S12. Scan Rate dependence of cathodic peak potential in p58C CV signal after electrochemical oxidation. The peak potential varies with the log of the scan rate for WT p58C (blue points, solid line) and for p58C Y345L (green points, dashed line), as is expected for an irreversible signal (55) in CV. The similar linear relationships of the potential and log of the scan rate for these two relationships demonstrate that the rate-determining step in generating this CV signal is tunneling through the alkanethiol linker tethering the DNA substrate to the gold electrode surface. Fig. S13. DNA binding for WT and mutant primase. WT and mutant primase have similar DNA binding affinities with high nanomolar dissociation constants. Affinities were measured by fluorescence anisotropy of FITC-labeled DNA substrates in the presence of atmospheric oxygen in 20 mM HEPES, pH 7.5, and 75 mM NaCl. Background was subtracted from anisotropy values prior to plotting. KD values are mean ± SD over n=3 measurements for each variant. Fully Elongated (60 nt) products, no truncation Truncated Exogenous Primer Products Figure S14. Gel separation of products for elongation reactions with increasing concentrations of p48/p58 and p48/p58Y345F on 2’-OMe RNA-primed DNA. WT primase, which has an efficient redox switching pathway between bound DNA and the [4Fe4S] cluster, synthesizes slightly more truncated products on average. The CT pathway through the protein is important for the redox switch, but it does not appear to be the sole mediator of primase product truncation. Elongation assays were performed anaerobically, with 500nM primed DNA, 1 μM α-32P ATP, 120 μM CTP, 180 μM UTP, 200-800 nM enzyme in 50 mM Tris, pH 8.0, 3 mM MgCl2, at 37 °C. Fig. S15. Percent of primase products truncated by WT and CT-deficient variants at 5, 10, and 30 minutes of incubation at 37°C, under anaerobic conditions. Primase mutants are identified by the mutation in the p58C domain. WT and mutant primase elongation activity at t= 5 minutes (top left), t= 10 minutes (top right), and t= 30 minutes (bottom left) of incubation. Legend is shown on the bottom right. All measurements are mean ± SD for n= 3 trials. Fig S16. Quantification of 60-nt products synthesized by WT and CT-deficient variants at 5, 10, and 30 minutes of incubation at 37°C, under anaerobic conditions. The products, quantified by calculating 32P counts/minute from α-32P ATP incorporated into products separated by mass on a 20% PAGE denaturing gel, are identical between variants within error for each time point. The 60-nt products were quantified and compared to assess the nucleotide polymerization of each variant, as these products are independent of regulation by the redox switch. This demonstrates that CT-deficient primase retains the ability to polymerize nucleotides and elongate exogenous primers. Conditions are shown for 400nM enzyme concentration reactions. All measurements are mean ± SD for n= 3 trials. ** ## *** *** ** ** # *** Figure S17. Percentage of WT primase truncated products for a) t = 30 minutes (left) and b) t = 120 minutes (right). Similar to the 60 minute time point (incubation at 37°C), these plots suggest that CTproficient primase synthesizes significantly more truncated products on well-matched, primed DNA than in the presence of a single base mismatch within the RNA primer. When primase cannot participate in DNA CT, it favors product elongation to primer-multimer length, at all concentrations of CT-proficient primase assayed. Mean ±SD values are plotted for n= 3 trials, # = 0.025<p<0.01, ## = 0.005<p<0.01, ** = 0.001<p<0.0005, *** = p<0.0005 (student’s t-test). Table S1. Electrochemistry, primase activity assay, and fluorescence anisotropy DNA substrates used. Electrochemistry of p58C was performed on self-assembling monolayers of a 20-mer DNA duplex substrate with a 3-nt 5’- ssDNA overhang. A 50-nt ssDNA substrate with a single thymine base complementary to the α-32P radiolabeled ATP was used in the primase initiation assay comparing wild type and CT-deficient full-length enzyme. A 2’-OMe RNA-primed ss/dsDNA substrate, containing a 31- nucleotide duplex segment and a 29- nucleotide 5’-ssDNA overhang was used to assay elongation. The mismatched elongation assay was performed with a cytosine engineered into the substrate (red) to promote a mismatch in the elongated primer segment. U = 2’-OMe rU, SH = -(CH2)6-SH, Flc = FITC Table S2 Crystallographic data collection and refinement statistics. PDB Entry 517M 5DQO Protein Structure Y345F Y347F C2 P31 109.9, 52.7, 89.2 90, 115.25, 90 100 0.987 49.7-1.93 (1.96-1.93) 60.40, 60.40, 246.73 90, 90, 120 100 0.999 44.14- 2.48 (2.53-2.48) 142, 467 35, 604 99.9 (99.8) 184, 871 41, 462 99.1 (89.6) Data Collection Space Group Cell dimensions a, b, c (Å) α, β, γ (°) Temperature (K) Wavelength (Å) a Resolution (Å) Reflections Total Unique a Completeness (%) Rmerge (%) Rpim (%) a,b a a CC1/2 (%) I/σI Redundancy 8.7 (58.4) 5.8 (49.3) 0.048 (0.33) 2.9 (33.9) (88.6) 18.7 (2.1) 4.2 (4.0) (59.2) 27.6 (2.1) 4.5 (2.9) 21.0/24.9 24.9/27.4 314 2 81 628 4 41 28.8 21.5 27.7 24.5 0.02 2.11 53.69 46.16 55.66 58.1 0.02 1.91 99% 1% 98.5% 1.5% 0% 0% Refinement c Rwork/Rfree (%) No. of residues Protein 4Fe-4S Solvent Average B-Factor (Å) Protein 4Fe-4S Solvent 2 Wilson B-Factor (Å ) RMSD Bonds (Å) RMSD Angles (°) Ramachandran (%) Most favored Allowed Disallowed a Values in parentheses are for the highest-resolution shell. bRmerge = Σ(|I-Ī|)/Σ I x 100. cRwork = Σ |F0-Fc|/ΣF0 x 100, where F0 is the observed structure factor amplitude and Fc is the calculated structure factor amplitude. Table S2. Crystallographic Data for p58C Y345F (PDB 517M) and p58C Y347F (PDB 5DQO). References 1. M. A. Grodick, N. B. Muren, J. K. Barton, DNA charge transport within the cell. Biochemistry 54, 962–973 (2015). doi:10.1021/bi501520w Medline 2. A. A. Gorodetsky, A. K. Boal, J. K. Barton, Direct electrochemistry of endonuclease III in the presence and absence of DNA. J. Am. Chem. Soc. 128, 12082–12083 (2006). doi:10.1021/ja064784d Medline 3. A. K. Boal, J. C. Genereux, P. A. Sontz, J. A. Gralnick, D. K. Newman, J. K. Barton, Redox signaling between DNA repair proteins for efficient lesion detection. Proc. Natl. Acad. Sci. U.S.A. 106, 15237–15242 (2009). doi:10.1073/pnas.0908059106 Medline 4. P. A. Sontz, T. P. Mui, J. O. Fuss, J. A. Tainer, J. K. Barton, DNA charge transport as a first step in coordinating the detection of lesions by repair proteins. Proc. Natl. Acad. Sci. U.S.A. 109, 1856–1861 (2012). doi:10.1073/pnas.1120063109 Medline 5. C. G. Pheeney, A. R. Arnold, M. A. Grodick, J. K. Barton, Multiplexed electrochemistry of DNA-bound metalloproteins. J. Am. Chem. Soc. 135, 11869–11878 (2013). doi:10.1021/ja4041779 Medline 6. M. A. Grodick, H. M. Segal, T. J. Zwang, J. K. Barton, DNA-mediated signaling by proteins with 4Fe-4S clusters is necessary for genomic integrity. J. Am. Chem. Soc. 136, 6470– 6478 (2014). doi:10.1021/ja501973c Medline 7. D. C. Rees, J. B. Howard, The interface between the biological and inorganic worlds: Ironsulfur metalloclusters. Science 300, 929–931 (2003). doi:10.1126/science.1083075 Medline 8. T. A. Rouault, Mammalian iron-sulphur proteins: Novel insights into biogenesis and function. Nat. Rev. Mol. Cell Biol. 16, 45–55 (2015). doi:10.1038/nrm3909 Medline 9. S. Klinge, J. Hirst, J. D. Maman, T. Krude, L. Pellegrini, An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat. Struct. Mol. Biol. 14, 875– 877 (2007). doi:10.1038/nsmb1288 Medline 10. B. E. Weiner, H. Huang, B. M. Dattilo, M. J. Nilges, E. Fanning, W. J. Chazin, An ironsulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase. J. Biol. Chem. 282, 33444–33451 (2007). doi:10.1074/jbc.M705826200 Medline 11. S. Vaithiyalingam, E. M. Warren, B. F. Eichman, W. J. Chazin, Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase. Proc. Natl. Acad. Sci. U.S.A. 107, 13684–13689 (2010). doi:10.1073/pnas.1002009107 Medline 12. L. Sauguet, S. Klinge, R. L. Perera, J. D. Maman, L. Pellegrini, Shared active site architecture between the large subunit of eukaryotic primase and DNA photolyase. PLOS ONE 5, e10083 (2010). doi:10.1371/journal.pone.0010083 Medline 13. V. B. Agarkar, N. D. Babayeva, Y. I. Pavlov, T. H. Tahirov, Crystal structure of the Cterminal domain of human DNA primase large subunit: Implications for the mechanism of the primase-polymerase α switch. Cell Cycle 10, 926–931 (2011). doi:10.4161/cc.10.6.15010 Medline 14. A. G. Baranovskiy, Y. Zhang, Y. Suwa, N. D. Babayeva, J. Gu, Y. I. Pavlov, T. H. Tahirov, Crystal structure of the human primase. J. Biol. Chem. 290, 5635–5646 (2015). doi:10.1074/jbc.M114.624742 Medline 15. M. L. Kilkenny, G. De Piccoli, R. L. Perera, K. Labib, L. Pellegrini, A conserved motif in the C-terminal tail of DNA polymerase α tethers primase to the eukaryotic replisome. J. Biol. Chem. 287, 23740–23747 (2012). doi:10.1074/jbc.M112.368951 Medline 16. M. L. Kilkenny, M. A. Longo, R. L. Perera, L. Pellegrini, Structures of human primase reveal design of nucleotide elongation site and mode of Pol α tethering. Proc. Natl. Acad. Sci. U.S.A. 110, 15961–15966 (2013). doi:10.1073/pnas.1311185110 Medline 17. D. J. A. Netz, C. M. Stith, M. Stümpfig, G. Köpf, D. Vogel, H. M. Genau, J. L. Stodola, R. Lill, P. M. J. Burgers, A. J. Pierik, Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat. Chem. Biol. 8, 125–132 (2011). doi:10.1038/nchembio.721 Medline 18. D. N. Frick, C. C. Richardson, DNA primases. Annu. Rev. Biochem. 70, 39–80 (2001). doi:10.1146/annurev.biochem.70.1.39 Medline 19. R. D. Kuchta, G. Stengel, Mechanism and evolution of DNA primases. Biochim. Biophys. Acta 1804, 1180–1189 (2010). doi:10.1016/j.bbapap.2009.06.011 Medline 20. B. Arezi, R. D. Kuchta, Eukaryotic DNA primase. Trends Biochem. Sci. 25, 572–576 (2000). doi:10.1016/S0968-0004(00)01680-7 Medline 21. M. O’Donnell, L. Langston, B. Stillman, Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb. Perspect. Biol. 5, a010108 (2013). doi:10.1101/cshperspect.a010108 Medline 22. A. G. Baranovskiy, N. D. Babayeva, Y. Zhang, J. Gu, Y. Suwa, Y. I. Pavlov, T. H. Tahirov, Mechanism of concerted RNA-DNA primer synthesis by the human primosome. J. Biol. Chem. 291, 10006–10020 (2016). doi:10:1074/jbc.M116.717405 23. S. Klinge, R. Núñez-Ramírez, O. Llorca, L. Pellegrini, 3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases. EMBO J. 28, 1978–1987 (2009). doi:10.1038/emboj.2009.150 Medline 24. R. L. Perera, R. Torella, S. Klinge, M. L. Kilkenny, J. D. Maman, L. Pellegrini, Mechanism for priming DNA synthesis by yeast DNA polymerase α. eLife 2, e00482 (2013). doi:10.7554/eLife.00482 Medline 25. S. Vaithiyalingam, D. R. Arnett, A. Aggarwal, B. F. Eichman, E. Fanning, W. J. Chazin, Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase. J. Mol. Biol. 426, 558–569 (2014). doi:10.1016/j.jmb.2013.11.007 Medline 26. N. F. Lue, J. Chan, W. E. Wright, J. Hurwitz, The CDC13-STN1-TEN1 complex stimulates Pol α activity by promoting RNA priming and primase-to-polymerase switch. Nat. Commun. 5, 5762 (2014). doi:10.1038/ncomms6762 Medline 27. R. E. Georgescu, G. D. Schauer, N. Y. Yao, L. D. Langston, O. Yurieva, D. Zhang, J. Finkelstein, M. E. O’Donnell, Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. eLife 4, e04988 (2015). doi:10.7554/eLife.04988 Medline 28. L. K. Zerbe, R. D. Kuchta, The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting. Biochemistry 41, 4891–4900 (2002). doi:10.1021/bi016030b Medline 29. P. Garg, P. M. J. Burgers, DNA polymerases that propagate the eukaryotic DNA replication fork. Crit. Rev. Biochem. Mol. Biol. 40, 115–128 (2005). doi:10.1080/10409230590935433 Medline 30. J. O. Fuss, C. L. Tsai, J. P. Ishida, J. A. Tainer, Emerging critical roles of Fe-S clusters in DNA replication and repair. Biochim. Biophys. Acta 1853, 1253–1271 (2015). doi:10.1016/j.bbamcr.2015.01.018 Medline 31. J. D. Slinker, N. B. Muren, A. A. Gorodetsky, J. K. Barton, Multiplexed DNA-modified electrodes. J. Am. Chem. Soc. 132, 2769–2774 (2010). doi:10.1021/ja909915m Medline 32. J. D. Slinker, N. B. Muren, S. E. Renfrew, J. K. Barton, DNA charge transport over 34 nm. Nat. Chem. 3, 228–233 (2011). doi:10.1038/nchem.982 Medline 33. A. K. Boal, E. Yavin, O. A. Lukianova, V. L. O’Shea, S. S. David, J. K. Barton, DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters. Biochemistry 44, 8397–8407 (2005). doi:10.1021/bi047494n Medline 34. J. A. Imlay, Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 59, 1073– 1082 (2006). doi:10.1111/j.1365-2958.2006.05028.x Medline 35. T. P. Mui, J. O. Fuss, J. P. Ishida, J. A. Tainer, J. K. Barton, ATP-stimulated, DNA-mediated redox signaling by XPD, a DNA repair and transcription helicase. J. Am. Chem. Soc. 133, 16378–16381 (2011). doi:10.1021/ja207222t Medline 36. J. R. Winkler, H. B. Gray, Long-range electron tunneling. J. Am. Chem. Soc. 136, 2930–2939 (2014). doi:10.1021/ja500215j Medline 37. H. B. Gray, J. R. Winkler, Electron flow through metalloproteins. Biochim. Biophys. Acta 1797, 1563–1572 (2010). doi:10.1016/j.bbabio.2010.05.001 Medline 38. C. Shih, A. K. Museth, M. Abrahamsson, A. M. Blanco-Rodriguez, A. J. Di Bilio, J. Sudhamsu, B. R. Crane, K. L. Ronayne, M. Towrie, A. Vlcek Jr., J. H. Richards, J. R. Winkler, H. B. Gray, Tryptophan-accelerated electron flow through proteins. Science 320, 1760–1762 (2008). doi:10.1126/science.1158241 Medline 39. O. Plekan, V. Feyer, R. Richter, M. Coreno, K. C. Prince, Valence photoionization and photofragmentation of aromatic amino acids. Mol. Phys. 106, 1143–1153 (2008). doi:10.1080/00268970801974875 40. S. A. Forbes, N. Bindal, S. Bamford, C. Cole, C. Y. Kok, D. Beare, M. Jia, R. Shepherd, K. Leung, A. Menzies, J. W. Teague, P. J. Campbell, M. R. Stratton, P. A. Futreal, COSMIC: Mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011). doi:10.1093/nar/gkq929 Medline 41. J. Stubbe, D. G. Nocera, C. S. Yee, M. C. Y. Chang, Radical initiation in the class I ribonucleotide reductase: Long-range proton-coupled electron transfer? Chem. Rev. 103, 2167–2201 (2003). doi:10.1021/cr020421u Medline 42. J. Stubbe, W. A. van Der Donk, Protein radicals in enzyme catalysis. Chem. Rev. 98, 705– 762 (1998). doi:10.1021/cr9400875 Medline 43. R. J. Sheaff, R. D. Kuchta, D. Ilsley, Calf thymus DNA polymerase α-primase: “communication” and primer-template movement between the two active sites. Biochemistry 33, 2247–2254 (1994). doi:10.1021/bi00174a035 Medline 44. R. J. Sheaff, R. D. Kuchta, Misincorporation of nucleotides by calf thymus DNA primase and elongation of primers containing multiple noncognate nucleotides by DNA polymerase α. J. Biol. Chem. 269, 19225–19231 (1994). Medline 45. R. Núñez-Ramírez, S. Klinge, L. Sauguet, R. Melero, M. A. Recuero-Checa, M. Kilkenny, R. L. Perera, B. García-Alvarez, R. J. Hall, E. Nogales, L. Pellegrini, O. Llorca, Flexible tethering of primase and DNA Pol α in the eukaryotic primosome. Nucleic Acids Res. 39, 8187–8199 (2011). doi:10.1093/nar/gkr534 Medline 46. M. A. O’Neill, J. K. Barton, 2-Aminopurine: a probe of structural dynamics and charge transfer in DNA and DNA:RNA hybrids. J. Am. Chem. Soc. 124, 13053–13066 (2002). doi:10.1021/ja0208198 Medline 47. E. M. Boon, J. K. Barton, DNA electrochemistry as a probe of base pair stacking in A-, B-, and Z-form DNA. Bioconjug. Chem. 14, 1140–1147 (2003). doi:10.1021/bc034139l Medline 48. M. Garcia-Diaz, K. Bebenek, J. M. Krahn, L. C. Pedersen, T. A. Kunkel, Role of the catalytic metal during polymerization by DNA polymerase lambda. DNA Repair 6, 1333– 1340 (2007). doi:10.1016/j.dnarep.2007.03.005 Medline 49. M. A. O’Neill, J. K. Barton, DNA-mediated charge transport requires conformational motion of the DNA bases: Elimination of charge transport in rigid glasses at 77 K. J. Am. Chem. Soc. 126, 13234–13235 (2004). doi:10.1021/ja0455897 Medline 50. M. A. O’Neill, H.-C. Becker, C. Wan, J. K. Barton, A. H. Zewail, Ultrafast dynamics in DNA-mediated electron transfer: Base gating and the role of temperature. Angew. Chem. Int. Ed. 42, 5896–5900 (2003). doi:10.1002/anie.200352831 Medline 51. L. Liu, M. Huang, Essential role of the iron-sulfur cluster binding domain of the primase regulatory subunit Pri2 in DNA replication initiation. Protein Cell 6, 194–210 (2015). doi:10.1007/s13238-015-0134-8 Medline 52. R. P. Cunningham, H. Asahara, J. F. Bank, C. P. Scholes, J. C. Salerno, K. Surerus, E. Münck, J. McCracken, J. Peisach, M. H. Emptage, Endonuclease III is an iron-sulfur protein. Biochemistry 28, 4450–4455 (1989). doi:10.1021/bi00436a049 Medline 53. A. M. Holmes, E. Cheriathundam, F. J. Bollum, L. M. Chang, Initiation of DNA synthesis by the calf thymus DNA polymerase-primase complex. J. Biol. Chem. 260, 10840–10846 (1985). Medline 54. M. Suzuki, E. Savoysky, S. Izuta, M. Tatebe, T. Okajima, S. Yoshida, RNA priming coupled with DNA synthesis on natural template by calf thymus DNA polymerase α-primase. Biochemistry 32, 12782–12792 (1993). doi:10.1021/bi00210a030 Medline 55. E. Laviron, General expression of the linear potential sweep voltammagram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979). doi:10.1016/S0022-0728(79)80075-3
© Copyright 2026 Paperzz