A Survey of the High Order Multiplicity of Nearby Solar

Draft version November 5, 2014
Preprint typeset using LATEX style emulateapj v. 5/2/11
A SURVEY OF THE HIGH ORDER MULTIPLICITY OF NEARBY SOLAR-TYPE BINARY STARS WITH
ROBO-AO
Reed L. Riddle1 , Andrei Tokovinin2 , Brian D. Mason3 , William I. Hartkopf3 , Lewis C. Roberts, Jr.4 , Christoph
Baranec5 , Nicholas M. Law6 , Khanh Bui1 , Mahesh P. Burse7 , H. K. Das7 , Richard G. Dekany1 , Shrinivas
Kulkarni1 , Sujit Punnadi7 , A. N. Ramaprakash7 , Shriharsh P. Tendulkar1
arXiv:1411.0682v1 [astro-ph.SR] 3 Nov 2014
1 Division
of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
2 Cerro Tololo Inter-American Observatory, Casilla 603, La Serena, Chile
3 U.S. Naval Observatory, 3450 Massachusetts Avenue, Washington, DC 20392-5420, USA
4 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
5 Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700, USA
6 Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA and
7 Inter-University Centre for Astronomy & Astrophysics, Ganeshkhind, Pune, 411007, India
To be submitted to ApJ
ABSTRACT
We conducted a survey of nearby binary systems composed of main sequence stars of spectral types
F and G in order to improve our understanding of the hierarchical nature of multiple star systems.
Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution
images with deep and well-defined detection limits in the SDSS i0 band. A total of 695 components
belonging to 595 systems were observed. We prioritized observations of faint secondary components
with separations over 1000 to quantify the still poorly constrained frequency of their sub-systems. Of
the 214 secondaries observed, 39 contain such subsystems; 19 of those were discovered with Robo-AO.
The selection-corrected frequency of secondary sub-systems with periods from 103.5 to 105 days is
0.12±0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs
belong to quadruple systems where the primary is also a close pair, showing that the presence of subsystems in both components of the outer binary is correlated. The relatively large abundance of 2+2
quadruple systems is a new finding, and will require more exploration of the formation mechanism
of multiple star systems. We also targeted close binaries with periods less than 100 yr, searching for
their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a subsample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary
components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods
from 106 to 107.5 days (separations on the order of 500 AU), the frequency of tertiary components
is 0.16±0.03, exceeding by almost a factor of two the frequency of similar systems among all targets
(0.09). Measurements of binary stars with Robo-AO allowed us to compute first orbits for 9 pairs and
to improve orbits of another 11 pairs.
Subject headings: binaries: general – binaries (including multiple): close – stars: formation – instrumentation: adaptive optics – techniques: high angular resolution
1. INTRODUCTION
Statistics of hierarchical stellar systems provide important clues to star formation mechanisms that are still actively researched and debated. Current theories give contradictory predictions about hierarchical multiples (for
example, N-body dynamics vs. hydrodynamical simulations produce different multiplicity fractions); so far,
none of them is capable of modeling the distributions of
periods, mass ratios, and hierarchies seen in observations.
As periods and separations of stellar pairs vary by
several orders of magnitude, comprehensive coverage of
the parameter space can be achieved only by combining complementary observing techniques, and only for
the nearest stars. However, the number of objects in
the best-studied 25-pc sample of Raghavan et al. (2010)
is too small for deriving meaningful statistics of triple
and higher-order multiples. For this purpose, a larger,
distance-limited sample of ∼5000 F- and G-dwarfs within
67 pc of the Sun was constructed from the Hipparcos catalog; it is called FG-67 hereafter.
The sample definition and the database are presented
in Tokovinin (2014). The census of companions to primary stars in FG-67 is fairly complete over the whole
range of periods, with an overall detection probability of about 80%, except for low-mass companions at
separations from 0.00 1 to 2000 (see details in the above
paper). Such companions can be discovered by highcontrast imaging with adaptive optics (AO). Secondary
components can be close pairs as well, but discovery of
sub-systems in the secondary components is more problematic, with average detection probability (before this
survey) of only about 15%; most sub-systems in the secondaries are presently missed. If they are as frequent as
sub-systems in the primaries, the actual number of stellar hierarchies in the FG-67 sample is substantially larger
than known today.
It is important to test the frequency of sub-systems in
the secondaries for constraining mechanisms of multiplestar formation. If chaotic N -body dynamics is the dominant mechanism, sub-systems in the secondaries should
be much less common than in the primaries, because in
triple encounters, the lightest star is usually ejected while
the two most massive stars pair in a binary. On the other
2
Riddle et al.
hand, the hydrodynamic simulations of Bate (2012) predict a large fraction of multiple systems, including 2+2
quadruples (i.e., two close pairs in a wide outer binary).
Recent advances in observational techniques have substantially improved our knowledge of the distribution of
binary periods and mass ratios, as reviewed by Duchêne
& Kraus (2013). Lucky imaging has been used to survey large samples (Ginski et al. 2012; Janson et al. 2012;
Jodar et al. 2013). Yet, the emphasis is almost always
placed on binaries, leaving higher-order hierarchies aside
or addressing them casually; a rare exception is the work
of Law et al. (2010) who observed a higher than expected
high-order multiplicity of M dwarf stars.
This survey aims at complementing the statistics of hierarchical systems in the FG-67 sample by imaging with
Robo-AO (Baranec et al. 2014). Our main goal is to constrain the multiplicity of secondary components, most of
which so far had no high-resolution imaging data. The
second goal is to search for additional companions around
primary targets which are themselves known close binaries. Here we explore the poorly covered part of the
parameter space at separations on the order of an arcsecond, searching for low-mass tertiary components. In
short, we focus on binaries (both wide and close) and
quantify the frequency of additional companions.
We begin with a brief characterization of the surveyed
sample in § 2. Observations with Robo-AO and data
processing are covered in § 3, with data tables described
in § 4. In § 5 the results of this survey are presented, and
§ 6 is the summary.
2. THE TARGET SAMPLE
The targets for this survey were selected from the FG67 database (Tokovinin 2014). We observed known and
suspected binary stars and tried to constrain the frequency of additional components in those systems; high
priority was placed on distant secondary components in
wide binaries. The selection criteria were separations of
> 1000 and a declination north of −15◦ . Some brighter
secondaries are in the Hipparcos catalog, and therefore
“screened” for companions by that space mission (but
not as deeply as with Robo-AO). The majority, however,
are rather faint. Many of those secondaries were discovered only recently by dedicated programs (Tokovinin
2011; Tokovinin & Lépine 2012).
The second-priority list contains mainly targets which
are binaries with periods P < 100 yr (separation ∼0.00 5
at 50 pc distance). The rationale for restricting the periods is related to dynamical stability: the semi-major axis
of the outer orbit should be at least three times larger
than that of the inner orbit, and should match well the
discovery space of Robo-AO. Harrington (1992) quantified a value of 3 for the ratio of periastron of the outer
binary to apastron of the inner binary as the critical factor for long-term stability (assuming equal masses). The
program was later complemented with observations of
additional resolved visual binaries with separations from
0.00 2 to 200 , and P > 100 yr. Here the chances of discovering wider tertiary components are small. The chances of
resolving a secondary into a hereto unknown close pair
are also small. However, observing those stars (mostly
resolved) was useful for improving their orbits and for
confirming some uncertain visual pairs which were resolved only once in the past and never confirmed since.
The program included repeated observations of several
known binaries as calibrators for data quality control.
We observed most, but not all, components from the
original lists: 239 secondaries (212 of those with good
quality), 354 close pairs, and 102 resolved binaries. Some
secondaries turned out to be too faint. Figure 1 presents
the distribution of IC (Cousins I) magnitudes of our primary targets (van Leeuwen 2007) and of their secondary
components. The latter are derived from their J magnitudes in the 2MASS catalog (Cutri et al. 2003), assuming that the stars are on the main sequence. All secondaries with useful data have IC < 13.5 mag. The median
masses of primary and secondary components estimated
from their absolute magnitudes are 1.22 and 0.71 M ,
respectively; 80% of secondary masses are between 0.31
and 1.04 M .
3. OBSERVATIONS AND DATA REDUCTION
The instrument used for this survey was Robo-AO, the
first robotic laser guide star AO system (Baranec et al.
2014), which is designed to operate automatically on 13 m class telescopes in order to undertake high efficiency
observing programs (e.g., large surveys). The prototype
Robo-AO instrument is currently deployed on the Palomar Observatory 60 inch (1.5 m) telescope (P60).
As a fully automated system, Robo-AO is unique in
its ability to observe targets at both high resolution and
high cadence. Robo-AO uses Rayleigh scattering from
a UV laser focused at 10 km from the telescope as the
wavefront reference, and generates images at the diffraction limit of the P60 (0.00 12 – 0.00 15 FWHM) with Strehl
ratios of 10-25% in the visible filters used for this survey.
The AO system corrects the high order wavefront aberrations with automated software that operates at a rate of
1.2 kHz, sharpening the instantaneous point spread function (PSF) across the science camera field of view (FOV).
A bright star within the FOV is still required to correct
the tip-tilt motion; this is achieved in the automated data
processing software (§ 3.2). Typically, Robo-AO requires
a star brighter than m ≈ 16 mag with a broad-band filter
to apply the tip-tilt correction successfully. Instrument
parameters for this survey are listed in Table 1.
3.1. Observations
Baranec et al. (2013) and Baranec et al. (2014) describe the operation and the science instrumentation of
the Robo-AO system. The output of the science camera raw data are image cubes composed of 1024×1024
pixel image frames; a total of 516 frames were gathered
during each 60 s exposure, which were then combined
into a single image for further analysis by the automated
data processing software. Almost all targets were observed with the SDSS i0 filter (York et al. 2000) with a
central wavelength of 754 nm and a FWHM bandpass of
119 nm. Some fainter targets were observed with a long
pass 600 nm filter (LP600) which transmits all wavelengths longer than 600 nm to the quantum efficiency
cutoff of the detector.
The pointing error of the P60 telescope with Robo-AO
mounted is on the order of 1000 , and can vary between
observing runs depending on telescope balance and adjustments. With a 4400 FOV, and no clear way to select one target over another in the stellar field, Robo-AO
does not attempt to recenter the target automatically
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
in fear of selecting the wrong star and moving the science target out of the field. This effect causes a large
variation in the placement of the target star in the image frame; a planned upgrade to the Robo-AO software
and continuing improvements to the P60 will minimize
this effect. All observations were checked to confirm that
the science target was captured in the CCD frame. The
consequence for this survey is that target placement is
across the entire FOV, and targets sometimes ended up
uncomfortably close to the edge of the frame, limiting
the observable area around the target. When necessary,
stars affected were re-observed to capture a larger area
and allow a better examination for companions.
Robo-AO can observe targets at a rate of ∼20 per hour,
with an intelligent queue system selecting the best object to observe at a given time (Riddle et al. 2014). The
Robo-AO queue system interleaves several different science programs through a single night. Observations of
this survey were spread over a year (July 2012 to August 2013) to gather targets at all hours of right ascension. The entire 695 targets of this survey used 29 total
hours of observing time (this time also included calibration binary observations and re-observations). Robo-AO
is ideally suited to a large survey such as this one, and
is currently the only AO system that can observe this
many targets in such a short time (Terziev et al. 2013;
Law et al. 2014a).
3.2. Automated data processing
The data were processed by automated reduction software developed for Robo-AO image alignment (see Law
et al. (2014a) and Law et al. (2014b) for the details).
Each individual frame is corrected for bias, dark current
and flat field using standard calibration data, and the
frames are then run through the software to co-add them
and create a final high resolution image oversampled to
2048 × 2048.
Stars in each output image were identified visually and
their approximate centers were marked. Relative astrometry and photometry of wide pairs where the images do
not overlap was done by fitting the scaled and shifted image of the brightest component to the secondary within
10 pixel radius from the image center. For closer (overlapping) binaries we used blind deconvolution, as described by Tokovinin, Hartung, & Hayward (2013). However, most of these “blind” measures are superseded by
the results of speckle processing.
3.3. Binary-star measurement by speckle processing
Speckle processing is complementary to the blind deconvolution of images, as it delivers diffraction-limited
resolution even for low-Strehl data, when the instantaneous PSF has multiple spikes (speckles). The algorithm takes care of the multi-speckle PSF and works
well even at low flux, when the selection of the brightest pixel for re-centering lucky images is compromised
by the photon noise. Moreover, the power spectrum (or
auto-correlation function, ACF) is proportional to the
square of the signal and, therefore, it automatically assigns high weight to sharp images. For widely spaced
binaries, speckle processing is done for each component
individually to detect close sub-systems.
Sub-frames of 256×256 original (un-binned) pixels centered on each component were selected from the data
3
cubes. The background was estimated as median signal in each column of the full image and subtracted, removing the systematic bias pattern along the CCD lines.
No flat-field correction was applied. The average power
spectrum was calculated on the 256-frame cube for each
selected component. In parallel, an image was produced
from these data by re-centering on the selected component and weighting individual frames with the maximum
intensity in each frame. The weight is therefore proportional to the image sharpness. These auxiliary images are
not used for astrometry or photometry, but are helpful
for verifying companion detection and for resolving the
180◦ ambiguity of position angle inherent to the classical
speckle processing.
The algorithm of speckle data processing and binarystar measurement used here is adapted from the work
of Tokovinin, Mason, & Hartkopf (2010). Figure 2 illustrates the case of a close 0.00 12 pair near the diffraction
limit. Extracting astrometry and photometry from the
image appears problematic, whereas the “fringes” in the
power spectrum are very clear and constrain the position
and magnitude difference ∆m.
For binaries with nearly equal components, the
pipeline image contains an “antipode” because the
brightest pixel on which the frames are re-centered may
belong to either binary component. In this case the relative photometry derived from the image is wrong (although correctable), but the speckle processing delivers
the correct ∆m. It also increases the resolution on distant secondary components where the full-frame images
suffer from the tilt anisoplanatism. On the other hand, if
the secondary component is very faint, the pipeline technique of re-centering on the bright primary works much
better than speckle processing of the secondary alone.
We quantify the strength of the speckle signal by its ratio to the level of photon noise at a spatial frequency
two times less than the cutoff frequency, and consider all
measures resulting from the “weak” data to be uncertain.
Speckle processing and imaging are truly complementary. In the final step, we combine binary-star measures
from those two processing techniques. For binaries with
ρ < 200 the speckle measures are preferred (with a few exceptions where the speckle processing failed), for wider
pairs measures from the images are retained. Comparison of repeated measures of the same pairs by speckle
and blind deconvolution shows their excellent agreement
and gives an idea of the precision. Table 2 lists average
values and rms scatter for two sample binaries measured
by both methods several times.
3.4. Detection limits
Limits for detecting companions in the pipeline images
are evaluated in the standard way. Fluctuation of the signal in annular zones surrounding the star are computed
and it is assumed that the companions brighter than 5σ
are detectable. The same method is applied to the ACFs
in the speckle processing. The two estimates of the detection limits obtained in this way are very similar, with
the speckle limits being normally a little deeper (Figure 3). Depending on variable AO correction and target
brightness, the individual detection limits vary substantially. For each target, we list the best (deepest) limits at
three characteristic separations of 0.00 15, 0.00 8 and 2.00 1, selecting the best of two alternative processing techniques.
4
Riddle et al.
When the target was observed several times, the deepest
detection limits are reported in the table of final results.
All of the survey primary targets are bright, but some
secondary components present a problem as they are too
faint to provide a useful signal in the power spectrum.
Their pipeline images can show a bright 1-pixel spike
at the center surrounded by a fuzzy halo; this is created by re-centering on the photon events, rather than
on the brightest speckle, so the resolution is lost. Detection limits computed formally from such images are
over-estimated. Yet, we prefer to keep such weak data in
the final table, despite this obvious caveat, because they
still contain some information on the duplicity.
3.5. Calibration and distortion correction
The re-imaging system of the Robo-AO instrument
contains a double optical relay with off-axis parabolic
mirrors. Such relays are known to introduce quadratic
image distortion. In the case of Robo-AO, the distortion,
as reported by the optical design, is quite strong. It is
directed along the visible CCD columns and displaces all
sources down by as much as 26 pixels in the corners.
Independently of the optical design, the distortion in
Robo-AO was mapped on the sky using the image of
the globular cluster M 15 (S. R. Hildebrandt, private
communication, 2012). The pixel scale in the X-direction
was found to be 43.74 mas, while the scale in Y was
slightly different. The orientation is such that the +Y
axis of the detector points at a position angle 23.◦ 9 from
North and the +X axis points East (the image has mirror
orientation). The quadratic distortion agrees with the
optical-design data and is directed along Y.
If we express the actual X, Y star coordinates in the
image in the “small” over-sampled pixels of the automatic pipeline reduced image, the undistorted coordinate
Y 0 is determined as
Y 0 = Y − 0.0299∆Y + CX (∆X)2 + CY (∆Y )2 ,
(1)
where ∆X and ∆Y are counted from the pipeline image center at (1024,1024) and the coefficients are CY =
−2.54 10−5 , CX = −2.55 10−5 . The linear term in Y
corresponds to the modified vertical scale. It is caused
by the mismatch between the optical and CCD centers
combined with the quadratic distortion.
This distortion substantially affects the measurements
of even close binaries because the CCD lines projected
on the sky are parabolic. The distortion-induced tilt of
the lines reaches 5.◦ 6 in the corners of the CCD. We correct the geometric distortion using the pixel coordinates
of each source in the images. Equation 1 is applied to
each component of a binary. The parameters ρ, θ are recalculated from the difference of un-distorted pixel coordinates X, Y 0 . In some instances the angles of close
binaries are changed by as much as 2◦ after distortion
correction. The scatter of relative positions of binaries
measured several times is reduced after distortion correction, while the relative positions of wide pairs became
closer to their positions derived from 2MASS.
3.6. Caveats
As with any observing program, there were issues with
some of the data collected that required some extra effort
to make it useful. Each pipeline image was examined
manually to find and remove erroneous measurements
or detections; a graphical IDL tool was created to do
this, and also used to mark the components and fit wide
binaries. Owing to the P60 pointing errors, some images
were empty, or the targets were found close to the edge
of the FOV (see § 3.1).
The quality of AO compensation, Strehl ratio, and the
width of the PSF depended on the seeing conditions and
varied substantially. As a consequence, the depth of companion detection was also variable. In some instances
we detected new companions in the good-quality images,
but missed them in the poor ones. The PSF had a persistent structure (“static speckle”) which could be mistaken for a companion. This structure also depended on
the AO compensation quality and, possibly, on other factors. Fortunately, there were always other stars observed
in the same conditions so the PSF could be compared in
order to verify suspicious detections.
In a few cases, the pipeline algorithm occasionally centered a frame on a bright spike caused by cosmic rays,
while the remaining frames were centered correctly. This
produced a false satellite that could be mistaken for a
new companion. Also, several faint satellites caused by
internal reflections in the optics are always visible around
bright (V . 3 mag) targets. These reflections effectively
reduce the dynamic range of companion detection. We
were able to reduce some images where the primary component was saturated. Such data are still useful for detecting wide faint companions. Relative astrometry and
photometry of such binaries was done by fitting PSF
within an annulus, i.e. excluding the central saturated
PSF core from the fit.
The accuracy of the measured positions of wide binaries is less than for the close ones. This is likely caused
by the residual tilt anisoplanatism: the differential tilt
between the components caused by high-altitude turbulence is not completely averaged during the short 60 s
exposure.
In many cases, we were able to re-observe targets after
the data analysis showed that the data were not sufficient; the ability of Robo-AO to observe quickly and
efficiently allowed many objects to be added to the final
analysis that would have not been available otherwise.
4. OBSERVING DATA TABLES
The list of all components successfully observed in this
program is given in Table 31 . The list contains 695 components belonging to 595 systems. Its columns contain
the HIP1 designation (which is the Hipparcos number
of the primary component in each system, and is used
as the main identifier through this paper), component
designation, equatorial coordinates of the observed component, its V magnitude, and its separation from the
primary (these data are taken from the main database
of the FG-67 sample). Secondary components have nonzero separations. The following columns list the date of
observation and detection limits at separations of 0.00 15,
0.00 8, and 2.00 1. The last column gives the distance from
the star to the nearest frame border, indicating the maximum separation of its detectable satellites.
Measurements of resolved doubles are given in Table 41 . Each pair is identified by its WDS code (Mason
1
Full versions of Tables 3 and 4 are published on-line
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
et al. 2001), discoverer designation, and component designation. In column 3, the HIP1 number of the primary
star in each system is given. Following that are the date
and number of observations (multiple observations made
in the same filter within 0.2 yr are averaged), position
angle (degrees), position angle error (degrees), separation (arcseconds), separation error(milliarcseconds), and
magnitude difference. The errors of position angle and
separation are computed as errors of the mean in the case
of averaged data, otherwise estimated from the speckle
processing, or listed as zero for PSF fitting of wide pairs.
Uncertain measures (weak speckle signal or blind deconvolution) are marked by colons after ∆m. We also mark
the bandpass when it differs from i0 (the LP600 filter is
denoted by w). The last three columns give deviations
in position angle and separation from the orbits, when
available.
5. RESULTS
5.1. Newly resolved systems
The list of newly resolved binary companions (including unrelated background stars) is extracted from the
main table and presented separately in Table 5; they are
given the “discoverer code” RAO in the WDS; a space
is added between discoverer codes and component designations to make it clear they are not the same (i.e.
component designations such as Aa and discoverer codes
such as RAO 20 are parallel and must not be confused).
Some binaries were measured several times, confirming
the measured resolution. Images of new close pairs are
presented in Figure 4. The closest pairs are detected in
the speckle processing by examining the power spectra;
these cases are illustrated by Figure 5. The new wide
physical pairs are confirmed by comparing the measured
positions of the components with their position in the
2MASS catalog, and by considering additional information such as magnitude, separation, color, crowdedness
of the field, and proper motion of the main target. We
do not compute the formal probability of physical association based on relative astrometry because the motion
can be distorted by subsystems, while chance projections
with small and similar motions do happen sometimes (see
e.g. Tokovinin & Lépine (2012)). Other factors involved
in the classification are difficult to quantify in terms of
probability. Most faint companions in Table 5 wider that
1000 are optical with a large confidence; only three of them
have an uncertain status. In some instances, the companions are not found in the catalog, but the 2MASS images
in the Ks band reveal their presence as blends. This is
taken as confirmation, because the companion position
matches (at least qualitatively) and because the detection of the blend in 2MASS indicates that the companion
is brighter in Ks than in i0 , indicating it is a cooler object
below the detection threshold in the catalog.
Notes in the Appendix give additional information on
the multiple systems appearing in Table 5, the status
of the measured binary pairs (’P’ for true physical binaries, ’O’ for chance optical alignments of unrelated
stars), and the reasons for this classification. Follow-up
observations in September 2013 with the PALM 3000 AO
system at the 5-m Hale telescope at Palomar Observatory (Dekany et al. 2013) are mentioned where relevant,
while their full results will be published in a forthcoming
5
paper (Roberts et al, in preparation). Two of the systems with newly resolved binaries, HIP 2292B (= HIP
2350) and HIP 12189B (= HIP 12184), are also exoplanet
hosts; a complete discussion of their properties are included in Roberts et al. (2014b). Two RAO pairs were
also measured by speckle interferometry at the SOAR
4.1-m telescope (Tokovinin et al. 2014).
5.2. Binarity of secondary components
Overall, there are 212 secondary components with separations above 1000 that were observed with Robo-AO.
Figure 6 illustrates different hierarchies found in this
sub-sample. The wide binary is the root of the hierarchy (level 1); in 112 cases there are no sub-systems.
Another 100 wide binaries contain inner hierarchies of
level 11 (sub-system in the primary component), level
12 (sub-system in the secondary) or both (that is, a
2+2 quadruple). Here we silently ignore several sub-subsystems (levels 111 etc.), and restrict the discussion to
the hierarchical levels 1, 11, and 12. As some subsystems
are most likely not yet discovered, it is safe to say that
at least half of those wide binaries are in fact triple or
higher-order multiples.
Orbital periods of wide binaries are estimated roughly
from their projected separation and denoted as P ∗ to
distinguish them from orbital solutions. Masses of binary components and the mass ratio (q = M2 /M1 )
are estimated from their absolute magnitudes, assuming that the stars obey standard relations for the main
sequence. The detection limits of imaging are converted
from the observed parameters (ρ, ∆m) into binary parameters (P ∗ , q), and combined with the detection limits
from spectroscopy and other techniques (more details in
Tokovinin 2014).
There are 83 primary (level 11) and 39 secondary (level
12) sub-systems in the surveyed objects (Figure 7); nineteen new secondary subsystems were found, doubling
their previously observed fraction. At first glance, the
primary sub-systems still dominate, but remember that
most of the primary targets (bright F- and G-dwarfs)
were surveyed in radial velocity (RV), while only a few
brighter secondaries have such RV coverage. The primaries also benefit from the Hipparcos discoveries of acceleration sub-systems (Makarov & Kaplan 2005), which
explains deeper detections at P ∼ 103 d. At P ∼ 106 d
the situation is reversed in favor of secondaries, owing
to their imagery with Robo-AO. At still longer periods
(separation & 500 ), the companion census for primaries is
complete because of 2MASS (Tokovinin 2011) and CPM
(Tokovinin & Lépine 2012) data, while for the secondaries the detections are restricted by the size of the
Robo-AO field. However, this makes little difference because extremely wide sub-systems are dynamically unstable.
It is convenient to express orbital periods by x, the logarithm of the period in days. The criterion of dynamical
stability by Mardling & Aarseth (2001) requires that the
ratio of outer to inner periods in triple systems be greater
than 4.7, depending on the eccentricity in the outer orbit. The dynamical truncation function F (∆x) (where
∆x = xout − xin is the logarithm of the period ratio) is
the probability of a given triple system being dynamically stable; it is modeled here as zero for ∆x < 0.7, one
for ∆x > 1.7, and linear in-between. Considering the
6
Riddle et al.
large range in periods, the exact form of this function
has little influence on the results.
In the sub-sample of 212 wide binaries, the average
dynamical truncation is 0.95 at inner period xin = 5 and
0.5 at xin = 6, explaining the lack of wide sub-systems
at levels 11 and 12. There is no need to look for binary
secondaries with separations > 1000 because those are
intrinsically rare. The limitation imposed by the RoboAO field of view is therefore not important for this work.
We select for analysis the period range 3.5 ≤ xin ≤ 5
where the dynamical truncation is not important and the
detection of secondary sub-systems with Robo-AO is relatively complete. This range corresponds to 1 decade in
separation. We compare the frequency of primary and
secondary sub-systems in this range of periods among
selected 212 wide binaries in Table 6. The number of
missed companions obviously depends on the distribution of the mass ratio, modeled as a power law f (q) ∝ q β .
It is generally accepted that the power index β for solartype binaries is close to zero (uniform distribution) or
slightly negative (Duchêne & Kraus 2013), while lowmass binaries tend to have more equal components and
β ∼ 1.
The probability of detecting a sub-system averaged
over period (in the selected interval) and over the mass
ratio q can be used to correct the raw companion frequency, if β = 0. However, the data collected here indicate that in the secondary sub-systems β ∼ 1, requiring a smaller correction for missed binaries. Therefore,
the estimated frequency of secondary sub-systems with
3.5 ≤ xin ≤ 5 is 0.13 ± 0.03, assuming conservatively
β = 1. It is only slightly less than the frequency of primary (level-11) sub-systems, which is less sensitive to
the assumed β and is somewhere between 0.13 and 0.15
(Table 6).
The frequency of sub-systems found here is close to
the frequency of solar-type binaries in the same period
range. For the log-normal period distribution and the
binary fraction of 0.46 derived by Raghavan et al. (2010),
the fraction of companions with 3.5 ≤ xin ≤ 5 is 0.112 (a
similar estimate is obtained for the full FG-67 sample).
The frequency of sub-systems in the components of wide
binaries may be enhanced in comparison to the single
stars, but only slightly.
The actual frequency of sub-systems in secondaries
may be even higher because of two additional factors.
First, the methods used to identify wide secondaries introduce some selection against close binaries (Tokovinin
& Lépine 2012). Second, detection limits here may be
over-estimated (see §3.4). When the assumed detection
limits are deeper than in reality, the correction of the raw
frequency for incomplete detection becomes smaller.
Quite surprisingly, the sub-systems in primary and secondary are often found at the same time. Among the 39
secondary sub-systems, 22 (more than half!) belong to
2+2 quadruples (Figure 6). Considering that many secondary sub-systems with short periods are still missed,
the actual fraction of 2+2 quadruples among 212 wide
binaries should be more than 10%. This surprising correlation likely has a root in stellar system formation processes and requires further study.
5.3. Frequency of tertiary components
In the second part of our survey we looked for distant companions to close binaries. In other words, the
problem is “reversed” and we explore the hierarchy from
inside-out. Similar studies were made by Tokovinin et al.
(2006), Allen (2007), Rucinski et al. (2007), and others.
The second survey selects main targets which are close
binaries with P < 100 yr (x < 4.56). Binaries with yet
unknown periods, such as acceleration binaries from Hipparcos (Makarov & Kaplan 2005) and/or spectroscopic
binaries from Nordström et al. (2004), are included. We
resolved three acceleration binaries (HIP 6653, 101234,
103455) with Robo-AO, while more were resolved by a
targeted campaign with the NICI instrument (Tokovinin
et al. 2012; Tokovinin, Hartung, & Hayward 2013). However, as both acceleration and RV techniques involve a
non-negligible false alarm probability, some of those presumed close binaries are in fact single stars.
For the purpose of statistical analysis, we restrict the
sample to 241 inner binaries with known periods P <
100 yr. In the cases where even closer inner sub-systems
are present (e.g. the A-component of a visual binary is
a spectroscopic pair), we select the inner-most (closest)
pair and proceed outwards. The 71 close binaries have
additional outer (tertiary) companions; some of the tertiary components are themselves close binaries (in 2+2
quadruples), and sometimes there are even more distant
companions (3+1 quadruples). The raw frequency of tertiaries is 29%. When we restrict the sample to shorter inner periods, the fraction of triples increases, but the sample becomes smaller and the statistical errors increase.
Figure 8 presents tertiary components in the (Pout , q1 )
plane, where q1 = M3 /M1 is the ratio of the masses
between tertiary and primary components. The isodetection curves go deeper than for the general sample
(compare with Figure 7, lower panel) owing to the RoboAO imaging. Many of tertiary components are found in
the 2MASS catalog, but their colors alone were not sufficient to establish that they are physical, especially in
crowded fields. The second-epoch imaging with RoboAO helps here. A few uncertain cases (companions detected by Robo-AO in crowded fields without 2nd epoch
data) are not yet accepted as real.
The average dynamical truncation curve F (xout ) is
over-plotted. It explains why tertiaries with short periods xout ≤ 3 are rare. Such tertiaries would be easily
detectable by spectroscopy and their scarcity is genuine.
As in §5.2, we evaluate the frequency of outer systems in
the outer period range of 1.5 dex, 6 ≤ xout ≤ 7.5, – the
range free from dynamical truncation and well covered
by the detection techniques. It is safe to assume β = 0
for wide components, in which case the average detection probability is 0.88. The raw companion frequency
of 34/241 = 0.141 ± 0.024 is corrected to 0.161 ± 0.028.
Owing to the deep detection limit, there is little difference between the raw and detection-corrected estimates.
The frequency is significantly higher than the companion frequency to main targets in the same period range,
0.090 (again using the data of Raghavan et al. 2010).
It is premature to speculate about the meaning of this
finding. In Figure 8 we note the “pile-up” of tertiary
companions at xout ∼ 7 (separations on the order of 1000
and projected separations on the order of 500 AU). If
this feature is not a statistical fluctuation, it might imply
some characteristic scale in the formation of solar-type
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
multiple stars.
The overall raw frequency of tertiary components (with
all periods) is only 29%. If we assume that the intrinsic
distribution of xout is Gaussian (Raghavan et al. 2010)
and that their mass ratio q1 is distributed uniformly, the
companion frequency of this underlying distribution (before applying dynamical truncation and detection filters)
is determined to be 0.54; i.e., slightly but not dramatically enhanced in comparison with 0.46 for all solar-type
dwarfs. Most binaries with P < 100 yr do not have outer
tertiary companions; a similar conclusion was reached by
Tokovinin et al. (2006) for spectroscopic binaries with periods of ∼10 d and longer. On the other hand, the closest
binaries, with P < 3 d, are found almost exclusively in
triples.
5.4. New and updated orbits
For purposes of orbit determination, Robo-AO provides a unique collection of data. While there are certainly exceptions (Tokovinin 2012; Horch et al. 2012), the
majority of interferometric data, whether with a filled or
dilute aperture, have modest differential magnitude limits of about ∆m = 3 mag. For many pairs of larger
magnitude difference, the Robo-AO observation represent the first observation by a high-resolution technique,
and given the decline in classical micrometry, the first
observation of any kind in many decades. Given these
factors, the number of first orbits as well as those with
significant changes from the previous determinations is
not surprising.
New orbits are presented in Table 7. In this Table, the
pairs are identified by their WDS and HIP1 numbers,
followed by their orbital elements, giving the period P
in years, the semimajor axis a in arcseconds, the inclination i and longitude of the node Ω, both in degrees,
the epoch of the most recent periatron passage T◦ in
Besselian years, the eccentricity e and the longitude of
periastron ω in degrees. Following this is the orbit grade
(see Hartkopf & Mason 2013b, for details) as an evaluation of the orbit. For those pairs with previous orbit
solutions we provide a reference to the previous “best”
orbit. Figures 9 to 13 show the new orbital solutions,
plotted with all published data in the WDS database.
In each of these figures, micrometric observations are indicated by plus signs, high resolution measures by filled
circles, Robo-AO observations as filled stars, and Hipparcos observations as filled diamonds. An O−C line connects each measure to its predicted position along the
new orbit (shown as a thick solid line). The shaded circle centered on the primary indicates the resolution limit
of the P60. A dot-dashed line indicates the line of nodes,
and a curved arrow in the lower right corner of each figure indicates the direction of orbital motion. Previous
published orbits are shown as dashed ellipses; references
to each of the published orbits are given in the notes to
Table 7.
Orbital elements were determined with orbgrid10, the
latest version of the venerable orbit reduction package
of Hartkopf, McAlister, & Franz (1989) which utilizes
a three dimensional (P , T , and e) grid search of variable grid step sizes from three initial estimates. It has
been modified to include weighting methodologies determined in the production of the 5th Catalog of Orbital
Elements of Visual Binary Stars (Hartkopf, Mason, &
7
Worley 2001). Some orbits use new speckle data from
the SOAR telescope (Tokovinin et al. 2014).
The rest of this Section gives notes on some pairs with
new orbits.
HIP 12204 (=WDS J02371−1112 = HU 1216AB) has
only a preliminary orbit of grade 5, hence the formal
errors of the elements are very large.
HIP 17895 (=WDS J03496−0220 = YR 23): This is
the first calculated orbit of this pair announced in Horch
et al. (2002b) based on observations with the WIYN telescope. The 2004 measure, obtained with the 26 inch telescope in Washington, D.C. (Mason et al. 2006), is off a
bit, which is not surprising given the aperture.
HIP 34524 (=WDS J07092+1903 = CHR 216) was resolved by lunar occultations by Africano et al. (1975)
and has several speckle measurements. Robo-AO finds it
at nearly the same position as Hipparcos (the quadrant
of our measure is established by the automatic data reduction co-added image), so the binary has made nearly
one full revolution since 1991.25. It was not resolved at
SOAR in 2009–2011 (ρ < 0.00 03), but measured in 2012.9,
2013.05, and 2014.06 (these data are used in the orbit
calculation). The orbit is very eccentric, but measurements do not constrain the eccentricity, so it was fixed
to 0.94 – a provisional value that gives the expected mass
sum of 1.8 M . The orbit should be followed by spectroscopy. Unfortunately, the periastron passage in 2010
was missed, we have to wait for the next one in 2038.
HIP 40167 (=WDS J08122+1739 = HUT 1Ca,Cb):
This is the first calculated orbit of this pair. The existence of the Ca,Cb pair was inferred and the first astrometric orbit calculated by Heintz (1996b).
HIP 103987 (=WDS J21041+0300 = WSI 6): This is
the first calculated orbit of this pair first split by Mason et al. (2001) with the Struve 2.1 m telescope in an
investigation of Hipparcos acceleration (G-type solution)
pairs.
HIP 105676 (=WDS J21243+3740 = WSI 7): Like
HIP 103987 above, this is the first calculated orbit of
this pair also first resolved with the same telescope on
the same project.
6. SUMMARY
A survey of high-resolution imaging with Robo-AO has
advanced our knowledge of the multiplicity of solar-type
stars in several ways.
The binarity of the wide secondary components turned
out to be comparable to the frequency of sub-systems
in the primary components. This overturns the established paradigm about multiple-star architecture, where
sub-systems were thought to be preferentially associated
with the primary, most massive star in the system. This
traditional view can be traced to the previous technological restrictions allowing to study only bright stars
by spectroscopy or high angular resolution, and matched
the idea that multiple stars experience chaotic dynamical interactions where the least massive components are
ejected onto distant orbits or leave the system altogether.
This new paradigm of dynamical evolution of multiple
star systems, where wide secondary components retain
companions at the same frequency as the primary, will
require more exploration to determine how such systems
develop.
Quite unexpectedly, we discovered that sub-systems
8
Riddle et al.
in the primary and secondary components of wide binaries are often present simultaneously, i.e. these systems are in fact 2+2 quadruples. This new result means
that 2+2 quadruples are relatively frequent. Note that
in the 25-pc sample of Raghavan et al. (2010), 9 out of 11
quadruples have the 2+2 architecture and only two are of
the 3+1 “planetary” configuration; this result, based in
small-number statistics, is now supported by the much
larger FG-67 sample studied with Robo-AO. The high
frequency of 2+2 quadruples challenges the paradigm of
chaotic N -body dynamics (which can produce such architecture only exceptionally) and calls for exploration of
other formation scenarios for multiple stars (e.g. Whitworth 2001).
The high dynamic range of the Robo-AO imaging enabled discovery of 17 certain and 2 possible tertiary components to close binaries, converting them into triple or
higher-order systems. Statistics of such triples reveal
some interesting details, such as the prevalence of outer
separations on the order of 500 AU. This result is not
yet formally significant, but it highlights the potential
of large samples. Historically small binary samples allowed only the first-order description of binary statistics
by smooth functions with a few parameters (Duchêne
& Kraus 2013). Modern large and homogeneous samples
begin to reveal new details in these distributions, such as
twin binaries with identical masses (Lucy 2006), bimodal
period distribution in Hyades (Griffin 2012), and, possibly, preferred separations of tertiary components seen
here. These findings will advance our understanding of
multiple-star formation.
The large data set that resulted from this survey enabled us to compute first visual orbits for 9 pairs and
to update (sometimes dramatically) the existing orbits
for 11 more. Accumulation and improvement of the
visual-orbit data will lead to a better knowledge of stellar
masses and to the statistical analysis of orbital elements.
It will also enable dynamical study of visual binaries presenting special interest.
We acknowledge the input of the referee that read
through this lengthy paper and gave us comments to
improve it. The Robo-AO system is supported by collaborating partner institutions, the California Institute
of Technology and the Inter-University Centre for Astronomy and Astrophysics, and by the National Science Foundation under Grant Nos. AST-0906060, AST0960343, and AST-1207891, by the Mount Cuba Astronomical Foundation, and by a gift from Samuel Oschin.
We are grateful to the Palomar Observatory staff for their
ongoing support of Robo-AO on the P60, particularly S.
Kunsman, M. Doyle, J. Henning, R. Walters, G. Van
Idsinga, B. Baker, K. Dunscombe and D. Roderick.
A portion of the research in this paper was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
C.B. acknowledges support from the Alfred P. Sloan
Foundation.
This work used the SIMBAD service operated by Centre des Données Stellaires (Strasbourg, France), bibliographic references from the Astrophysics Data System
maintained by SAO/NASA, data products of the Two
Micron All-Sky Survey (2MASS), the Washington Double Star Catalog maintained at USNO.
Facilities: PO:1.5m (Robo-AO)
APPENDIX
APPENDIX: NOTES ON NEW BINARY STAR SYSTEMS
HIP 2292B = HIP 2350 = RAO 1BC is resolved at 0.00 5, with several Robo-AO measures and a confirmation with
the Palomar 200 inch (5 m) telescope (P200). It remained fixed during 1 yr, despite the proper motion (PM) of 0.00 25
yr−1 . This star also hosts an exoplanet system with P = 3.44 d. The common-proper-motion (CPM) component A is
at 83900 from B. We discuss this multiple system in a separate paper.
HIP 2717B = BD+61 119 (V = 8.98, F8V, X-ray source) has two new companions at ∼300 , designated as RAO 2BC
and RAO 2BD. We see the brighter companion C in the 2MASS image at a similar position, although it is not listed as
a separate point source in 2MASS. On the other hand, the fainter star D is likely optical because the field is crowded
and because a trapezium-like configuration of BC and BD would be dynamically unstable. The CPM nature of AB
(Tokovinin & Lépine 2012) is confirmed by the data from 2MASS and UCAC (Zacharias et al. 2013).
HIP 3214B (V = 14.87) is resolved at 1.00 6. The new pair is considered physical because the companion is bright and
because it remained fixed during 1 yr. The 2MASS image is elongated in the E-W direction.
HIP 3540 AB is LDS 836 at 55.00 4 separation. We resolved B into a new 1.00 5 pair RAO 4BC, confirmed with the
P200. The component A is a spectroscopic binary (SB) with P = 11.4 d (Griffin 2002). The system is thus a 2+2
quadruple.
HIP 3795 is another new quadruple system. The AB pair BU 495 has an orbit with P = 413 yr. The CPM component
C (V = 10.83m ) at 15200 from AB turns out to be a new 0.00 67 pair RAO 5Ca,Cb. We consider Ca,Cb physical because
the companion is bright, the separation is small, and the field is not crowded.
HIP 4016B is accompanied by the 1.00 7 pair CD, at a distance of 1700 from B (AB = DAL 11 at 4100 is physical). The
field is crowded, so we consider the faint stars C and D to be unrelated to B. BC is at (267.2◦ , 15.00 66) in 2MASS.
HIP 4878 has faint stars B and C at 2.00 9 and 32.00 2 distance, respectively (RAO 39). The optical nature of C can
be established by its different position (145.◦ 3, 32.00 4) and its color in 2MASS. AB was re-measured with the P200 one
year later and found at a slightly different position, so it is likely optical as well, although the field is not crowded.
HIP 5276 is an SB with P = 49.5 d (Gorynya & Tokovinin 2014), accompanied by the newly resolved tertiary
component RAO 40 at 6.00 2. The physical nature of the tertiary is confirmed by the 2MASS position and by observations
with P200.
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
9
HIP 5313 is another triple system: Aa,Ab is an acceleration and spectroscopic binary with a distant physical
component B (RAO 41) at 26.00 2, confirmed by its position and color in 2MASS.
HIP 6653 has a new companion at 1.00 8 (RAO 6). The star is on the Keck exo-planet program, its radial-velocity
(RV) trend (D. Fischer, private communication, 2012) could be caused by the companion. The companion B is red,
the field has low crowding, so the physical nature of AB is likely.
HIP 7845 was measured as a test target, it is not in the FG-67 sample. The faint companion C at 2400 moved
substantially during a year, hence it is optical.
HIP 11696 is located in a crowded region of the sky. We targeted the component B and found a faint star at 15.00 7
from it (RAO 42BE), considered optical (just as the other components C and D listed in the WDS) because of the
high crowding, non-hierarchical configuration, and the 2MASS position of BE.
HIP 12062 has an optical companion RAO 43 at 14.00 8. The pair has a different position in 2MASS and the region
is crowded.
HIP 12067 has a new 5.00 7 companion B (RAO 7), confirmed by the 2MASS position, in addition to the inner
acceleration and spectroscopic binary with yet undetermined period.
HIP 12189 and HIP 12184 form a 3800 physical pair STFA 5 where each component is, in turn, a close binary: A is
SB (P = 1.1 d), B is resolved here into a 0.00 53 pair RAO 8, confirmed next year with Robo-AO and P200. Moreover,
an exoplanet with P = 335 d around B was announced. We discuss this multiple system in a separate paper.
HIP 12685 has a companion at 21.00 7 (RAO 44) which is also present in 2MASS at approximately the same position.
However, the PM is small, the field is crowded, and the color of B does not match a dwarf at the same distance as A,
so we consider B optical.
HIP 12925 has a new companion at 1.00 9, measured several times with Robo-AO and confirmed with the P200. This is
a young multiple system: the radial velocity (RV) of A is variable (Nordström et al. 2004), there is a CPM companion
at 49400 (Tokovinin & Lépine 2012), and HIP 12862 at 540 is co-moving.
HIP 13336 contains the visual binary A 281AB and a companion RAO 45AC at 1500 , considered optical because it
is found at a different position in 2MASS.
HIP 15329 contains the AB pair (STF 53, P = 113 yr) and a CPM companion C (V = 13.24) at 10700 found by
(Tokovinin & Lépine 2012). Here C is resolved at 1.00 6 (RAO 10Ca,Cb), revealing this system as a 2+2 quadruple. We
believe that Ca,Cb is physical because of its small separation, moderate crowding, and the red color of Cb (∆i = 4.0
mag, ∆z = 2.8 mag).
HIP 16329 Ba,Bb = RAO 11Ba,Bb (also known as J 207) is a spectroscopic binary in the Hyades cluster with a
period of about 30.74 yr (Griffin 2012). Assuming the mass of the K7V component Ba to be 0.7 M , the spectroscopic
orbit implies a minimum mass of 0.3 M for Bb and a semi-major axis of 0.00 265. The pair Ba,Bb was resolved by
Robo-AO three times at 0.00 16 with ∆i = 0.87m , ∆r = 0.97m , and ∆z = 0.52m . This corresponds to a mass for Bb of
∼0.6 M . We can’t help noting that Bb appears redder than Ba, and that its lines were not detected in the spectrum;
it could itself by a close binary or a fast rotator. This pair is a secondary component in the wide binary STF 399AB
at 2000 separation, also measured here (despite its WDS designation, AB was first resolved by W. Herschel in 1782,
not by W. Struve). The primary component A = vB 3 is itself a close binary with astrometric acceleration (Makarov
& Kaplan 2005), although Griffin states that RV(A) is constant; it is not resolved by Robo-AO.
HIP 17022 has an astrometric orbit with P = 3.06 yr. This binary is too close to be resolved with Robo-AO, but
we found another faint star at 1.00 7 (RAO 47) which is confirmed as physical with the P200.
HIP 17217 is a triple system with inner binary BU 1181 and a new component at 4.00 8 (RAO 48AC) confirmed as
physical by its presence in the 2MASS image.
HIP 17336 has a new companion at 10.00 4 which is not found in the 2MASS point-source catalog, but is seen at 270◦
and 1200 from A in the J-band image. The difference in positions matches the reflex PM of A, hence the new companion
is optical.
HIP 18218 is the binary A 1293AB. The new companion C at 2600 is optical, as evidenced by its position in 2MASS
and high crowding.
HIP 18719 is an SB in the Hyades (Griffin 2012) which is not resolved here. The faint star at 5.00 9 found here is
optical because it is not seen in the 2MASS images.
HIP 19389 has a CPM companion C at 6100 (Tokovinin & Lépine 2012), targeted here. The pair CD is found in
2MASS, which shows that D is optical to C, as the change in its position simply reflects the PM(C).
HIP 21099 is a member of the Hyades. The faint 0.00 9 pair BC seen at 1900 from A is optical, as evidenced by its
position in 2MASS.
HIP 21443 has a new companion B at 5.00 7, revealed as physical by its color and position in 2MASS and confirmed
with the P200. However, the PM(A) is small and the region is crowded, so the status of the new companion is not
certain. The main target is also an SB1 with a period of 2.06 d (Gorynya & Tokovinin 2014).
HIP 23396 is the binary HU 445 which deviates from its orbit. The star C at 3800 is classified as optical by comparing
with its position in 2MASS.
HIP 24016 is a double-lined SB with a CPM companion B = HIP 24005 at 6900 . We targeted B and found a star C
at 106.◦ 2, 26.00 2 from it in this crowded field. The star is at 103.9.◦ 1 and 27.00 32 in 2MASS, hence it is optical.
HIP 25300 is a system consisting of the 1.00 1 visual binary STF 677AB and a new tertiary component C at 6.00 8,
confirmed as physical by its presence in the 2MASS images. Observations with the P200 also confirmed C and resolved
B into a close pair.
HIP 26444 is only triple – a single-lined SB coupled to the CPM component B at 22900 distance (Tokovinin & Lépine
10
Riddle et al.
2012). We targeted B and found two stars around it at ∼400 . They are not present in the 2MASS Ks -band image and
hence are considered optical.
HIP 27067 and HIP 27070 form the 2200 binary STF 775. We measured another star C at 1100 from A in this crowded
field; AC is optical judging by its position in 2MASS.
HIP 27246 is a new triple. The 11.1-yr spectroscopic and astrometric binary was recently resolved by Horch et al.
(2012). The new component C at 10.00 9 is confirmed as physical by its position and color in 2MASS.
HIP 31267 is another triple system consisting of an SB and the newly found tertiary component C, confirmed as
physical by the 2MASS image and follow-up observations with the P200. The 5300 pair UC 1450AB is not physical
because because the red color of the secondary places it well above the main sequence, while the small common PM
is likely a chance coincidence.
HIP 33355 is an SB with a new companion at 5.00 5 which could be physical. The Ks -band image in 2MASS is
extended towards a position angle of 90◦ and the companion is confirmed with the P200. Yet, the small PM of the
target makes it difficult to make a firm conclusion on the companion’s status.
HIP 34110 is a triple system with a 5.1-d SB in the visual pair A 619, which deviates substantially from its orbit.
The new component C at 15.00 7 is optical as shown the 2MASS data.
HIP 35265 has a wide CPM companion B at 92700 (Tokovinin & Lépine 2012), whose physical nature is not certain,
but likely, given the substantial PM. We targeted B and measured RAO 58BC at 17.00 6. This pair has a different
position in 2MASS, hence is optical.
HIP 38018 has an optical companion C at 118.◦ 7, 15.00 4, with a different position in 2MASS.
HIP 40298 has a CPM companion B at 24400 (LDS 2564) which was targeted. The pair BC found here is optical.
HIP 40479 has an optical companion at 3100 , with different position in 2MASS.
HIP 40918 has a CPM companion B = HIP 40882 at 25800 which is resolved here into the 2.00 8 pair RAO 13BC
and confirmed by the 2MASS image. Considering that A itself is a long-period SB, this is another 2+2 quadruple
discovered by this survey.
HIP 41319 has a CPM companion at 69200 , likely physical considering its large PM. It was targeted here, but the
16.00 8 pair RAO 62BC is optical, as revealed by its different position in 2MASS.
HIP 43426 is a visual triple with two companions at 3.00 6 and 4900 from it. The distant component C was targeted.
We measured RAO 63CD at 18.00 9, but this pair is optical.
HIP 48273 is a double-lined SB with P = 3.955 d (Griffin & Suchkov 2003) and has a CPM companion B at
115500 (Tokovinin & Lépine 2012), considered physical because of the substantial common PM and matching colors.
This secondary was resolved here at 0.00 16 (RAO 90Ba,Bb), converting the system into a quadruple. The pair Ba,Bb
was measured at SOAR on 2013.13 at similar position.
HIP 49638 is an astrometric binary with P = 4.2 yr and an estimated semi-major axis of 0.00 05. We detect the new
companion RAO 15 at 0.00 5, converting this into a triple system.
HIP 69160 is a double-lined SB with P = 8.4 yr (D. Latham, private communication, 2012) and expected semi-major
axis of 0.00 09. It is resolved here at 0.00 12.
HIP 69322 has a CPM component B (V = 13.92) at 60600 (Tokovinin & Lépine 2012), which is resolved twice into a
new 0.00 58 pair RAO 17BC.
HIP 71843 has a CPM component B at 21600 , V = 14.9. We measured a pair BC at 17.00 3 twice. Its position in the
2MASS is similar, but C is “bluer” than B, hence it could be a white dwarf, although more likely it is a background
star, considering the small PM of the system.
HIP 75676 is a 4000 physical binary KU 108 known since 1893. Both its components are SBs (D. Latham, private
communication, 2012). In addition, we found the new 0.00 4 pair BC, making this a quintuple system.
HIP 79607 is a known quintuple system. The component E (STF 2032AE, E=HIP 79551=GJ 615.2C) is resolved
here at 0.00 4 (but not for the first time: Ea,Eb=YSC 152). Another star F at 3200 from E (RAO 65) appears optical; it
is not found in 2MASS.
HIP 79629 has a CPM component B at 10700 , V = 14.2. It is resolved here into a 0.00 14 pair of equal stars, converting
binary into a triple.
HIP 81608 has a CPM component B at 17900 . The 2700 pair RAO 82BC is optical, it has a different position in
2MASS.
HIP 85042 has a CPM companion B at 4900 according to Raghavan et al. (2010). The secondary is resolved here at
00
0. 75 (RAO 19BC), while A itself is single.
HIP 86642 is a double-lined SB (D. Latham, private communication, 2012) with a newly discovered tertiary component at 2.00 2. The 2MASS image does not resolve this pair, but it is confirmed with the P200, where the inner binary
was also resolved.
HIP 89207 is a 200 binary AB (A 2260). Another star C found here at 1700 is likely optical, as the field is very
crowded.
HIP 91120 has a CPM companion B at 62100 , V = 11.14. It is resolved here at 0.00 14 (RAO 83Ba,Bb).
HIP 94540 is a visual triple system where the 100 pair BU 975BC is located at 33.00 6 from A. However, it was outside
the Robo-AO field, and we measured only the known optical pair AD at 15.00 9 and the new companion E at 2.00 9
(RAO 84AE). The star E is not seen in the the Ks -band 2MASS image and is presumed to be optical, until proven
otherwise.
HIP 94666 is an SB for which we find a distant companion at 3.00 6, confirmed in the 2MASS image.
HIP 94905 is a double-lined SB with P = 5.38 d. The companion RAO 67 at 6.00 9 has the same position in 2MASS.
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
11
However, the field is extremely crowded and the PM(A) is small, so the new companion is considered to be likely
optical.
HIP 95309 is similar to the previous case: we find a new 5.00 1 companion to the SB in a very crowded field. However,
the PM(A) is 0.00 2 yr−1 , so comparison with the 2MASS position confirms the physical nature of RAO 68.
HIP 95769 is a spectroscopic and astrometric binary with P = 2.26 yr. The companion B at 9.00 9 is optical; it has a
different position in 2MASS and the field is crowded.
HIP 96395 is an SB converted into a triple by establishing the physical nature of the 1000 companion noted previously
by Fuhrmann (2004). Its position in 2MASS is same as measured here, its color matches a main-sequence dwarf.
HIP 97222 is the binary STF 2576. It forms a quadruple or quintuple system with HIP 97295 at 79200 , which is the
primary (Raghavan et al. 2010). The field is crowded and several optical components are listed in the WDS. We add
to this list another optical pair RAO 69FK at 16.00 4.
HIP 99232 appears to be triple. It was resolved at 0.00 065 as WSI 109 (not confirmed yet by a second measure), while
Robo-AO finds a faint companion C at 1.00 9, re-observed within a year. We consider RAO 21AC physical (the field is
not crowded), although a larger time base is needed for a solid confirmation because PM(A) is small.
HIP 99572 has a CPM companion C at 102100 (AC = TDT 2085) which was targeted by Robo-AO. The 1800 pair
RAO 88CD is optical (D is not found in 2MASS).
HIP 99965: we targeted the CPM companion F (V = 13.5, AF = GIC 155) at 10600 and measured another star in
the field; the pair RAO 70FL is optical, its position in 2MASS is very different.
HIP 101234 is an acceleration binary, resolved here for the first time into a 0.00 17 pair of equal stars RAO 22, and
confirmed with the P200.
HIP 101430 appears to be a quadruple system. The outer 1700 pair AB=HJ 1535 is composed of the spectroscopic and
astrometric binary Aa,Ab and a 0.00 17 pair Ba,Bb tentatively seen in the pipeline RoboAO image, but not confirmed
by speckle processing. This sub-system is not listed in Table 6 for that reason, but it was resolved with the P200
nevertheless. The 1200 pair RAO 71AE is optical, with a different position in 2MASS in a crowded field.
HIP 102040: The CPM companion C at 12500 from A (AC = LDS 1045) was targeted and resolved at 0.00 27
(RAO 23Ca,Cb). The two other wide companions D and E are optical; they are not recovered in 2MASS, while
the field is crowded.
HIP 103455 is an acceleration binary resolved here at 0.00 6 (RAO 24) and confirmed later with the P200. Metchev &
Hillenbrand (2009) did not resolve this system, although its separation implies an orbital period of several decades.
HIP 103641 is a quintuple system which consists of two visual pairs COU 2431Aa,Ab (Aa is also a close SB) and
HDS 2989Da,Db (HIP 103052) at 113200 from A. We targeted D and measured the close pair, as well as an optical
star at 19.00 7 from it (RAO 72DE), which has a different position in 2MASS. The WDS components B and C are also
optical (crowded field).
HIP 104514 has variable RV according to Nordström et al. (2004). We found a new physical companion at 3.00 4 and
measured it twice. The companion is confirmed in the 2MASS image and with the P200.
HIP 108473 is a 7.18-yr SB with a new physical companion RAO 73 at 12.00 4, confirmed by its position and color in
2MASS.
HIP 109361 is an acceleration binary with variable RV, resolved here at 0.00 37 (RAO 26).
HIP 110291 is astrometric and spectroscopic binary with P = 2.11 yr. The two wide companions B and C measured
in this crowded field are optical, as evidenced by their respective positions in 2MASS.
HIP 110574 is acceleration binary resolved here at 0.00 09 and confirmed with the P200 and at SOAR. The CPM
companion B at 17100 (V = 15.88) was not targeted, being too faint.
HIP 110626 is also an acceleration binary, but the new physical companion at 4.00 4 discovered by Robo-AO (and
confirmed in the 2MASS image) is too distant to cause the acceleration. The system is therefore triple.
HIP 111148 has a CPM companion B (V = 13.74) at 6200 , AB = LEP 108. We targeted B and found two faint stars
C and D at 3.00 9 and 12.00 3, respectively. Both companions are considered optical (C is not seen in the 2MASS image,
D has a different position of 268.◦ 3, 14.00 59, and the field is crowded).
HIP 112935 is triple. Its CPM companion D (V = 13.3, AB = LDS 6388) at 25000 is resolved here at 0.00 24 several
times at fixed position during one year, despite the fast PM of 0.00 5 yr−1 .
HIP 114456 has a CPM companion C at 5000 (Raghavan et al. 2010) (the WDS pair HJ 1853AB is optical). We
found only two optical stars around C, RAO 89CD and CE. They have diffferent positions in 2MASS.
HIP 115655 has a CPM companion B = HD 20748 at 18500 . We measure a faint CD pair at 1300 from B. The color
of C in 2MASS, J − K = 0.65, suggests that it is optical, although PM(A) is small and the position of BC in 2MASS
is close to its measured position.
HIP 116906 has a CPM companion B at 109.00 5 (LDS 5112, V = 14.5), which is resolved here into a 0.00 5 pair
RAO 31Ba,Bb (three measurements within a year). The main star hosts an exo-planet with P = 572 d.
HIP 118213 is an acceleration binary. We discover a tertiary companion at 4.00 8, confirmed by its repeated measurement within a year and seen in the 2MASS image. The new pair RAO 76 was also measured with the P200, where
the inner binary was resolved as well.
HIP 118225 is an SB with P = 25.4 d. We discovered another component at 500 , confirmed by its repeated measurement and by the 2MASS image.
Table 8 summarizes the position measurements for the Robo-AO and 2MASS data used to determine if components
12
Riddle et al.
are physical or optical pairs in many of the newly resolved systems. Some of the Robo-AO pairs were not resolvable
by 2MASS, so they are not included in the table. The table lists the binaries by HIP number, and the components
that are being measured, followed by the measured angle (in degrees) and separation (in arcseconds) for the RoboAO and 2MASS data, and the epoch of observation by 2MASS. The column ∆ gives the total displacement between
the Robo-AO and 2MASS measurements. The next column µ∆t gives the displacement produced by proper motion,
assuming ∆t = 12 years. The last 2 columns are the proper motion of the main target.
The 2MASS measurements at ∼500 separations are likely less accurate than its astrometry in general (∼70 mas).
The Robo-AO astrometry of wide pairs is accurate to ∼0.00 1 (Law et al. 2014a). The PM of companion candidates is
unknown and comparable to the PM of some targets. Considering that the relative PM is not known, the assumption
of a 12 year time base is good enough for estimating the expected displacement.
REFERENCES
Africano, J. L., Cobb, C. L., Dunham, D. W. et al. 1975, AJ, 80,
689
Aitken, R. G. 1914, Lick Obs. Bull. 8, 93
Allen, P. R. 2007, ApJ 668, 492
Alzner, A. 1998, A&AS 132, 253
Alzner, A. 2007 IAU Commission 26 Circular #163, 1
Andrade, M. 2007, RevMexA&A 43, 237
Aristidi, E., Prieur, J.-L., Scardia, M., Koechlin, L., Avila, R.,
Carbillet, M., Lopez, B., Rabbia, Y. et al. 1999, A&AS 134, 545
Baranec, C., Riddle, R., Law, N. M., et al. 2013, Journal of
Visualized Experiments, 72, e50021
Baranec, C., Riddle, R., Law, N. M., et al. 2014, ApJ, 790, L8
Balega, I. I., Balega, Y. Y., Hoffmann, K.-H., Malogolovets, E.,
Schertl, D., Shkhagosheva, Z. U. & Weigelt, G. 2006, A&A 448,
703
Balega, Y. Y., Leushin, V. V. & Weigelt, G. 2005,Astron. Reports
49, 217
Bate, M. R. 2012, MNRAS 419, 3115
Brendley, M. & Mason, B. D. 2007, IAU Commission 26 Circular
#163, 1
Burnham, S. W. 1873a, MNRAS 34, 59
Burnham, S. W. 1873b, MNRAS 33, 351
Burnham, S. W. 1894, Pub. Lick Obs. 2, 206
Couteau, P. 1990, A&AS 83, 331
Cutri, R. M., Skrutskie, M. F., van Dyk, S. et al. 2003 The IRSA
2MASS All-Sky Point Source Catalog. NASA/IPAC Infrared
Science Archive.
Cvetkovic, Z. 2010, IAU Commission 26 Circular #172, 1
Cvetkovic, Z. 2011, AJ 141, 116
Cvetkovic, Z. & Novakovic, B. 2006, Serbian AJ 173, 73
Dawes, W. R. 1835, MemRAS 8, 61
Dekany, R., Roberts, J., Burruss, R., et al. 2013, ApJ, 776, 130
Docobo, J. A. & Ling, J.F. 2008, IAU Commission 26 Circular
#165, 1
Docobo, J. A. & Ling, J.F. 2009, AJ 138, 1159
Docobo, J. A. & Ling, J.F. 2010, IAU Commission 26 Circular
#172, 1
Docobo, J. A. & Ling, J.F. 2011, IAU Commission 26 Circular
#174, 1
Duchêne, G. & Kraus, A. 2013, ARAA, 51 (ArXiv:1303:3028)
Eggenberger, A., Udry, S., Chauvin, G. et al. 2007, A&A, 474, 273
Eggenberger, P., Miglio, A., Carrier, F., Fernandes, J. & Santos,
N. C. 2008, A&A 482, 631
Espin, T. E. 1908, MNRAS 68, 202
Fekel, F. C., Scarfe, C. D., Barlow, D. J., Duquennoy, A.,
McAlister, H. A., Hartkopf, W. I., Mason, B. D. & Tokovinin,
A. A. 1997, AJ 113, 1095
Fuhrmann, K. 2004, AN 325, 3
Ginski, C., Mugrauer, M., Seeliger, M. & Eisenbeiss, T. 2012,
MNRAS 421, 2498
Gorynya, N. A., & Tokovinin, A. 2014, MNRAS, 441, 2316
Griffin, R. F. 2002, Observatory, 121, 221
Griffin, R. F. & Suchkov, A. A. 2003, ApJS, 147, 103
Griffin, R. F. 2012, JAA, 33, 29
Griffin, R. F. & Heintz, W. D. 1987, JRASC 81, 3
Hale, A. 1994, AJ 107, 306
Harrington, R. S. 1992, “A Review of Dynamical Studies of
Multiple Stars”, Complementary Approaches to Double and
Multiple Star Research, ASP Conference Series, Vol. 32, IAU
Colloquium 135, H.A. McAlister and W.I. Hartkopf, Eds., p.
212
Hartkopf, W. I. & Mason, B. D. 2000, IAU Commission 26
Circular #142, 1
Hartkopf, W. I. & Mason, B. D. 2009, AJ 138, 813
Hartkopf, W. I. & Mason, B. D. 2010, IAU Commission 26
Circular #170, 1
Hartkopf, W. I. & Mason, B. D. 2011a, AJ 142, 56
Hartkopf, W. I. & Mason, B. D. 2011b, IAU Commission 26
Circular #175, 1
Hartkopf, W. I. & Mason, B. D. 2013b, Catalog of Rectilinear
Elements, USNO2
Hartkopf, W. I. & Mason, B. D. 2013c, Sixth Catalog of Orbits of
Visual Binary Stars, USNO3
Hartkopf, W. I., Mason, B. D. & McAlister, H. A. 1996, AJ 111,
370
Hartkopf, W. I., Mason, B. D. & McAlister, H. A. 2001, AJ 122,
3480
Hartkopf, W. I., Mason, B. D. & Rafferty, T. 2008, AJ 135, 1334
Hartkopf, W. I., Mason, B. D. & Worley, C. E. 2001, AJ 122, 3472
Hartkopf, W. I., McAlister, H. A. & Franz, O. G. 1989, AJ 98,
1014
Hartkopf, W. I., Tokovinin, A. & Mason, B. D. 2012, AJ 143, 42
Heintz, W. D. 1963, Veroff. Sternw. Munchen 5, 247
Heintz, W. D. 1975, ApJS 29, 331
Heintz, W. D. 1984, A&AS 56, 5
Heintz, W. D. 1986a, A&AS 64, 1
Heintz, W. D. 1986b, A&AS 65, 411
Heintz, W. D. 1988, A&AS 72, 543
Heintz, W. D. 1991, A&AS 90, 311
Heintz, W. D. 1994, AJ 108, 2338
Heintz, W. D. 1995, ApJS 99, 693
Heintz, W. D. 1996a, ApJS 105, 475
Heintz, W. D. 1996b, AJ 111, 408
Heintz, W. D. 1997, ApJS 111, 335
Heintz, W. D. 1998, ApJS 117, 587
Heintz, W. D. 2001, IAU Commission 26 Circular #143, 1
Henry, T. J. & McCarthy, D. W. 1993, AJ 106, 773
Hopmann, J. 1958, Mitt. Sternw. Wien 9, 177
Horch, E. P., Bahi, L. A. P., Gaulin, J. R. et al. 2012, AJ 143, 10
Horch, E. P., Robinson, S. E., Meyer, R. D., van Altena, W. F.,
Ninkov, Z. & Piterman, A. 2002a, AJ 123, 3442
Horch, E. P., Robinson, S. E., Ninkov, Z., van Altena, W. F.,
Meyer, R. D., Urban, S. E. & Mason, B. D. 2002b, AJ 124, 2245
Hough, G. W. 1890, AJ 9, 177
Janson, M., Hormuth, F., Bergfors, C. et al. 2012, ApJ 754, 44
Jodar, E., Pérez-Garrido, A., Dı́az-Sánchez, A. et al. 2013,
MNRAS, 429, 859
Kiyaeva, O. V., Kisselev, A. A., Polyakov, E. V. & RafalŚkii,
V. B. 2001, SvAL 27, 391
de Lalande, J.-J. 1831, MemRAS 4, 165
Lang, K. R. 1992, Astrophysical data. Planets and Stars (Berlin:
Springer-Verlag)
Law, N. M., Dhital, S., Kraus, A., Stassun, K. G., & West, A. A.
2010, ApJ, 720, 1727
Law, N. M., Morton, T., Baranec, C., Riddle, R., Ravichandran,
G., Ziegler, C., Johnson, J. A., Tendulkar, S. P., Bui, K., Burse,
M. P., Das, H. K., Dekany, R. G., Kulkarni, S., Punnadi, S.,
Ramaprakash, A. N., 2014, ApJ, 791, 35
2
3
http://ad.usno.navy.mil/wds/lin1.html
http://ad.usno.navy.mil/wds/orb6.html
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
Law, N. M., Baranec, C., Riddle, R., 2014, Proc. SPIE, Adaptive
Optics Systems IV, 91480A (July 21, 2014);
doi:10.1117/12.2056994
Lewis, T. 1900, MNRAS 60, 494
Ling, J. F. 1992, AN 313, 91
Ling, J. F. 2011, IAU Commission 26 Circular #174, 1
Ling, J. F. 2012, IAU Commission 26 Circular #176, 1
Lucy, L. B. 2006, A&A, 457, 629
Makarov, V. V. & Kaplan, G. H. 2005, AJ 129, 2420
Mardling, R.A. & Aarseth, S.J. 2001, MNRAS 321, 398
Mason, B. D. 1996, AJ 112, 2260
Mason, B. D. & Hartkopf, W. I. 2005, IAU Commission 26
Circular #156, 1
Mason, B. D. & Hartkopf, W. I. 2011, IAU Commission 26
Circular #173, 1
Mason, B. D. & Hartkopf, W. I. 2012, IAU Commission 26
Circular #178, 1
Mason, B. D., Douglass, G. G. & Hartkopf, W. I. 1999, AJ 117,
1023
Mason, B. D., Hartkopf, W. I., Gies, D. R., Henry, T. J. & Helsel,
J.W. 2009, AJ 137, 3358
Mason, B. D., Hartkopf, W. I., Holdenried, E. R. & Rafferty, T.
J. 2001b, AJ 121, 3224
Mason, B. D., Hartkopf, W. I., Wycoff, G. L. & Rafferty, T. J.
2006, AJ 131, 2687
Mason, B. D., Hartkopf, W. I., Wycoff, G. L., Pascu, D., Urban,
S. E., Hall, D. M., Hennessy, G. S., Rafferty, T. J., Flagg, L.,
Kang, D., Ries, P. & Holdenried, E. 2004a, AJ 127, 539
Mason, B. D., Hartkopf, W. I., Wycoff, G. L., Rafferty, T. J.,
Urban, S. E. & Flagg, L. 2004b, AJ 128, 3012
Mason, B. D., McAlister, H. A., Hartkopf, W. I. & Shara, M. M.
1995, AJ 109, 332
Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G. &
Worley, C. E. 2001, AJ 122, 3466
Metchev, S. A. & Hillenbrand, L. A. 2009, ApJS 181, 62
Muterspaugh, M. W., Lane, B. F., Fekel, F. C., Konacki, M.,
Burke, B. F., Kulkarni, S. R., Colavita, M. M., Shao, M. &
Wiktorowicz, S. J. 2008, AJ 135, 766
Muterspaugh, M. W., Hartkopf, W. I., Lane. B. F., O’Connell, J.,
Williamson, M., Kulkarni, S. R., Konacki, M., Burke, B. F.,
Colavita, M. M., Shao, M. & Wiktorowicz, S. J. 2010a, AJ
140,1623
Muterspaugh, M.W., Lane, B.F., Kulkarni, S.R., Konacki, M.,
Burke, B.F., Colavita, M.M., Shao, M., Hartkopf, W., Boss,
A.P. & Williamson, M. 2010b, AJ 140, 1657
Nordström, B., Mayor, M., Andersen, et. al., & Mowlavi, N. 2004,
A&A, 418, 989
Perryman, M.A.C. & ESA 1997, in ESA Publ. Ser. 1200, The
Hipparcos and Tycho Catalogues, (Noordwijk: ESA), Vol. 1
Popovic, G. M. 1969, Bull. Obs. Astron. Belgrade 27, 33
Pourbaix, D., Tokovinin, A. A., Batten, A. H. et al. 2004 A&A
424, 727
Prieur, J.-L., Scardia, M., Pansecchi, L., Argyle, R. W. & Sala,
M. 2010, MNRAS 407, 1913
Raghavan, D., McAlister, H. A., Henry, T. J. et al. 2010, ApJS
190, 1
Rica, F. 2013, IAU Commission 26 Circular # 181, 1
Riddle, R. L., Hogstrom, K., Papadopoulos, A., Baranec, C., &
Law, N. M. 2014, arXiv:1407.4484
Roberts, L. C., Tokovinin, A., Riddle, R., Mason, B. D.,
Hartkopf, W. I., 2014, AJ, in preparation
13
Rucinski, S. M., Pribulla, T., & van Kerkwijk, M. H. 2007, AJ,
134, 2353
Scardia, M. 1981, AN 302, 35
Scardia, M. 2001, IAU Commission 26 Circular #145, 2
Scardia, M., Argyle, R. W., Prieur, J.-L., Pansecchi, L., Basso, S.,
Law, N. M. & Mackay, C. D. 2007, AN 328, 146
Scardia, M., Prieur, J.-L., Koechlin, L. & Aristidi, E. 2001, AN
322, 161
Scardia, M., Prieur, J.-L., Koechlin, L. & Aristidi, E. 2003, IAU
Commission 26 Circular #151, 2
Scardia, M., Prieur, J.-L., Pansecchi, L. & Argyle, R. W. 2009,
IAU Commission 26 Circular #168, 1
Scardia, M., Prieur, J.-L., Pansecchi, L. & Argyle, R. W. 2012,
IAU Commission 26 Circular #177, 1
Scardia, M., Prieur, J.-L., Pansecchi, L., Argyle, R. W., Sala, M.,
Basso, S., Ghigo, M., Koechlin, L. & Aristidi, E. 2008, AN 329,
54
Seymour, D. & Mason, B. 2000, IAU Commission 26 Circular
#141, 2
Seymour, D., Mason, B. D., Hartkopf, W. I. & Wycoff, G. L.
2002, AJ 123, 1023
Söderhjelm, S. 1999, A&A 341, 121
Starikova, G. A. 1978, SvAL 4, 296
Starikova, G. A. 1983, SvAL 9, 189
Struve, F. G. W. 1837, Mensurae Micrometricae Petropoli (see
also 1837, AN 14, 249)
Terziev, E., Law, N. M., Arcavi, I., Baranec, C., Bloom, J. S.,
Bui, K., Burse, M. P., Chorida, P., Das, H. K., Dekany, R. G.,
Kraus, A. L., Kulkarni, S. R., Nugent, P., Ofek, E. O.,
Punnadi, S., Ramaprakash, A. N., Riddle, R., Sullivan, M., &
Tendulkar, S. P. 2013, ApJS, 206, 18
Tokovinin, A. 1997, A&AS 124, 75
Tokovinin, A. 2011, AJ 141, 52
Tokovinin, A. 2012, AJ 144, 56
Tokovinin, A. 2014, AJ, 147, 86
Tokovinin, A., Hartung, M. & Hayward, Th. L. 2010, AJ 140, 510
Tokovinin, A., Hartung, M., Hayward, Th. L. & Makarov, V.V.
2012, AJ 144, 7
Tokovinin, A., Hartung, M., & Hayward, T. L. 2013, AJ, 146, 8
Tokovinin, A. & Lépine, S. 2012, AJ 144, 102
Tokovinin, A., Mason, B. D. & Hartkopf, W. I. 2010, AJ 139, 743
Tokovinin, A., Mason, B. D., & Hartkopf, W. I. 2014, AJ, 147, 123
Tokovinin, A. A. & Smekhov, M. G. 2002, A&A 382, 118
Tokovinin, A., Thomas, S., Sterzik, M. & Udry, S. 2006, A&A
450, 681
Valbousquet, A. 1981, A&AS 45, 181
van Leeuwen, F. 2007, A&A, 474, 653
York, D. G., Adelman, J., Anderson, Jr., et. al., 2000, AJ, 120,
1579
Whitworth, A. P. 2001, in: Proc. IAU Symp. 200, eds. H.
Zinnecker & R. D. Mathieu (ASP: San Francisco).
Zacharias, N., Finch, C. T., Girard, T. M., Henden, A., Bartlett,
J. L., Monet, D. G., & Zacharias, M. I. 2013, AJ 145, 44
Zeller, G. 1965, Ann. Sternw. Wien 26, 111
Zirm, H. 2008, IAU Commission 26 Circular #166, 1
Zirm, H. 2011, JDSO 7, 24
Zulevic, D. J. 1997, Bull. Obs. Astron. Belgrade #155, 109
14
Riddle et al.
Fig. 1.— Cumulative histograms of the IC magnitudes of components observed with Robo-AO.
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
15
HIP 17217
Fig. 2.— Power spectrum (left, inverse logarithmic scale from 10−2 to 10−7 ) and lucky image (right) of HIP 17217 (separation 0.00 118,
∆m = 0.36).
16
Riddle et al.
Fig. 3.— Median detection limit ∆m(ρ) determined on the images (full line) and on the speckle ACFs (dashed line). Measured pairs are
plotted as crosses.
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
2292B
3795C
17
12189B
3214B
3540B
15329C
29860E
48273B
69322B
75676B
79629B
85042B
91120B
99232
101234
102040C
103455
109361
112935B
116906B
N
E
Fig. 4.— Images of some new binaries discovered with Robo-AO. Each fragment of the pipeline image has a size of 100 pixels (2.00 2), the
intensity scale is adjusted to highlight the companions, indicated by arrows. The images are displayed without rotation and labeled by
HIP numbers.
18
Riddle et al.
91120B
16329B
49638
79629B
110574
Fig. 5.— Power spectra of some newly resolved close binaries. Primaries are identified by their HIP1 number.
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
Aa
112
A
A
61
19
total: 212
11
Aa
Ab
1
1
22
B
B
11
Ab
1
A
17
A
Ba
B
1
12
Ba
B
Bb
12
Bb
Fig. 6.— Observed numbers of different hierarchies in 212 wide binaries surveyed by Robo-AO.
20
Riddle et al.
Fig. 7.— Distribution of 39 secondary sub-systems (upper panel) and 83 primary sub-systems (lower panel) of wide binaries in the (P, q)
plane. The contours indicate average detection probability. The angular separation on the upper axis corresponds to the distance of 50 pc.
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
21
Fig. 8.— Periods and mass ratios of 71 tertiary components to 241 binaries with P ∗ < 100 yr observed with Robo-AO. The contours
indicate average detection probability. The full line over-plots the average dynamical truncation (not to be confused with q).
22
Riddle et al.
4
WDS 01158+0947
A 2102
WDS 01417-1119
STF 147
0.6
0.4
2
0.2
0
0.0
-0.2
-2
-0.4
E
E
N
-0.6
-0.6
N
-4
-0.4
-0.2
0.0
0.2
WDS 02371-1112
0.4
0.6
0
HU 1216AB
2
4
WDS 03140+0044
6
STF 367
1
0.5
0.0
0
-0.5
-1
E
-1.0
E
N
-0.5
0.0
0.5
1.0
N
-1
0
1
Fig. 9.— New orbits for the systems listed in Table 7, together with all published data in the WDS database. See § 5.4 for a
description of symbols used in this and the following figures. In all of these figures, Figure a. is the upper left corner, b. the
upper right, c. the lower left, and d. the lower right. In this figure: a. HIP 5898; b. HIP 7916; c. HIP 12204; d. HIP 15058.
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
23
0.3
WDS 03413+4554
BU 1181AB
WDS 03496-0220
YR 23
0.2
0.2
0.1
0.0
0.0
-0.1
-0.2
-0.2
E
-0.3
E
-0.4
N
-0.1
0.0
0.1
0.2
0.3
N
0.4
0.5
-0.6
-0.4
-0.2
0.0
0.2
0.2
WDS 04163+0710
WSI 97
2
WDS 04422+3731
STF 577
0.1
1
0.0
0
-0.1
-1
E
E
-0.2
N
-0.2
-0.1
0.0
0.1
N
0.2
-1
0
1
2
Fig. 10.— New orbits for the systems listed in Table 7 (continued). In this figure: a. HIP 17217; b. HIP 17895; c. HIP 19911;
d. HIP 21878.
24
Riddle et al.
0.3
WDS 07043-0303
A 519AB
WDS 07092+1903
CHR 216
0.00
0.2
0.1
-0.05
0.0
-0.1
-0.10
-0.2
E
E
-0.15
-0.3
N
-0.4
-0.3
-0.2
-0.1
WDS 08122+1739
0.0
N
0.1
0.2
-0.10
HUT 1Ca,Cb
-0.05
0.00
WDS 10387+0544
0.05
STF1457
0.4
0.5
0.2
0.0
-0.5
0.0
-1.0
-0.2
-1.5
E
-0.4
N
-0.4
-0.2
0.0
0.2
0.4
E
-2.0
-2.0
N
-1.5
-1.0
-0.5
0.0
0.5
1.0
Fig. 11.— New orbits for the systems listed in Table 7 (continued). In this figure: a. HIP 34110; b. HIP 34524; c. HIP 40167;
d. HIP 52097.
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
WDS 11293+3025
L
1.5
11
25
WDS 13577+5200
A 1614
0.5
1.0
0.0
0.5
-0.5
0.0
-1.0
-0.5
E
E
N
-1.5
-1.0
-0.5
0.0
N
0.5
1.0
-0.5
-1.0
0.0
0.5
1.0
1.5
0.5
WDS 15413+5959
0.4
STF1969
0.0
WDS 18154+5720
HDS2577
0.2
0.0
-0.5
-0.2
-1.0
-0.4
E
E
-1.5
N
-0.5
0.0
0.5
1.0
N
1.5
-0.4
-0.2
0.0
0.2
0.4
0.6
Fig. 12.— New orbits for the systems listed in Table 7 (continued). In this figure: a. HIP 56054; b. HIP 68193; c. HIP 76837;
d. HIP 89455.
26
Riddle et al.
WDS 20514-0538
1.0
STF2729AB
WDS 21041+0300
WSI 6AB
0.2
0.5
0.1
0.0
0.0
-0.5
-0.1
-1.0
-0.2
E
E
N
N
-1.5
-1.0
0.2
-0.5
0.0
WDS 21243+3740
0.5
1.0
1.5
-0.3
-0.2
0.6
WSI 7
-0.1
0.0
WDS 22161-0705
0.1
0.2
HDS3158
0.4
0.1
0.2
0.0
0.0
-0.1
-0.2
E
E
N
-0.1
0.0
0.1
N
0.2
-0.4
-0.2
0.0
0.2
0.4
Fig. 13.— New orbits for the systems listed in Table 7 (continued). In this figure: a. HIP 102945; b. HIP 103987; c. HIP
105676; d. HIP 109951.
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
TABLE 1
Robo-AO Observation Parameters
Observation date range
Targets observed
Total observing time
Observation filters
Exposure time
Typical FWHM resolution
Typical contrast ratio at 0.5”
August 31, 2012 to August 21, 2013
695
29 hours
SDSS i0 , LP600
60 s
0.00 12 to 0.00 15
4 ∼ 5 mag.
27
28
Riddle et al.
TABLE 2
Comparison between speckle and blind deconvolution
HIP1
Discoverer
Nobs
20472
STF 535
9
23100
COU 1525
8
Speckle (mean, rms)
θ
ρ
∆m
271.15
0.32
293.55
0.21
1.130
0.002
1.833
0.007
0.98
0.10
3.36
0.05
Blind (mean, rms)
θ
ρ
∆m
271.18
0.30
293.56
0.24
1.129
0.002
1.832
0.007
1.04
0.06
3.32
0.12
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
29
TABLE 3
List of observed components and detection limits
HIP1
179
223
394
493
601
754
Comp.
A
A
A
D
A
B
RA (2000)
Dec (2000)
h m s
◦ 0 00
00
00
00
00
00
00
02
02
04
05
07
09
16.68
47.17
53.76
54.75
18.15
13.92
−13
+02
+34
+18
+20
+25
24
07
39
14
57
16
26.8
48.5
35.3
06.0
54.3
38.9
V
(mag)
Sep.
(00 )
Epoch
+2000
0.00 15
(mag)
0.00 8
(mag)
2.00 1
(mag)
ρmax
(00 )
6.90
7.17
6.09
7.47
9.14
11.46
0.0
0.0
0.0
0.0
0.0
29.6
13.5730
12.7049
12.7020
12.6747
12.7050
12.6747
2.7
2.1
1.7
1.2
1.8
1.6
5.2
4.9
5.1
4.5
4.2
4.7
6.3
5.7
6.7
6.9
4.7
6.8
13.9
17.5
15.1
11.8
17.9
12.2
Note. — Table 3 is published in its entirety in the electronic edition; a portion is shown here for
guidance regarding its form and content.
30
Riddle et al.
TABLE 4
Measurements of binary stars with Robo-AO
WDS
(2000)
Discoverer
Designation
HIP1
00028+0208
00057+4549
BU 281 AB
STT 547 AB
223
473
00057+4549
00073+2058
00251+4803
00261−1123
00271−0753
POP 217 AP
HDS 12
HDS 56 AB
YR
4
A
431 AB
473
601
1987
2066
2143
Epoch
+2000
N
θ
(deg)
σθ
(deg)
12.7049
12.7723
13.0478
13.0478
12.7050
12.7020
13.5730
13.5730
1
3
2
2
1
1
1
1
160.8
186.9
186.4
325.5
6.7
279.3
176.8
157.6
0.0
0.2
0.1
0.3
0.1
0.1
0.0
0.1
ρ
(00 )
σρ
(mas)
∆m
(mag)
1.567
6.026
5.758
13.140
1.864
0.324
0.376
0.166
0.5
42.8
68.7
49.4
2.0
0.5
0.0
0.3
1.66
0.09
0.16
5.03
2.38 :
2.19
3.12 :
0.00
[O−C]θ
(deg)
[O−C]ρ
(00 )
Ref.
−0.3
−0.9
0.001
−0.266
1
1
−0.8
−0.016
2
−5.0
−0.019
3
References. — 1 - Kiyaeva et al. (2001), 2 - Cvetkovic (2011), 3 - Scardia (1981)
Note. — Table 4 is published in its entirety in the electronic edition; a portion is shown here for guidance regarding its form and content.
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
TABLE 5
New pairs resolved with Robo-AO
WDS
(2000)
HIP1
00293−0555
00346+6235
00346+6235
00409+3107
00452+0015
00487+1841
00515+5630
00515+5630
01027+0908
01027+0908
01075+4116
01080+3915
01253+0128
01409+6410
02308+5533
02355+5948
02356+6106
02370+2439
02430+5812
02462+0536
02517+4559
03177+3838
03305+2006
03390+4232
03413+4554
03426+1718
03537+5316
04007+2023
04092+4010
04313+2008
04313+2008
04363+5502
05017+2050
05096+2947
05247+6323
05376+0607
05376+0607
05444+4024
05465+7437
06335+4822
06562+4032
07043−0303
07172+3306
07475+7012
08138+6306
08159+0227
08211+6527
08258+1703
08508+3504
09505+0421
10079+6650
14094+1015
14113+5424
14418+2432
15277+4253
16147+3352
16150+6040
16400−0605
17229−0223
17422+3804
18123+0154
18352+4135
19145+3434
19158+3823
19188+1629
19234+2034
19287+3437
19359+5659
19464+3344
20086+8507
20124−1237
20169+5017
20312+5653
2292
2717
2717
3214
3540
3795
4016
4016
4878
4878
5276
5313
6653
7845
11696
12062
12067
12189
12685
12925
13336
15329
16329
17022
17217
17336
18218
18719
19389
21099
21099
21443
23396
24016
25300
26444
26444
27067
27246
31267
33355
34110
35265
38018
40298
40479
40918
41319
43426
48273
49638
69160
69322
71843
75676
79607
79629
81608
85042
86642
89207
91120
94540
94666
94905
95309
95769
96395
97222
99232
99572
99965
101234
Discoverer
Designation
RAO 1
RAO 2
RAO 2
RAO 3
RAO 4
RAO 5
RAO 38
RAO 38
RAO 39
RAO 39
RAO 40
RAO 41
RAO 6
RAO 32
RAO 42
RAO 43
RAO 7
RAO 8
RAO 44
RAO 9
RAO 45
RAO 10
RAO 11
RAO 47
RAO 48
RAO 78
RAO 49
RAO 50
RAO 79
RAO 51
RAO 51
RAO 35
RAO 52
RAO 53
RAO 36
RAO 54
RAO 54
RAO 55
RAO 37
RAO 80
RAO 56
RAO 57
RAO 58
RAO 59
RAO 60
RAO 61
RAO 13
RAO 62
RAO 63
RAO 90
RAO 15
RAO 16
RAO 17
RAO 64
RAO 18
RAO 65
RAO 81
RAO 82
RAO 19
RAO 20
RAO 66
RAO 83
RAO 84
RAO 85
RAO 67
RAO 68
RAO 86
RAO 87
RAO 69
RAO 21
RAO 88
RAO 70
RAO 22
BC
BC
BD
Ba,Bb
BC
Ca,Cb
BC
CD
AB
AC
AB
AB
AB
AC
BE
AB
AB
BC
AB
AB
AC
Ca,Cb
Ba,Bb
AB
AC
AB
AC
AB
CD
AB
BC
AB
AC
BC
AC
BC
BD
AC
AC
AC
AB
AC
BC
AC
BC
AB
BC
BC
CD
Ba,Bb
AB
AB
BC
BC
BC
EF
Ba,Bb
BC
BC
AB
AC
Ba,Bb
AE
AB
AB
AB
AB
AB
FK
AC
CD
FL
AB
N
θ
(deg)
ρ
(00 )
∆m
(mag)
Status, remarks
5
1
1
3
1
1
1
1
1
1
2
1
3
5
1
1
1
2
1
3
1
3
4
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
2
1
1
1
1
2
2
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
2
1
1
1
166.7
67.2
302.5
275.6
223.1
322.4
270.4
82.5
36.2
147.0
335.4
244.7
204.5
175.3
207.0
207.8
169.0
285.2
211.1
252.8
81.8
223.4
75.9
142.9
269.0
269.7
241.6
308.4
294.3
310.3
177.4
14.4
242.8
106.2
227.1
34.9
157.2
151.9
68.5
221.9
156.6
10.6
126.6
118.8
37.6
170.6
245.6
310.0
357.6
83.8
71.4
261.2
145.9
61.9
100.2
238.2
42.1
148.9
86.3
302.2
71.9
336.1
72.2
331.1
190.9
350.9
348.2
250.7
318.3
65.3
271.1
264.2
195.8
0.53
3.55
3.180
1.629
1.521
0.674
16.999
1.720
2.927
32.155
6.167
26.24
1.827
24.84
15.677
14.472
5.71
0.536
21.670
1.91
15.195
1.560
0.159
1.741
4.83
10.388
25.912
5.905
9.584
18.800
0.917
5.737
38.414
26.153
6.84
4.526
4.398
11.103
10.85
4.97
5.510
15.713
17.637
15.476
13.074
31.245
2.79
16.798
18.943
0.160
0.510
0.119
0.577
17.271
0.408
32.267
0.139
27.160
0.752
2.20
17.237
0.136
2.900
3.57
6.945
5.13
9.916
10.08
16.402
1.32
17.823
15.597
0.175
3.3
4.3
6.85
0.0
3.5
1.3
3.97
1.28
6.57
6.33
6.4
4.4
4.2
6.5
5.11
6.15
5.1
4.3
4.08
4.4
6.30
4.0
0.9
6.2
6.4
6.44
6.65
6.35
3.04
6.32
0.26
4.65
3.85
6.58
5.5
5.79
6.12
5.55
3.5
5.3
6.35
6.64
5.45
5.87
3.48
6.42
3.2
4.19
3.20
0.0
3.0 :
0.7
1.7
2.02
1.5
3.74
0.0
3.89
0.0
5.0
6.81
0.8
4.50
5.7
4.85
4.7
5.75
5.3
6.21
5.5
5.14
4.66
0.0
P (fixed for 1 yr), B=HIP 2350
P (2MASS image)
O (crowded field, non-hierarchical)
P (bright, 2MASS image, fixed for 1 yr)
P (confirmed with P200, low crowding)
P (bright & close, low crowding)
O (crowded field, 2MASS position)
O? CD is unrelated to B
O? (different position in 1 yr)
O (2MASS position, small PM)
P (2MASS position, conf. with P200)
P (2MASS position, color)
P (low crowding, red color)
O (fast relative motion), not in FG-67
O (2MASS position, high crowding)
O (2MASS position, high crowding)
P (2MASS position)
P (fixed position, conf. with P200). B=HIP 12184
O? (color, high crowding)
P (fixed position, low crowding)
O (2MASS position)
P (small separation, red color)
P (spectroscopic binary), B = HD 21663
P (confirmed with P200)
P (2MASS image)
O (2MASS position)
O (2MASS position, high crowding)
O (not found in 2MASS images)
O (2MASS position)
O (2MASS position)
O? (unrelated to A)
P? (2MASS position & color, confirmed with P200)
O (2MASS position)
O (2MASS position), B = HIP 24005
P (2MASS image, conf. with P200)
O (not in 2MASS image)
O (not in 2MASS image)
O (2MASS position, high crowding)
P (2MASS position, color)
P (2MASS image, conf. with P200)
P? (2MASS image, conf. with P200)
O (2MASS position)
O (2MASS position, high crowding)
O (2MASS position)
O (2MASS position)
O (2MASS position)
P (2MASS image), B = HIP 40882
O (2MASS position)
O (2MASS position)
P (close pair)
P (close pair, low crowding)
P (SB2 resolved)
P (close pair, low crowding)
O (blue color)
P (close pair, small ∆m)
O (not found in 2MASS), E = HIP 79551
P (close pair, small ∆m)
O (2MASS position)
P (close pair, small ∆m)
P (confirmed with P200)
O? (2MASS position, crowded field)
P (close pair, small ∆m)
O? (not confirmed in 2MASS image)
P (2MASS image)
O? (very crowded field, small PM)
P (2MASS position)
O (2MASS position, high crowding)
P (2MASS position & color)
O (2MASS position)
P? (small separation, low crowding)
O (not found in 2MASS)
O (2MASS position, high crowding)
P (acceleration binary, conf. with P200)
31
32
Riddle et al.
TABLE 5 — Continued
WDS
(2000)
HIP1
20333+3323
20408+1956
20408+1956
20408+1956
20577+2624
20599+4016
21102+2045
21585+0347
22094+3508
22204+4625
22204+4625
22240+0612
22246+3926
22311+4509
22311+4509
22524+0950
23108+4531
23108+4531
23258+4521
23258+4521
23419−0559
23588+3156
23588+3345
101430
102040
102040
102040
103455
103641
104514
108473
109361
110291
110291
110574
110626
111148
111148
112935
114456
114456
115655
115655
116906
118213
118225
Discoverer
Designation
RAO 71
RAO 23
RAO 23
RAO 23
RAO 24
RAO 72
RAO 25
RAO 73
RAO 26
RAO 74
RAO 74
RAO 27
RAO 28
RAO 29
RAO 29
RAO 30
RAO 89
RAO 89
RAO 75
RAO 75
RAO 31
RAO 76
RAO 77
AE
Ca,Cb
CD
CE
AB
DE
AB
AB
AB
AB
AC
Aa,Ab
AB
BC
BD
Da,Db
CD
CE
BC
CD
Ba,Bb
AB
AB
N
θ
(deg)
ρ
(00 )
∆m
(mag)
1
1
1
1
2
1
2
1
1
1
1
1
1
1
1
4
1
1
1
1
3
2
2
224.7
59.4
303.0
327.2
102.8
117.6
209.1
89.3
351.0
122.9
232.1
327.0
315.8
215.7
264.4
319.3
22.3
290.6
65.4
279.8
69.6
87.8
172.3
12.279
0.266
20.326
29.350
0.610
19.752
3.39
12.39
0.368
14.980
30.572
0.092
4.37
3.9108
12.276
0.242
20.587
15.330
13.195
0.612
0.519
4.82
4.91
6.18
0.0
3.84
4.37
4.9
5.73
4.6
5.6
2.5
4.52
3.82
0.0
6.0
6.00
3.59
0.2
2.63
3.03
5.79
1.01
0.1
6.3
7.0
Status, remarks
O (2MASS position, high crowding)
P (close and bright)
O (not found in 2MASS, high crowding)
O (not found in 2MASS, high crowding)
P (acceleration binary, conf. with P200)
O (2MASS position, crowding), D = HIP 103052
P (2MASS image, conf. with P200)
P (2MASS position & color)
P (aceleration & SB1)
O (2MASS position, crowding)
O (2MASS position, crowding)
P (acceleration binary, conf. with P200)
P (2MASS image)
O (not found in 2MASS, high crowding)
O (2MASS position, crowding)
P (close, fixed for 1 yr)
O (2MASS position)
O (2MASS position)
O?(2MASS color)
O (unrelated to B)
P (close & bright, fixed for 1 yr)
P (2MASS image, conf. with P200)
P (2MASS image, fixed for 1 yr)
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
TABLE 6
Frequency of levels 11 and 12 with
3.5 ≤ xin ≤ 5
Parameter
Primary
Secondary
Total number
Raw frequency
Average detection
Frequency (β = 0)
Frequency (β = 1)
25
0.118±0.023
0.88
0.153±0.003
0.130±0.026
20
0.094±0.021
0.58
0.164±0.037
0.127±0.028
33
34
Riddle et al.
TABLE 7
New Orbital Elements
WDS
HIP1
Figure
01158+0947
5898
9a
01417−1119
7916
9b
02371−1112
12204
9c
03140+0044
15058
9d
03413+4554
17217
10a
03496−0220
17895
10b
04163+0710
19911
10c
04422+3731
21878
10d
07043−0303
34110
11a
07092+1903
34524
11b
08122+1739
40167
11c
10387+0544
52097
11d
11293+3025
56054
12a
13577+5200
68193
12b
15413+5959
76837
12c
18154+5720
89455
12d
20514−0538
102945
13a
21041+0300
103987
13b
21243+3740
105676
13c
22161−0705
109951
13d
P
(yr)
162.
±13.
601.
±107.
351.
±271.
753.
±84.
46.2
±1.1
54.
±29.
12.38
±0.03
564.
±119.
46.88
±0.50
27.60
±1.1
19.05
±0.46
488.0
±3.6
254.9
±7.9
205.
±20.
434.
±30.
82.
±65.
199.8
±3.0
21.5
±6.6
17.8
±1.9
44.
±24.
a
(00 )
0.607
±0.035
2.42
±0.19
1.01
±0.34
1.32
±0.13
0.27
±0.13
0.49
±0.12
0.2016
±0.0066
1.51
±0.22
0.273
±0.014
0.179
±0.013
0.3728
±0.0068
1.1962
±0.0051
1.18
±0.12
0.857
±0.028
1.013
±0.036
0.40
±0.21
0.844
±0.015
0.231
±0.041
0.167
±0.015
0.30
±0.16
i
(deg)
101.7
±1.0
82.6
±2.2
64.4
±3.4
132.5
±2.8
90.3
±3.6
114.5
±1.4
69.99
±0.75
141.2
±6.0
99.2
±2.2
103.3
±1.9
149.2
±7.2
66.
±22.
117.
±98.
139.5
±9.2
74.4
±1.2
62.
±14.
65.13
±0.70
65.4
±6.2
122.1
±4.8
36.
±101.
Ω
(deg)
151.2
±2.1
267.98
±0.93
277.
±12.
123.7
±7.8
269.9
±4.5
234.
±23.
144.8
±1.5
209.1
±7.6
99.4
±1.1
355.6
±1.7
262.
±12.
159.89
±0.36
246.
±20.
276.8
±5.5
211.83
±0.74
259.
±19.
173.36
±0.86
102.3
±6.6
247.3
±7.8
160.
±62.
T◦
(yr)
2101.
±13.
2015.23
±0.87
1902.
±15.
1883.
±27.
1974.8
±1.7
1992.8
±3.4
2004.40
±0.04
2024.9
±8.0
1968.59
±0.76
2010.81
±0.25
1983.05
±0.32
1748.
±14.
2075.
±61.
1911.6
±2.3
1959.42
±0.95
1997.8
±6.6
1896.99
±0.81
1985.0
±6.9
2014.6
±1.3
1989.0
±5.3
e
0.447
±0.054
0.901
±0.030
0.508
±0.044
0.281
±0.020
0.79
±0.76
0.750
±0.012
0.1677
±0.0043
0.4531
±0.0071
0.635
±0.037
0.94
*
0.088
±0.013
0.5967
±0.0018
0.65
±0.12
0.717
±0.025
0.828
±0.016
0.36
±0.36
0.526
±0.014
0.24
±0.21
0.31
±0.10
0.55
±0.59
ω
(deg)
262.8
±6.6
348.3
±9.7
309.
±43.
254.
±30.
50.1
±9.0
105.
±12.
65.6
±1.5
262.
±11.
33.1
±5.9
244.5
±2.3
41.
±23.
339.20
±0.29
92.
±48.
330.
±11.
21.4
±2.2
313.
±51.
47.9
±2.4
25.
±18.
285.6
±7.4
126.
±104.
Gr
Ref.
4
a
4
b
5
c
4
d
4
—
4
—
3
—
4
e
3
f
4
—
4
g
4
—
5
—
3
h
4
i
4
—
2
j
3
—
3
—
4
k
References. — a: Docobo & Ling (2010); b: Rica (2013); c: Heintz (1998); d: Heintz (1963); e: Mason et al. (2004a); f:
Docobo & Ling (2009); g: Heintz (1996b); h: citetHeintz2001; i: Heintz (1975); j: Heintz (1998); k: Cvetkovic (2011)
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
35
TABLE 8
Comparison of positions measured by Robo-AO with 2MASS
HIP1
Comp
θRAO
(deg)
ρRAO
(arcsec)
2MASS
Epoch
θ2MASS
(deg)
ρ2MASS
(arcsec)
4016
4878
5276
5313
7845
11696
12062
12067
12685
13336
18218
19389
21099
21443
23396
24016
27067
27246
34110
35265
38018
40298
40479
41319
43426
71843
81608
89207
94905
95309
95769
96395
97222
99965
101430
103641
108473
110291
110291
111148
114456
114456
115655
BC
AC
AB
AB
AC
BE
AB
AB
AB
AC
AC
CD
AB
AB
AC
BC
AC
AC
AC
BC
AC
BC
AB
BC
CD
BC
BC
AC
AB
AB
AB
AB
FK
FL
AE
DE
AB
AB
AC
BD
CD
CE
BC
270.4
147.0
335.4
244.7
175.3
207.0
207.8
169.0
211.1
81.8
241.6
294.3
310.3
14.4
242.8
106.2
151.9
68.5
10.6
126.6
118.8
37.6
170.6
310.0
357.6
61.9
148.9
71.9
190.9
350.9
348.2
250.7
318.3
264.2
224.7
117.6
89.3
122.9
232.1
264.4
22.3
290.6
65.4
17.00
32.16
6.17
26.24
24.84
15.68
14.47
5.71
21.67
15.20
25.91
9.58
18.80
5.74
38.41
26.15
11.10
10.85
15.71
17.64
15.48
13.07
31.25
16.80
18.94
17.27
27.16
17.24
6.95
5.13
9.92
10.08
16.40
15.60
12.28
19.75
12.39
14.98
30.57
12.28
20.59
15.33
13.20
1998.97
2000.79
1999.97
1998.79
2000.01
1999.95
2003.60
2000.89
1997.77
2000.75
1999.78
1999.76
1999.83
2000.00
1997.84
1997.93
2000.86
2000.23
1998.94
1999.98
1999.08
2000.17
2000.07
1997.85
1999.85
2000.20
1999.27
2000.54
2000.32
1997.45
1997.86
1997.47
1998.33
2000.37
1998.48
2000.36
2000.75
1998.78
1998.78
1998.78
1999.76
1999.76
1998.80
267.2
145.3
338.0
245.0
174.6
201.6
199.4
172.4
212.2
92.3
241.4
284.2
310.9
12.6
242.1
103.9
154.2
67.9
8.3
135.4
127.1
39.2
169.1
298.4
350.9
61.7
151.9
72.9
192.7
349.9
341.8
249.3
304.1
257.3
224.4
108.4
89.5
131.5
233.1
268.3
23.7
273.6
66.8
15.66
32.42
5.32
25.99
24.44
16.68
14.09
5.25
21.26
20.79
26.18
9.39
17.41
5.32
40.04
27.32
12.07
10.93
15.23
18.43
15.66
15.53
32.09
18.15
20.72
16.38
28.53
16.51
6.68
4.80
12.02
10.06
13.05
18.70
9.12
21.29
12.37
13.62
33.69
14.59
16.84
15.74
13.81
∆
(arcsec)
µ∆t
(arcsec)
µ∗α
(mas yr−1 )
µδ
(mas yr−1 )
1.6
1.0
0.9
0.3
0.5
1.8
4.2
0.6
0.6
6.5
0.3
1.7
1.4
0.5
1.7
1.6
1.1
0.1
0.8
2.9
2.3
2.5
1.2
3.8
2.9
0.9
2.0
0.8
0.3
0.3
2.4
0.2
6.5
3.7
3.2
3.6
0.1
2.5
3.2
2.5
3.8
4.6
0.7
1.2
0.8
1.6
1.0
0.0
1.5
2.9
1.5
0.3
6.8
1.0
1.6
1.3
0.2
1.3
0.7
1.1
2.8
0.7
2.2
2.1
2.2
0.9
2.9
2.5
0.7
1.2
0.5
0.4
2.2
2.8
2.4
5.3
3.7
2.5
3.8
3.4
2.4
2.4
2.2
3.6
3.6
0.8
62
66
118
−79
−2
81
230
97
−22
487
−43
−25
102
−5
−63
58
20
142
−50
−58
−93
142
71
−192
−173
−58
−28
−1
−29
13
49
0
13
−221
154
232
−248
−190
−190
−176
−86
−86
47
−79
−23
−55
−2
2
−97
−83
−76
4
−283
−67
−126
−41
20
−92
−5
−85
−187
−20
−173
−151
113
−15
−152
113
−18
−98
−39
−10
−186
229
−200
−441
−216
140
209
−133
−64
−64
34
−286
−286
−45
Note. — The measurement for HIP 12062 comes from Zacharias et al. (2013), all others are 2MASS positions.
36
Riddle et al.
TABLE 3
List of observed components and detection limits
HIP1
179
223
394
493
601
754
759
889
889
999
1103
1148
1274
1573
1987
1989
2066
2143
2292
2358
2414
2414
2563
2643
2717
2760
2762
2927
2981
3086
3214
3540
3540
3795
4016
4878
5034
5144
5276
5276
5313
5313
5531
5644
5685
5697
5799
5799
5881
5898
5952
6380
6439
6442
6486
6542
6653
6668
6702
6712
6752
6776
6914
6914
7274
7370
7427
7580
7589
7669
7852
7852
7874
7874
Comp.
A
A
A
D
A
B
A
A
B
A
A
A
A
A
A
A
A
A
B
A
C
A
A
A
B
A
A
A
A
A
B
A
B
C
B
A
A
A
A
B
A
B
A
A
A
A
B
A
A
A
A
A
A
A
A
A
A
C
A
A
B
A
A
B
A
A
A
A
A
A
A
B
A
B
RA (2000)
Dec (2000)
h m s
◦ 0 00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
02
02
04
05
07
09
09
10
10
12
13
14
15
19
25
25
26
27
29
30
30
30
32
33
34
35
35
37
37
39
41
45
45
48
51
02
04
05
07
07
07
07
10
12
13
13
14
14
15
15
16
21
22
22
23
24
25
25
26
26
26
27
29
29
33
34
35
37
37
38
40
41
41
41
16.68
47.17
53.76
54.75
18.15
13.92
19.44
56.07
57.82
30.31
45.70
21.54
59.86
36.48
08.74
11.02
08.68
07.77
59.87
08.69
41.91
45.56
34.06
29.96
38.31
13.77
14.88
08.20
56.99
13.26
45.67
10.96
13.57
51.85
25.31
42.64
27.63
51.44
28.74
28.55
58.74
56.71
50.74
30.05
08.90
18.82
22.46
24.04
31.26
46.74
36.45
59.72
43.11
43.45
21.42
03.46
20.11
38.55
08.79
19.21
33.20
06.33
02.10
08.67
42.40
58.10
40.97
37.71
44.49
44.76
58.77
03.11
18.38
18.75
−13
+02
+34
+18
+20
+25
+17
+48
+48
+14
+08
+60
−09
−07
+48
+16
−11
−07
−05
+04
+47
+47
+28
+40
+62
+51
−03
+15
+47
+03
+30
+00
+00
+18
+56
+09
+29
+04
+41
+41
+39
+39
+67
−09
+11
−01
−07
−07
+37
+09
+18
+15
+17
+10
+58
+54
+01
+31
+34
−04
+37
+34
+74
+74
−12
+33
−05
−09
+48
−05
−05
−05
+25
+25
24
07
39
14
57
16
32
06
06
33
11
20
28
13
02
59
22
52
45
51
30
31
11
06
37
50
35
08
24
08
59
15
15
39
29
07
39
54
15
15
15
14
46
13
40
51
54
55
44
47
31
10
11
22
08
21
27
32
34
40
28
22
12
12
12
07
04
24
24
44
24
22
44
44
26.8
48.5
35.3
06.0
54.3
38.9
02.1
37.5
53.8
48.7
36.6
30.1
46.4
26.5
51.0
30.9
37.1
33.6
50.4
36.4
08.8
47.5
51.5
20.3
19.6
17.6
34.2
23.2
27.8
02.1
36.4
11.8
51.0
13.1
40.6
58.6
31.7
33.9
32.0
36.8
09.0
58.1
48.3
25.4
57.7
43.6
39.8
22.2
36.2
05.5
21.6
37.6
49.4
10.3
34.8
32.7
39.1
46.2
46.9
26.8
15.7
39.2
18.1
21.9
46.4
04.3
38.6
13.6
45.9
07.4
13.1
25.5
44.6
53.5
V
(mag)
Sep.
(00 )
Epoch
+2000
0.00 15
(mag)
0.00 8
(mag)
2.00 1
(mag)
ρmax
(00 )
6.90
7.17
6.09
7.47
9.14
11.46
7.07
8.41
10.72
8.44
7.41
8.51
8.57
7.03
7.52
7.89
8.25
8.09
9.44
6.52
10.95
7.74
8.66
7.76
8.98
7.37
5.20
8.10
7.53
7.34
14.87
7.01
13.85
10.83
11.29
6.83
6.20
7.26
7.24
15.30
7.78
12.77
6.55
7.74
7.86
8.95
7.85
5.14
8.87
7.16
8.47
8.02
7.16
7.47
6.36
8.25
7.38
8.03
6.34
8.14
9.04
6.27
7.24
12.61
8.51
6.74
7.79
6.24
6.77
7.35
8.48
12.10
6.20
10.90
0.0
0.0
0.0
0.0
0.0
29.6
0.0
0.0
24.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
839.3
0.0
105.4
0.0
0.0
0.0
115.5
0.0
0.0
0.0
0.0
0.0
811.7
0.0
55.4
152.3
40.9
0.0
0.0
0.0
0.0
5.3
0.0
26.0
0.0
0.0
0.0
0.0
49.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
56.7
0.0
0.0
256.9
0.0
0.0
27.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
125.5
0.0
10.5
13.5730
12.7049
12.7020
12.6747
12.7050
12.6747
12.7020
12.6748
12.6748
12.6775
12.6774
12.7050
13.5730
13.5730
12.7020
12.6775
13.5730
13.5730
12.6748
13.5729
12.6748
12.7050
12.7020
12.7020
12.6748
12.7020
13.5730
12.6774
12.7020
12.6774
12.6747
12.6774
12.6747
12.6747
12.6748
12.6775
12.6775
12.6775
12.6776
12.6776
12.6776
12.6776
12.7021
13.6195
12.6776
12.7021
13.5702
13.5730
13.5704
12.7050
12.7050
12.6776
12.6775
12.6775
12.7050
12.6776
12.6775
12.6749
13.5704
12.7022
12.6749
12.6776
12.7021
12.6749
13.6222
12.6776
12.7021
13.5731
12.7050
12.7022
12.7022
12.6749
12.6749
12.6749
2.7
2.1
1.7
1.2
1.8
1.6
2.8
3.0
1.5
2.6
2.4
2.2
2.9
2.4
1.4
1.2
2.2
0.8
2.1
2.7
1.5
1.8
2.5
2.0
1.4
1.7
1.8
2.2
1.7
2.3
2.1
2.3
1.3
1.8
1.6
2.5
2.4
2.2
2.7
1.4
2.1
0.7
1.5
2.7
1.3
2.4
2.4
2.3
2.3
1.8
2.0
2.4
2.4
2.2
2.1
2.3
2.4
2.6
2.4
2.1
1.2
2.8
2.0
1.6
1.9
2.7
2.1
2.4
2.6
2.6
2.6
2.0
1.1
2.5
5.2
4.9
5.1
4.5
4.2
4.7
5.3
5.1
4.6
5.2
5.2
4.9
4.2
5.0
4.9
4.9
3.6
3.8
5.2
5.4
4.8
2.4
4.8
4.9
4.9
4.8
4.8
5.4
4.7
5.2
4.1
5.2
4.0
2.1
4.5
5.3
5.4
5.2
5.2
1.6
5.3
2.4
4.7
3.7
5.2
5.2
5.2
5.0
5.0
4.9
4.8
5.1
5.3
5.3
3.1
5.2
5.2
5.3
4.8
5.0
5.3
5.3
4.7
5.0
1.8
5.3
4.3
4.7
4.7
5.4
5.5
5.0
4.6
5.1
6.3
5.7
6.7
6.9
4.7
6.8
6.7
6.8
6.3
6.9
6.8
6.3
4.6
6.2
6.5
6.6
5.2
4.2
7.0
6.9
6.7
6.0
6.5
6.8
7.2
6.7
6.4
7.0
6.2
6.9
3.7
7.0
4.7
6.8
5.6
6.9
7.1
6.6
6.9
1.5
6.9
2.3
6.8
4.1
6.9
6.7
6.8
6.3
6.6
5.7
6.9
6.9
7.0
6.9
6.2
7.0
6.8
7.0
6.8
6.8
7.8
7.0
7.4
6.7
6.6
7.0
5.5
6.1
6.6
6.6
6.7
6.8
7.2
6.2
13.9
17.5
15.1
11.8
17.9
12.2
11.9
7.6
14.6
10.9
4.9
7.5
15.3
14.2
14.0
14.0
17.0
13.5
19.6
17.1
17.2
12.6
13.7
18.2
15.6
13.0
18.9
10.1
18.1
11.4
13.3
18.8
17.7
14.1
16.1
7.3
18.1
10.7
15.2
13.2
16.9
4.2
12.1
15.5
14.3
4.9
11.1
16.1
12.9
7.1
11.1
15.9
17.7
13.1
15.6
16.0
18.3
10.3
11.5
5.4
16.7
19.2
6.1
13.2
18.2
17.2
12.6
16.1
19.0
4.2
4.2
13.6
18.8
12.8
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
37
TABLE 3 — Continued
HIP1
7916
7918
8109
8370
8433
8796
8998
9073
9621
9974
10305
10305
10306
10321
10535
10644
10677
10680
10710
10710
10961
11137
11218
11253
11253
11352
11417
11548
11696
11843
11906
11923
12062
12067
12067
12153
12189
12189
12204
12204
12306
12350
12444
12491
12638
12638
12685
12764
12777
12925
13168
13336
13677
13702
13773
14075
14134
14134
14194
14194
14230
14230
14235
14286
14548
14676
14809
14944
15058
15062
15247
15304
15329
15329
15482
Comp.
A
A
A
A
A
A
A
B
A
A
A
B
A
A
A
A
A
B
A
B
A
B
A
A
C
A
A
A
B
A
A
A
A
A
B
A
B
A
C
A
A
A
A
A
A
B
A
A
B
A
A
A
C
A
A
A
A
B
A
B
A
C
A
C
B
A
B
A
A
A
A
C
C
A
A
RA (2000)
Dec (2000)
h m s
◦ 0 00
01
01
01
01
01
01
01
01
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
41
41
44
47
48
53
55
56
03
08
12
12
12
12
15
17
17
17
17
17
21
23
24
24
24
26
27
28
30
32
33
33
35
35
35
36
36
37
36
37
38
39
40
40
42
42
42
44
44
46
49
51
56
56
57
01
02
02
03
03
03
03
03
04
07
09
11
12
14
14
16
17
17
17
19
44.83
47.14
14.08
48.01
41.56
04.91
53.83
50.16
39.35
26.07
47.54
46.65
48.09
55.01
42.78
03.23
23.05
24.73
55.54
54.78
12.96
17.10
23.31
51.15
51.17
09.59
10.94
48.49
48.58
54.14
40.25
53.73
32.80
35.56
35.69
37.92
57.74
00.52
58.36
08.63
27.86
00.81
12.42
42.29
21.31
20.94
58.66
00.95
10.12
14.61
19.90
39.56
18.76
26.16
14.96
22.69
16.80
17.29
01.79
01.38
28.65
28.50
31.99
43.45
58.29
36.35
12.33
39.12
02.89
04.79
40.67
32.78
44.18
44.02
35.28
−11
+42
+54
+46
+32
+29
+01
+23
+25
+43
−02
−02
+21
+40
+25
+34
+61
+28
+19
+19
+54
+15
−03
+30
+30
+34
+03
+29
+55
+15
+77
+49
+59
+61
+61
+12
+24
+24
−11
−11
+30
−08
−09
+26
+38
+38
+58
−06
+49
+05
−10
+45
+72
+18
+01
+06
+41
+41
−02
−02
+23
+23
−10
+61
+25
+05
+22
+71
+00
+18
−03
+07
+38
+38
+67
19
36
53
13
41
34
50
02
56
11
23
23
12
40
02
13
21
44
40
41
30
25
06
38
38
28
09
55
33
02
40
30
47
06
06
26
38
38
13
11
48
55
27
37
37
37
11
00
13
35
33
58
52
01
53
14
23
23
05
05
03
03
58
44
32
12
25
33
44
18
31
41
36
38
14
28.8
48.1
11.2
47.1
24.8
43.8
59.9
20.2
07.7
27.6
37.1
46.8
39.6
06.0
35.0
27.2
05.7
30.3
50.2
00.0
36.3
01.2
14.5
48.3
28.2
10.0
23.1
54.3
06.6
04.4
20.2
21.7
32.4
22.4
17.3
51.5
53.0
50.0
42.8
51.2
59.9
40.4
10.4
20.3
07.2
21.1
52.1
33.6
55.2
33.3
02.0
45.7
41.8
23.2
14.4
56.9
45.7
28.9
11.3
17.9
41.3
37.4
30.2
08.0
01.1
10.4
22.7
20.8
21.7
13.7
48.9
24.6
34.1
21.2
15.2
V
(mag)
Sep.
(00 )
Epoch
+2000
0.00 15
(mag)
0.00 8
(mag)
2.00 1
(mag)
ρmax
(00 )
5.75
4.96
7.27
6.33
5.78
3.42
6.01
10.98
5.64
7.60
5.65
7.56
5.23
7.19
5.57
4.84
8.22
7.75
8.90
14.03
6.86
9.36
7.20
8.16
12.00
8.00
8.43
5.89
9.66
6.00
7.67
7.77
8.95
8.42
14.94
5.64
7.10
6.48
11.84
8.01
7.36
6.98
5.79
7.55
8.70
10.21
8.28
7.07
10.25
7.88
7.61
8.66
10.14
5.58
7.56
8.82
7.96
9.73
7.51
9.97
7.09
12.96
7.10
13.16
14.69
7.99
10.55
7.64
7.36
8.12
7.48
7.78
13.34
7.26
8.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
59.4
0.0
0.0
0.0
16.6
0.0
0.0
0.0
0.0
0.0
13.8
0.0
14.3
0.0
34.7
0.0
0.0
20.5
0.0
0.0
0.0
21.5
0.0
0.0
0.0
0.0
0.0
5.8
0.0
38.1
0.0
188.0
0.0
0.0
0.0
0.0
0.0
0.0
14.6
0.0
0.0
22.3
0.0
0.0
0.0
42.8
0.0
0.0
0.0
0.0
17.6
0.0
8.9
0.0
4.5
0.0
263.8
124.1
0.0
33.2
0.0
0.0
0.0
0.0
155.9
107.0
0.0
0.0
13.5731
13.5704
12.7648
12.6776
12.6776
13.5704
12.7050
12.6748
12.7050
12.6777
12.6750
12.6750
12.6777
12.6777
12.6777
12.6777
12.7050
12.6750
12.6776
12.6776
12.6777
12.6750
12.7022
12.6777
12.6777
12.6777
12.6776
12.6777
12.6750
12.6776
12.7568
12.6777
12.7021
12.7021
12.7021
12.6776
12.7648
12.6777
13.6250
13.6250
12.6777
13.6197
13.6197
12.7050
12.6750
12.6750
12.7021
12.7022
13.6168
12.6776
13.6251
12.7050
12.6750
12.6776
12.7050
12.6998
12.6751
12.6751
12.7023
12.7023
12.7022
12.7022
13.6251
13.6170
12.6751
12.6997
12.6751
12.7650
12.7624
12.6998
13.6196
12.6751
12.6752
12.7622
12.7650
1.8
1.9
1.8
2.3
2.6
2.2
1.8
2.3
2.9
2.3
1.9
1.8
1.0
2.5
0.9
2.3
2.7
2.1
1.2
1.2
1.3
2.6
2.6
1.8
1.2
1.3
1.8
3.0
1.9
2.4
2.6
2.4
1.8
1.7
1.3
1.3
1.9
2.7
2.7
0.7
2.1
3.3
3.2
2.3
2.9
2.4
1.9
2.2
1.4
2.6
2.0
2.8
1.5
1.3
2.0
2.7
1.2
1.6
2.3
1.3
1.7
1.2
1.7
1.5
2.7
0.9
2.3
1.5
3.2
2.7
2.7
1.6
1.2
2.6
1.4
5.3
4.9
4.8
5.6
5.3
4.5
1.8
4.9
5.3
5.2
5.0
4.9
5.3
5.2
5.0
4.9
3.2
5.2
5.2
4.2
4.9
5.2
5.1
5.0
3.7
5.1
5.2
5.3
4.9
5.2
4.2
5.1
5.0
4.8
3.1
5.3
5.2
5.4
5.7
1.6
5.2
5.4
5.1
3.1
5.1
5.1
4.8
4.9
5.1
5.3
4.7
3.3
4.9
5.2
3.6
4.9
5.3
5.0
5.2
4.1
5.1
1.2
5.0
4.6
4.2
3.6
5.2
3.0
3.2
5.2
4.4
5.4
5.0
2.8
3.0
6.9
6.5
6.7
7.2
7.0
6.6
6.3
6.4
6.8
7.0
7.0
6.9
8.2
7.1
7.8
6.9
5.8
6.8
7.8
4.3
7.7
6.8
6.6
6.8
5.0
7.1
7.7
7.0
6.8
7.0
5.0
7.0
6.8
6.8
3.2
7.9
6.7
7.1
6.7
5.9
7.0
6.8
6.2
6.0
6.8
6.8
6.8
6.6
6.6
6.5
5.8
6.4
7.3
7.9
6.4
6.6
8.0
7.1
6.4
4.6
7.1
1.1
6.9
6.9
4.7
6.6
7.0
5.0
2.5
6.9
6.4
7.5
6.1
6.0
5.1
16.5
8.9
10.7
16.5
19.0
13.2
3.0
4.4
6.4
14.9
2.6
17.7
13.3
15.8
12.2
8.0
14.2
10.2
10.9
4.6
13.8
6.0
11.7
18.7
4.7
19.4
17.5
14.7
12.5
16.4
2.6
7.1
7.6
8.8
7.9
15.6
16.9
15.6
18.3
19.1
13.3
13.1
14.9
3.0
5.7
15.0
7.8
11.8
13.6
18.2
20.2
11.7
15.5
17.3
2.8
13.9
2.6
16.4
8.3
5.7
14.6
14.9
20.7
9.3
14.6
11.4
16.7
11.9
15.5
17.8
17.7
8.1
12.2
14.3
19.9
38
Riddle et al.
TABLE 3 — Continued
HIP1
15572
15784
15843
16021
16021
16329
16329
16467
16467
16517
16723
16788
16793
16852
16879
16900
16930
17022
17118
17129
17217
17217
17320
17336
17418
17482
17895
18218
18261
18261
18719
18994
19016
19076
19147
19206
19219
19389
19428
19428
19431
19508
19610
19781
19859
19911
20215
20284
20440
20553
20577
20586
20586
20626
20661
20673
20693
20712
20719
20904
20904
20916
21008
21053
21099
21308
21386
21443
21832
21878
22221
22265
22429
22496
22505
Comp.
B
A
A
A
B
A
B
A
C
A
B
A
A
A
A
A
A
A
B
A
A
C
A
A
A
A
A
A
A
B
A
A
A
A
A
A
A
C
A
C
A
A
A
A
B
A
A
A
A
A
A
C
A
B
A
A
A
A
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
RA (2000)
Dec (2000)
h m s
◦ 0 00
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
20
23
24
26
26
30
30
32
32
32
35
36
36
36
37
37
37
38
40
40
41
41
42
42
43
44
49
53
54
54
00
04
04
05
06
07
07
09
09
09
09
10
12
14
15
16
19
20
22
24
24
24
24
25
25
25
25
26
26
28
28
28
30
30
31
34
35
36
41
42
46
47
49
50
50
42.49
25.05
04.49
17.33
16.32
30.43
31.24
05.10
06.02
39.92
19.21
03.18
09.47
52.38
11.04
27.93
52.47
57.18
05.39
07.19
15.93
15.46
27.64
36.89
55.10
45.00
38.65
43.64
22.63
21.62
39.54
10.09
26.75
20.26
13.05
00.56
09.86
05.39
38.86
39.14
40.89
44.52
08.85
25.65
25.79
16.51
54.86
52.72
44.17
12.46
28.32
31.96
32.79
07.65
37.32
41.85
57.34
18.50
24.61
51.99
52.65
59.77
17.97
46.80
15.69
30.20
24.21
18.27
36.32
13.48
45.57
37.57
33.35
23.93
33.82
+09
−14
+74
−01
−01
+20
+20
+43
+43
+35
+05
+16
+42
+00
+25
+31
+05
+42
+63
+34
+45
+45
+32
+17
+60
+27
−02
+53
+01
+01
+20
+42
−10
+22
+08
−10
+27
+40
+31
+31
−07
−04
−10
+14
+06
+07
+16
+13
+15
+14
+16
+50
+50
+25
+15
−02
+05
+21
+16
+30
+30
+16
+19
+16
+20
+10
+85
+55
+42
+37
+09
+18
+53
+17
+15
02
52
10
02
02
06
05
40
39
39
43
28
20
24
59
07
38
32
52
06
53
53
56
17
24
55
19
16
15
15
22
31
14
00
30
00
30
10
39
38
53
52
28
37
11
09
31
51
03
45
53
44
50
44
56
13
09
28
51
21
21
09
50
08
07
00
31
01
07
30
01
15
21
12
05
09.3
33.5
15.6
06.3
09.5
11.8
55.5
11.5
58.8
33.5
31.1
02.7
21.9
06.0
27.9
12.8
28.7
17.8
28.7
59.3
45.0
44.9
21.2
36.6
37.4
15.8
42.8
22.9
41.8
40.0
49.5
39.8
06.7
32.0
10.4
01.6
33.2
05.4
07.7
54.2
34.3
29.4
10.0
30.1
58.7
34.0
21.3
51.9
21.9
29.5
10.2
35.1
42.6
57.9
27.6
56.8
00.5
13.5
12.0
41.3
53.4
32.7
26.1
55.3
59.4
59.1
37.3
35.9
06.5
53.7
02.7
31.4
56.5
09.6
00.4
V
(mag)
Sep.
(00 )
Epoch
+2000
0.00 15
(mag)
0.00 8
(mag)
2.00 1
(mag)
ρmax
(00 )
15.46
7.61
6.93
8.68
11.42
8.29
10.75
8.56
13.09
7.29
12.30
7.65
8.32
4.29
7.28
6.96
7.78
6.73
8.21
6.82
7.93
15.92
6.77
7.07
10.43
6.86
7.22
8.15
7.97
13.93
8.66
8.19
8.11
5.90
7.76
6.88
8.55
15.76
6.88
14.10
7.03
7.36
8.40
8.45
6.94
7.50
6.85
6.15
6.97
7.58
7.79
10.37
6.87
15.40
6.44
7.25
7.36
7.36
8.04
6.38
8.21
6.59
7.09
6.50
8.59
7.72
6.55
8.61
7.29
7.60
7.24
8.54
8.21
7.10
7.73
81.8
0.0
0.0
0.0
15.5
0.0
19.9
0.0
16.2
0.0
141.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
46.0
0.0
0.0
4.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
61.1
0.0
13.9
0.0
0.0
0.0
0.0
64.3
0.0
0.0
0.0
0.0
0.0
0.0
367.6
0.0
42.9
0.0
0.0
0.0
0.0
0.0
0.0
14.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13.6361
13.6334
13.5731
12.6778
12.6778
12.6998
12.6998
12.7023
12.7023
12.7023
12.6751
12.7625
12.7622
13.6196
12.7022
12.7022
12.6997
13.5730
12.6778
12.7622
12.7023
12.7023
12.7023
13.5731
12.7622
12.7022
12.7050
12.7023
12.6751
12.6751
12.7569
12.7598
13.6307
13.5731
12.7571
13.6307
12.7569
13.5703
12.6779
12.6779
13.6306
12.7572
13.6334
12.7623
13.6196
12.7571
12.7625
12.7626
12.7626
13.5731
12.7626
12.6779
12.7626
13.6361
12.7600
12.7681
12.7571
13.5731
12.7626
12.6779
12.6779
12.7600
12.7649
12.7600
12.7650
12.7571
12.7568
12.7651
12.7598
12.7625
12.7571
12.7627
12.7651
12.7626
12.7599
1.2
1.5
2.6
2.1
2.4
2.5
1.0
2.9
2.8
2.3
2.2
2.1
2.1
3.2
2.2
2.4
2.8
2.6
1.2
1.7
1.5
1.1
1.3
2.8
1.6
2.2
1.7
1.1
1.5
2.4
2.1
2.2
1.7
2.6
1.6
2.0
2.0
1.5
2.7
1.2
1.8
2.6
2.5
1.9
2.6
1.4
2.6
2.6
2.1
2.9
1.7
2.7
1.3
1.6
3.8
1.5
2.1
2.8
2.9
2.5
1.5
1.2
2.3
3.6
2.5
1.9
2.3
2.3
2.8
2.3
1.9
2.7
2.1
2.3
1.7
4.8
3.9
5.0
5.3
5.2
5.1
5.1
5.0
5.2
5.1
5.1
4.9
2.1
5.2
4.9
5.2
5.1
5.3
4.2
4.7
4.5
1.7
5.1
5.2
2.2
5.1
3.9
4.6
5.1
5.1
5.1
4.7
4.1
5.2
4.3
4.9
5.2
4.6
4.4
4.8
4.5
5.2
2.9
5.1
5.5
4.8
4.3
5.0
4.6
4.3
4.7
5.1
3.8
4.4
4.6
2.4
5.0
5.1
5.1
4.9
5.2
3.5
5.0
3.6
5.2
4.4
4.5
4.6
4.7
2.3
5.0
4.9
4.7
5.2
3.1
5.8
5.2
6.4
6.9
6.2
6.8
7.6
7.0
6.9
6.8
6.8
6.8
4.6
6.5
6.8
6.8
6.9
6.4
7.3
3.2
6.6
1.1
7.4
6.4
6.2
6.9
5.6
6.8
7.7
6.2
6.5
5.5
5.0
6.6
5.1
6.4
6.9
5.2
6.6
6.0
6.4
6.6
4.4
7.0
7.0
6.3
6.5
6.8
6.4
5.6
6.5
6.9
6.4
5.3
6.0
4.7
6.3
6.1
6.9
7.0
7.5
5.7
6.4
5.5
6.7
5.7
6.0
6.6
5.8
4.6
6.2
6.7
7.3
6.6
5.1
12.0
17.6
8.8
12.7
17.5
14.2
11.8
11.1
19.7
16.0
16.0
18.2
13.0
16.2
16.9
15.0
13.6
13.6
10.9
15.6
16.1
18.2
19.4
14.0
9.8
19.1
21.2
8.3
12.1
18.9
10.3
11.6
16.2
9.7
10.3
16.9
14.6
18.4
5.7
16.9
13.6
15.8
18.4
18.9
16.6
13.6
19.3
9.2
11.0
17.7
10.8
14.4
11.7
21.8
14.4
13.6
7.4
10.9
11.3
10.0
18.5
15.8
11.3
14.8
16.8
11.2
5.2
16.6
2.6
13.3
10.3
14.0
17.9
17.0
13.2
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
39
TABLE 3 — Continued
HIP1
22524
22550
22919
22919
23100
23105
23116
23259
23318
23395
23395
23396
23399
23425
23532
23662
23789
23913
24016
24016
24046
24329
24336
24397
24658
25137
25278
25300
25300
25435
25662
25905
26326
26444
26444
26676
26926
27067
27067
27165
27246
27246
27528
27758
27878
27913
29725
29725
29860
29860
29873
30247
30509
31089
31267
31267
31480
31655
31655
31850
32329
32702
33355
33595
34110
34426
34524
34567
35069
35069
35265
36238
36238
36485
36485
Comp.
A
A
A
B
A
A
A
B
A
C
A
A
A
A
B
A
A
A
B
A
B
A
A
A
A
B
C
A
C
B
C
A
A
A
B
A
A
A
B
A
A
B
B
A
A
A
A
B
A
E
B
A
A
A
A
C
A
A
B
A
A
A
A
A
A
B
A
A
A
B
B
B
A
F
A
RA (2000)
Dec (2000)
h m s
◦ 0 00
04
04
04
04
04
04
04
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
07
07
07
07
07
07
07
07
07
07
07
50
51
55
55
58
58
58
00
00
01
01
01
01
02
03
05
06
08
09
09
10
13
13
14
17
22
23
24
24
26
28
31
36
37
37
40
42
44
44
45
46
46
49
52
53
54
15
15
17
17
18
21
24
31
33
33
35
37
37
39
44
49
56
58
04
08
09
09
15
15
16
27
27
30
30
48.54
12.53
55.88
54.43
13.00
16.99
26.20
19.53
54.02
46.33
44.28
44.22
45.32
05.61
30.78
06.53
43.08
16.22
38.92
43.69
00.87
16.12
25.04
01.74
27.56
38.16
38.38
44.25
43.52
20.30
56.51
44.35
25.01
37.08
52.34
09.73
53.91
24.69
26.33
29.87
29.79
32.40
50.98
29.41
58.75
22.98
39.01
38.45
16.14
10.63
21.26
46.13
47.39
25.84
27.17
26.83
35.85
31.80
31.10
31.48
54.92
21.34
14.74
47.41
20.89
00.24
13.50
35.39
06.73
08.91
12.08
42.55
44.36
32.01
26.23
+16
+11
+04
+04
+40
+00
−03
+25
+77
+26
+26
+20
+42
+69
+63
+06
+14
+52
+29
+29
+27
+73
+03
+51
+60
+47
+17
+63
+63
+03
+12
+00
+32
+06
+06
+12
−06
+40
+40
+52
+74
+74
+32
−02
+12
+20
+36
+36
+05
+05
+57
+53
−05
+07
+48
+48
−02
+09
+09
+24
+20
+43
+40
+26
−03
+15
+19
+25
+57
+57
+33
+21
+21
+13
+13
12
04
40
40
03
27
43
07
46
39
40
49
20
09
04
07
05
22
47
47
38
29
41
25
10
54
19
23
23
51
31
05
00
06
06
10
47
24
24
09
36
36
58
17
25
16
08
08
06
07
27
27
30
49
22
22
14
08
08
36
51
45
32
04
03
31
02
43
16
16
15
27
26
50
51
37.6
04.9
13.5
16.6
24.7
14.2
58.4
51.0
31.8
02.7
16.2
47.4
39.1
37.0
41.4
48.8
05.2
03.2
25.6
55.0
35.5
28.3
13.6
50.5
54.0
42.5
26.8
11.3
06.6
11.2
53.9
55.5
12.7
43.2
19.3
41.2
46.2
16.9
24.9
39.9
36.4
40.7
23.4
07.2
10.0
34.2
55.3
46.1
00.4
02.4
04.9
07.8
13.2
20.4
28.5
24.8
34.8
39.4
36.6
00.6
38.4
32.8
12.8
51.9
02.4
43.0
33.5
43.1
37.1
15.3
15.5
17.7
42.9
39.9
53.8
V
(mag)
Sep.
(00 )
Epoch
+2000
0.00 15
(mag)
0.00 8
(mag)
2.00 1
(mag)
ρmax
(00 )
7.29
6.79
7.02
14.31
7.21
7.20
6.97
12.43
7.71
8.22
6.79
7.99
8.11
7.12
7.63
7.69
7.30
9.07
8.51
6.67
9.22
8.98
7.82
7.19
6.96
13.09
7.93
7.32
0.00
13.47
14.23
8.36
7.99
7.64
11.83
10.20
5.97
8.28
10.03
6.85
7.33
0.00
8.76
7.26
7.76
4.39
6.86
7.46
5.70
14.04
9.28
5.34
7.70
8.29
8.01
14.78
7.51
7.61
11.60
6.43
7.20
7.30
7.53
6.20
8.17
7.80
8.39
7.09
8.37
15.00
11.84
10.92
5.20
8.04
7.16
0.0
0.0
0.0
22.0
0.0
0.0
0.0
33.9
0.0
78.4
0.0
0.0
0.0
0.0
33.0
0.0
0.0
0.0
68.8
0.0
314.6
0.0
0.0
0.0
0.0
77.4
707.3
0.0
7.0
43.3
99.6
0.0
0.0
0.0
228.8
0.0
0.0
0.0
22.7
0.0
0.0
10.8
60.2
0.0
0.0
0.0
0.0
11.4
0.0
103.0
486.2
0.0
0.0
0.0
0.0
5.0
0.0
0.0
10.7
0.0
0.0
0.0
0.0
0.0
0.0
171.9
0.0
0.0
0.0
28.1
927.6
43.0
0.0
112.0
0.0
12.7600
12.7571
12.6779
12.6779
12.7625
12.7573
12.7681
12.7025
12.7595
12.7025
12.7680
12.7652
12.7651
12.7707
12.7025
12.7600
12.7626
12.7679
12.7025
12.7680
12.7025
12.7707
12.7573
12.7706
12.7707
12.7025
12.7025
12.7707
12.7707
12.7025
12.7025
12.7681
12.7680
12.7025
12.7025
12.7627
12.7682
12.7025
12.7025
12.7733
12.7708
12.7708
12.7025
12.7763
12.7628
12.7682
13.2956
13.2956
12.7764
12.7026
12.7710
12.7738
12.7764
12.7764
13.6279
13.6279
12.7765
13.3011
13.3011
12.7736
12.7736
13.0577
13.0578
12.7762
12.7764
13.3012
13.0521
13.0602
12.7737
12.7737
13.2956
13.0521
13.0521
13.3010
13.3066
2.2
0.6
2.2
2.3
2.4
2.7
1.4
2.7
2.2
2.5
1.3
1.4
2.1
2.2
1.2
2.3
1.7
1.9
2.1
1.9
2.3
1.6
2.1
2.4
1.3
2.5
2.3
2.4
0.8
1.5
1.2
1.9
1.8
1.4
2.5
2.6
1.5
1.4
1.8
1.9
2.5
1.6
2.1
2.9
2.7
1.7
2.5
2.3
1.9
2.4
2.2
2.8
1.5
1.7
2.5
1.2
2.1
2.6
1.6
1.5
2.2
1.3
2.0
1.6
2.0
2.4
2.4
2.9
2.0
0.9
2.2
1.6
1.7
1.2
1.8
5.3
4.1
4.5
5.2
5.1
5.4
3.1
4.8
4.8
5.1
1.7
4.0
4.3
4.7
4.5
4.7
4.1
3.1
5.0
2.9
5.1
4.9
4.8
2.8
5.0
4.6
5.1
3.8
1.6
3.0
3.8
1.9
5.4
4.1
4.8
5.0
5.3
4.3
5.1
4.7
4.9
3.5
5.2
4.6
5.0
5.2
5.6
5.4
4.6
2.9
5.1
4.7
4.6
5.0
4.5
1.4
4.6
4.3
1.6
4.7
5.1
4.9
5.3
4.9
4.4
4.4
5.2
4.7
4.5
3.1
3.4
5.0
5.1
2.7
5.5
6.5
6.2
6.6
7.0
6.2
6.7
4.6
5.9
6.5
6.8
4.2
6.7
7.0
6.5
5.8
6.6
6.5
5.5
6.7
4.6
6.7
7.7
6.0
6.4
7.6
5.5
6.6
5.2
1.6
4.2
5.1
2.6
7.3
6.0
6.2
6.3
6.6
6.8
6.6
6.5
6.6
3.6
6.7
6.0
6.3
6.9
7.1
7.1
6.7
3.7
6.7
6.7
5.8
6.4
6.4
1.3
6.0
5.8
3.3
6.8
6.7
6.8
6.8
6.6
6.1
5.9
6.9
5.7
6.6
3.9
5.2
6.4
6.5
5.6
8.1
19.5
9.7
2.5
16.9
12.8
14.9
16.3
11.3
17.9
11.3
17.8
11.7
16.1
12.9
14.9
17.0
14.8
18.4
15.4
17.5
14.6
7.6
12.5
5.3
15.8
14.6
17.9
14.4
8.1
14.7
16.4
9.1
7.5
17.5
12.9
11.0
13.5
8.4
12.7
14.7
11.6
15.9
17.4
14.3
14.8
19.6
4.0
15.6
13.1
12.8
20.7
12.2
16.9
13.5
8.1
12.9
16.3
10.6
15.9
7.1
11.9
16.4
19.3
18.7
17.6
19.7
16.1
12.1
11.6
5.9
17.7
18.0
18.8
18.1
17.0
40
Riddle et al.
TABLE 3 — Continued
HIP1
36485
36557
36874
37031
37233
37645
37645
38018
38052
38104
38104
38636
38870
39072
39506
39822
40298
40419
40452
40479
40497
40918
40918
41184
41209
41211
41214
41319
41573
42172
42172
42408
42488
43304
43393
43426
43630
43861
44262
44458
44579
44638
44727
44777
44777
44858
45333
45406
45488
45838
46367
46404
46454
46509
46690
46843
47158
47292
47388
47436
48273
48273
48412
48642
48785
49030
49030
49638
49658
49658
50325
50829
50870
51459
51613
Comp.
B
A
A
A
A
A
B
A
A
A
B
B
A
A
A
B
B
A
B
A
D
B
A
B
A
A
A
B
A
A
B
A
B
A
A
C
A
A
B
A
B
B
A
A
B
B
A
B
B
A
A
A
A
B
A
B
A
A
B
B
B
A
A
B
B
A
B
A
A
C
B
A
A
B
A
RA (2000)
Dec (2000)
h m s
◦ 0 00
07
07
07
07
07
07
07
07
07
07
07
07
07
07
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
10
10
10
10
10
10
10
10
10
10
30
31
34
36
38
43
43
47
47
48
48
54
57
59
04
08
14
15
15
15
16
20
21
24
24
24
24
25
28
35
35
38
39
49
50
50
53
56
00
03
04
05
06
07
07
08
14
15
15
20
27
27
28
29
31
32
36
38
39
39
50
50
52
55
57
00
00
07
08
08
16
22
23
30
32
26.60
13.51
50.41
34.71
51.33
31.10
31.45
30.58
57.20
31.81
31.71
34.82
16.29
37.93
29.84
00.20
18.93
07.73
31.34
53.36
10.22
33.36
03.80
13.22
33.26
35.01
36.44
08.98
36.01
50.98
51.27
49.53
44.68
21.21
21.00
44.95
08.04
06.97
53.23
27.08
49.00
51.15
50.56
33.16
32.33
27.16
20.54
10.08
56.37
39.32
16.71
46.78
27.40
09.28
06.19
48.25
33.70
16.95
19.83
28.05
08.21
30.08
11.79
20.82
02.39
13.16
13.74
54.43
15.89
16.19
39.15
43.80
14.61
25.48
35.67
+13
+02
+24
+05
−05
+03
+03
+70
+60
+47
+47
+38
+01
+48
+09
+71
+63
−06
+11
+02
+57
+65
+65
+44
−01
−03
−04
+17
+01
+06
+06
−05
+05
+03
−05
+35
+54
+36
+23
+37
+11
+55
+47
+00
+00
+27
+61
+23
+14
−07
+06
−06
+09
−02
+03
+26
+07
+01
+13
+35
+04
+04
+08
+24
+19
+06
+06
+66
+31
+31
+41
+15
+05
+55
+51
51
10
57
51
27
29
29
12
17
45
45
07
07
46
16
55
04
55
25
27
04
23
26
56
08
45
43
08
14
37
37
56
46
41
32
05
57
26
46
50
33
32
06
03
03
32
25
21
14
41
13
04
03
45
04
59
07
50
18
14
02
20
06
45
45
15
15
50
36
35
18
20
41
59
50
59.3
13.1
16.1
43.8
56.0
09.1
01.1
24.0
45.8
53.8
42.7
09.6
37.3
34.0
04.5
16.8
38.7
08.1
35.0
25.4
48.0
38.3
33.8
45.4
54.3
04.5
01.2
54.1
51.0
12.8
22.0
55.4
13.9
02.4
09.7
03.7
11.0
09.0
58.5
27.5
18.9
19.3
51.1
47.7
45.7
35.3
23.9
32.7
24.8
56.0
58.2
16.3
24.4
02.3
47.3
44.2
21.7
06.3
12.1
35.1
09.2
37.1
44.6
08.8
14.2
02.2
24.8
15.8
14.6
47.2
19.6
39.8
39.3
58.4
43.0
V
(mag)
Sep.
(00 )
Epoch
+2000
0.00 15
(mag)
0.00 8
(mag)
2.00 1
(mag)
ρmax
(00 )
9.21
7.28
7.37
5.89
7.58
6.97
10.38
7.06
7.01
8.03
14.10
14.53
6.35
8.64
7.26
14.93
13.57
8.27
9.75
8.18
14.36
8.43
8.03
9.25
7.07
5.61
6.03
14.42
7.40
5.91
7.25
8.19
8.41
7.96
9.18
12.68
7.38
8.16
15.30
7.04
9.25
15.76
8.48
8.15
14.00
8.27
5.18
11.99
15.17
9.21
6.90
5.38
5.40
7.28
7.27
16.03
8.15
7.73
15.15
7.24
12.13
6.24
8.65
10.38
8.40
7.64
10.53
8.02
6.23
13.70
8.72
7.26
6.54
8.86
9.11
7.7
0.0
0.0
0.0
0.0
0.0
9.6
0.0
0.0
0.0
11.1
97.8
0.0
0.0
0.0
49.4
244.4
0.0
32.0
0.0
59.9
258.3
0.0
29.1
0.0
0.0
0.0
692.0
0.0
0.0
10.2
0.0
25.9
0.0
0.0
49.3
0.0
0.0
55.4
0.0
140.5
56.3
0.0
0.0
12.7
57.7
0.0
60.0
443.2
135.0
0.0
0.0
0.0
66.2
0.0
64.8
0.0
0.0
50.5
494.6
1155.3
0.0
0.0
461.8
30.6
0.0
24.2
0.0
0.0
27.7
107.2
0.0
0.0
122.8
0.0
13.3066
12.7765
13.0577
13.0522
13.0523
13.0551
13.0551
12.7710
12.7709
13.0604
13.0604
13.2956
13.0524
13.0392
13.0603
13.2956
13.2956
13.0524
13.0603
13.0524
13.0604
12.7710
12.7710
13.2956
13.0525
13.0525
13.0524
13.2984
13.0526
13.0552
13.0552
13.0525
13.0551
13.0608
13.0526
13.2956
13.0393
13.3039
13.2957
13.3039
13.2983
13.2956
13.0605
13.2983
13.2983
13.2957
13.0393
13.2958
13.2983
13.3011
13.0609
13.0526
13.2983
13.3012
13.0527
13.2957
13.0609
13.0526
13.2983
13.2956
13.0529
13.0529
13.0609
13.2957
13.2958
13.0610
13.0610
13.0394
13.2957
13.2957
13.2956
13.3041
13.0610
13.0582
13.2956
1.8
1.9
1.7
1.9
1.7
2.9
1.6
2.0
0.9
2.9
1.8
2.6
2.0
2.8
2.7
1.9
2.2
2.3
2.5
1.8
2.6
1.9
1.7
1.4
2.5
2.8
2.5
1.7
1.6
2.2
2.2
2.0
2.4
2.5
2.2
2.6
2.5
2.1
3.2
1.8
1.8
2.7
3.3
1.8
0.9
1.9
2.4
2.1
2.1
2.1
2.3
2.0
2.8
1.3
2.0
3.2
2.8
2.0
0.4
1.9
1.5
1.8
2.2
2.6
1.7
2.3
2.1
3.0
1.3
0.0
2.9
2.1
2.4
2.2
3.0
5.5
4.8
5.4
5.2
4.8
5.5
4.2
4.7
4.6
4.4
1.9
3.5
3.6
2.9
2.7
5.3
5.6
5.4
3.0
5.1
3.3
4.9
4.8
5.6
5.4
5.5
5.4
5.3
4.1
5.2
5.3
4.9
5.4
4.7
5.2
4.1
2.5
3.2
3.8
5.4
5.0
3.9
4.6
4.8
2.9
4.6
4.3
3.1
3.4
2.1
4.3
4.7
2.0
4.5
4.8
4.0
4.8
3.4
2.3
3.9
3.1
5.0
4.8
4.0
4.8
4.8
3.8
4.6
4.7
1.4
4.9
5.3
5.0
5.1
4.7
8.1
6.3
6.7
6.7
6.1
6.7
4.6
6.5
6.7
5.6
3.2
4.7
6.2
3.3
4.5
6.1
7.3
6.8
4.7
6.6
4.3
7.1
6.6
7.9
6.8
6.8
6.8
6.4
5.7
6.7
6.7
6.4
6.9
6.2
6.6
5.7
3.9
6.9
4.5
6.6
6.4
4.4
5.8
6.5
3.5
6.3
5.9
4.9
4.8
3.8
4.2
6.5
5.5
6.4
6.4
4.8
6.2
5.5
3.5
6.0
4.9
6.5
6.1
4.8
6.4
6.2
4.6
5.6
6.5
3.8
6.2
4.4
6.1
6.5
6.2
17.0
16.0
12.8
15.4
10.6
21.0
15.2
17.0
18.1
8.6
16.6
13.1
9.0
12.9
4.6
5.2
13.6
11.4
7.3
10.4
13.8
18.0
18.2
19.8
10.0
12.3
12.9
16.3
5.2
18.8
15.1
19.1
10.1
8.6
20.8
21.4
13.8
21.2
15.5
20.7
15.0
19.6
13.6
18.6
12.3
13.0
16.5
9.8
13.0
7.9
6.8
20.5
11.9
11.6
5.6
19.1
7.1
14.2
8.1
16.1
17.5
18.2
7.4
18.0
8.2
3.1
10.0
10.0
2.9
16.6
13.2
14.3
8.7
7.9
12.3
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
41
TABLE 3 — Continued
HIP1
51613
51955
52097
52510
52891
53165
53791
53791
54233
54657
54692
55044
55044
55661
55982
56054
56242
56242
56289
56289
56290
56809
56809
57090
57090
58067
59176
59690
60098
60268
60353
60353
60739
60988
61072
61854
63008
63235
63317
63346
63354
63977
64057
64345
64499
64532
65725
65921
65921
65971
66514
66514
66514
66704
66704
67115
67186
67246
67953
68081
68193
68367
68785
68799
69160
69226
69281
69322
69653
70497
70557
70618
71726
71843
72221
Comp.
B
A
A
A
A
A
C
B
A
A
B
A
B
A
A
A
A
B
A
B
A
A
B
A
B
B
B
B
B
A
A
B
A
D
A
D
A
A
B
A
A
A
B
B
A
A
A
A
B
B
C
E
A
A
B
A
A
B
E
A
A
B
B
B
A
A
A
B
A
B
B
A
B
B
A
RA (2000)
Dec (2000)
h m s
◦ 0 00
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
14
14
32
36
38
44
49
52
59
00
05
11
11
16
16
24
28
29
31
31
32
32
32
38
38
42
42
54
08
14
19
21
22
22
26
30
31
40
54
57
58
58
58
06
07
11
13
13
28
30
30
31
37
38
38
40
40
45
46
47
54
56
57
59
04
04
09
10
10
11
15
25
26
26
40
41
46
35.91
47.84
43.16
12.18
01.69
34.18
53.71
22.32
46.16
19.38
37.65
04.03
03.65
15.67
25.03
18.83
44.94
44.43
20.33
20.07
20.74
44.90
44.00
13.74
14.52
35.08
09.67
25.87
00.84
28.13
32.04
31.53
53.76
00.63
00.74
36.29
40.02
26.23
35.00
49.27
55.11
35.72
40.74
22.46
13.56
37.01
26.68
52.21
53.57
12.50
57.20
01.26
01.95
23.23
24.53
20.86
06.76
28.80
25.85
20.48
40.31
33.94
49.74
55.82
26.53
23.93
55.77
11.80
19.39
11.54
57.57
43.16
28.40
47.99
15.58
+51
+47
+05
+39
+20
+05
+43
+42
+50
+66
+42
+52
+52
+13
+02
+30
+14
+14
+56
+56
+61
+45
+45
+39
+39
+19
+55
+08
+28
+61
+05
+05
+69
+51
+31
+40
+22
+01
+38
+68
+05
+11
+24
+09
−05
+56
+15
+24
+24
+58
+39
+39
+39
+50
+50
+09
+05
+06
−08
+05
+51
+23
+25
+01
+10
+25
+15
+54
+03
+51
+13
+78
+30
+24
+09
50
43
44
55
53
00
10
54
10
00
49
46
46
54
46
25
21
22
05
05
04
06
06
39
39
25
27
47
02
44
18
18
43
22
25
17
06
25
16
47
06
02
01
36
01
42
42
14
14
57
10
10
10
31
30
03
06
18
10
17
59
00
50
57
14
05
12
34
07
49
17
29
31
28
38
32.6
12.5
02.4
09.5
14.2
09.4
03.5
09.6
20.9
48.5
03.3
23.4
35.3
06.9
58.7
28.3
52.2
05.6
43.3
54.6
57.1
30.3
26.4
34.7
27.6
40.2
53.5
06.6
52.8
50.1
19.6
38.9
46.2
20.8
25.8
58.5
28.6
40.6
48.5
06.9
23.3
40.3
11.7
13.2
25.2
29.8
29.9
15.4
20.1
19.1
30.4
34.3
41.1
09.9
57.5
27.8
56.2
56.4
45.5
22.9
36.9
14.6
26.0
22.8
36.8
30.0
55.8
36.7
53.0
53.2
28.0
56.1
13.8
44.2
48.3
V
(mag)
Sep.
(00 )
Epoch
+2000
0.00 15
(mag)
0.00 8
(mag)
2.00 1
(mag)
ρmax
(00 )
16.00
8.09
7.13
8.31
8.71
8.17
10.64
11.70
7.04
8.25
8.26
6.51
7.90
8.34
7.24
7.18
6.27
9.14
7.50
10.30
5.46
6.29
8.23
9.00
10.45
8.43
8.45
9.84
8.97
8.23
6.46
10.47
8.47
15.80
7.33
13.96
6.99
6.91
9.28
8.07
8.13
8.48
8.55
12.33
8.28
6.82
7.37
7.61
13.00
14.82
9.21
15.00
7.77
6.31
10.51
7.44
7.21
10.02
12.43
7.98
8.27
13.86
8.90
13.51
7.95
4.82
8.28
13.92
7.03
13.23
15.33
7.22
8.02
14.88
7.26
10.6
0.0
0.0
0.0
0.0
0.0
967.3
37.3
0.0
0.0
134.8
0.0
12.8
0.0
0.0
0.0
0.0
15.3
0.0
11.5
0.0
0.0
10.3
0.0
11.9
73.4
21.7
23.2
545.9
0.0
0.0
20.7
0.0
587.6
0.0
43.5
0.0
0.0
36.0
0.0
0.0
0.0
39.0
81.8
0.0
0.0
0.0
0.0
19.2
164.6
56.2
10.6
0.0
0.0
17.5
0.0
0.0
488.5
647.1
0.0
0.0
276.4
97.0
49.2
0.0
0.0
0.0
605.7
0.0
69.6
1005.3
0.0
304.8
215.8
0.0
13.2956
13.0583
13.0610
13.3015
13.3068
13.0610
13.2957
13.2957
13.0582
13.0556
13.2957
13.0556
13.0556
13.3042
13.0527
13.3041
13.2960
13.2960
13.0556
13.0556
13.0555
13.2957
13.2957
13.2957
13.2957
13.2958
13.0583
13.2962
13.2958
13.0557
13.0612
13.0612
13.0583
13.2957
13.3015
13.2957
13.3042
13.0530
13.2957
13.0585
13.0612
13.0612
13.2958
13.0613
13.0477
13.3016
13.3043
13.2959
13.2959
13.2957
13.2958
13.2958
13.3043
13.2958
13.2958
13.0613
13.0613
13.0613
13.2963
13.0613
13.3043
13.2959
13.2959
13.2962
13.0613
13.3044
13.3070
13.2958
13.2962
13.2958
13.2986
12.7752
13.2959
13.2959
13.3071
1.6
1.8
2.4
2.8
2.1
2.7
1.9
1.8
2.4
1.5
1.5
2.4
1.9
2.2
2.1
2.4
2.4
1.9
2.3
2.4
3.0
1.0
1.5
2.4
2.0
2.3
2.6
3.3
2.8
2.8
2.6
2.9
2.5
3.0
2.1
3.0
2.0
2.9
2.1
2.3
2.6
2.0
2.5
2.5
2.7
2.8
2.2
2.0
0.5
1.7
2.3
0.8
1.7
3.0
2.1
2.4
2.7
3.0
2.4
2.4
2.3
2.2
2.0
1.9
1.7
1.4
2.2
2.3
1.9
1.0
1.8
2.4
2.0
1.6
2.9
3.0
4.7
4.2
4.9
5.6
4.9
5.6
5.5
4.9
5.5
5.6
5.5
5.2
3.0
3.4
4.6
5.5
3.2
5.1
5.2
2.2
5.3
5.2
3.7
2.0
5.0
4.8
4.8
4.9
5.4
4.5
4.4
4.9
3.9
5.0
3.5
5.4
4.6
3.9
4.3
4.9
4.9
4.4
3.8
2.7
5.3
5.2
4.7
1.9
5.0
4.4
1.1
5.4
4.4
3.8
3.4
2.7
4.1
2.8
3.0
4.2
5.2
4.3
5.0
3.9
5.3
4.5
3.8
1.7
5.1
3.8
5.4
4.8
4.7
4.8
3.9
6.5
4.2
6.4
7.3
5.5
7.7
6.9
6.6
8.1
8.3
6.8
6.7
6.7
5.1
6.9
7.1
4.9
6.8
6.8
6.4
7.7
7.6
5.0
3.5
6.7
6.5
6.0
6.3
6.9
5.9
5.2
6.4
4.6
5.5
4.5
6.9
6.0
4.7
5.6
6.0
6.0
5.8
5.1
2.8
6.3
2.3
6.4
2.3
6.0
5.4
1.2
5.6
6.0
5.1
4.2
3.2
5.2
4.2
5.4
4.8
5.7
5.8
6.8
4.9
7.7
6.7
6.4
4.2
7.5
4.2
6.4
6.2
5.4
4.4
18.6
17.9
9.8
17.7
18.9
11.6
16.6
17.1
15.2
15.8
16.1
5.2
13.0
16.2
11.9
17.9
6.4
10.5
6.4
15.2
4.9
12.3
6.3
14.1
18.9
16.3
10.4
19.6
18.0
11.2
4.5
15.3
6.2
17.9
14.4
14.6
12.6
11.7
16.3
16.1
16.4
15.1
18.3
15.9
5.9
18.9
8.6
3.6
14.0
20.2
16.5
7.3
17.5
5.1
12.4
14.6
14.6
20.3
11.7
15.2
16.4
6.2
11.7
3.6
16.8
14.5
15.8
15.4
19.8
13.3
19.5
21.5
17.6
10.2
13.0
42
Riddle et al.
TABLE 3 — Continued
HIP1
72447
72486
72486
72666
72764
72764
72846
73695
74432
74893
74930
74930
74975
74975
75059
75676
75783
75809
76603
76603
76837
76888
76888
77459
78161
78738
78738
79607
79629
79730
81608
81662
81662
82268
82510
84866
84866
85042
85414
85620
85667
85846
86036
86173
86302
86540
86642
87204
87895
87958
88136
88136
88194
88637
88913
89455
90355
90593
90813
90954
91115
91115
91120
91394
91773
91940
92325
92822
93108
93137
93645
93995
94076
94076
94370
Comp.
A
C
A
A
A
C
A
A
B
A
A
B
A
B
B
B
D
B
A
B
A
A
B
A
B
A
B
E
B
B
B
A
B
B
C
A
C
B
B
B
A
A
C
A
A
B
A
A
A
A
A
B
B
C
B
A
B
B
A
A
A
B
B
A
A
B
A
A
A
A
A
A
A
B
A
RA (2000)
Dec (2000)
h m s
◦ 0 00
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
19
19
19
19
19
48
49
49
51
52
52
53
03
12
18
18
18
19
19
19
27
29
29
38
38
41
41
42
48
57
04
04
13
14
16
40
40
40
48
51
20
20
22
27
29
30
32
35
36
38
41
42
48
57
58
00
00
00
05
09
15
26
29
31
33
35
35
36
38
42
44
49
54
58
58
04
08
09
09
12
53.25
14.78
18.10
27.53
30.04
30.19
23.35
47.30
43.77
20.26
41.93
42.12
18.80
19.23
55.90
37.92
09.24
23.59
40.07
39.96
16.41
59.98
01.22
53.09
24.44
25.92
26.72
56.27
53.05
18.61
09.51
56.44
56.37
35.60
45.23
43.08
43.73
53.07
03.10
16.58
23.80
34.10
34.48
34.01
03.76
15.98
13.25
58.32
14.33
05.00
09.21
03.53
45.41
49.89
01.95
21.75
21.94
13.69
30.05
14.59
09.38
10.56
04.36
23.80
49.45
31.19
01.02
47.12
03.46
23.14
09.76
16.49
04.39
03.10
27.41
+05
+49
+49
+44
+18
+18
+15
+47
+19
+26
+10
+10
+01
+01
+32
+42
+57
+80
−08
−08
+59
−11
−11
+23
+32
−11
−11
+33
+60
−01
−06
+21
+21
+55
+28
−07
−07
−02
+42
+63
−01
+34
+61
+48
+45
+72
+38
+37
+23
+32
+80
+80
+29
+21
+24
+57
+08
+11
+45
+40
+63
+63
+41
−03
+57
+34
+34
+48
+47
+47
+17
+25
+34
+34
−05
57
49
50
55
44
44
42
39
17
50
25
25
45
46
05
53
24
27
47
47
59
08
08
14
21
26
26
46
38
39
02
56
56
08
40
06
06
23
14
52
03
44
40
27
33
26
04
03
59
38
00
00
33
26
09
20
36
41
00
09
41
42
30
11
51
00
32
51
11
50
33
22
36
35
24
15.9
39.0
16.0
42.3
21.2
13.2
18.6
14.6
32.8
25.3
39.8
26.9
55.5
04.8
55.6
23.3
41.1
01.0
29.4
41.0
17.2
27.6
13.4
29.6
12.5
57.8
59.6
24.3
27.9
06.3
35.4
53.3
41.8
12.0
50.9
24.2
27.2
58.5
07.8
08.9
46.5
47.6
53.6
27.8
26.7
32.4
14.3
42.2
45.2
53.0
14.8
02.9
56.1
17.5
04.9
07.7
56.7
27.2
35.2
34.7
47.0
05.4
23.8
37.1
54.8
51.0
29.4
33.8
30.6
12.3
21.9
29.1
01.6
59.5
52.4
V
(mag)
Sep.
(00 )
Epoch
+2000
0.00 15
(mag)
0.00 8
(mag)
2.00 1
(mag)
ρmax
(00 )
6.83
13.90
8.11
7.70
8.28
12.50
6.41
4.83
7.71
6.59
7.11
8.04
5.04
10.11
16.09
9.74
12.19
7.30
6.45
6.56
8.50
9.27
9.41
7.82
14.33
7.44
8.02
12.23
14.23
8.74
14.93
7.67
12.40
11.24
11.60
8.77
10.14
12.18
10.81
8.42
5.31
7.97
9.98
7.44
7.50
15.11
7.29
7.18
6.32
6.66
5.74
6.11
13.10
9.84
12.33
8.30
8.32
14.53
7.98
7.25
8.10
10.91
11.14
6.49
7.94
8.66
7.71
5.84
7.82
7.68
6.93
7.47
6.70
7.97
8.06
0.0
48.9
0.0
0.0
0.0
8.3
0.0
0.0
23.2
0.0
0.0
13.3
0.0
11.4
342.9
40.2
185.0
31.5
0.0
11.7
0.0
0.0
23.2
0.0
256.3
0.0
11.8
634.9
107.2
19.8
179.1
0.0
11.6
26.6
82.4
0.0
10.1
49.0
135.9
193.5
0.0
0.0
737.3
0.0
0.0
89.8
0.0
0.0
0.0
0.0
0.0
18.6
88.0
27.8
51.5
0.0
608.4
43.2
0.0
0.0
0.0
20.0
621.1
0.0
0.0
65.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15.7
0.0
13.3071
13.2958
13.3043
13.3043
13.3071
13.3071
13.3071
13.2958
13.2960
13.3072
13.2962
13.2962
13.2962
13.2962
13.5694
13.2959
13.2958
12.7725
13.2963
13.2963
13.3072
13.2963
13.2963
13.3073
13.2991
13.2963
13.2963
12.7041
13.5722
13.2963
13.6352
12.7041
12.7041
12.7041
12.7041
13.2992
13.2992
13.2992
12.6767
12.6767
13.2992
12.7013
12.6767
12.7014
12.7014
13.3019
12.7014
12.7014
13.5533
13.5533
12.7725
12.7725
13.2992
12.7014
13.2992
13.5532
12.7014
13.5722
13.5532
13.5532
13.5532
13.5532
13.5642
12.7588
13.5532
13.2992
13.5533
13.6330
13.6302
13.5532
12.7615
13.5533
13.2993
13.2993
12.7671
2.8
1.0
3.0
2.5
3.2
1.6
2.5
2.0
2.3
2.6
3.0
2.2
2.2
3.0
1.6
1.4
2.5
2.1
2.2
2.7
1.9
3.0
2.0
1.7
2.5
3.2
3.3
2.2
0.8
2.0
1.6
1.4
1.8
2.4
2.5
1.1
0.7
1.9
1.3
1.7
2.9
2.0
2.0
1.6
1.8
0.9
1.7
1.1
2.4
1.9
1.3
1.5
1.8
2.4
2.4
1.7
2.0
2.5
2.8
2.0
2.1
1.8
1.6
1.6
2.4
1.5
1.9
2.4
2.1
2.3
1.3
2.6
2.3
2.0
2.2
2.1
5.2
3.9
2.2
5.3
5.2
3.2
4.7
4.0
4.8
4.3
4.7
4.7
3.4
4.3
3.8
5.0
5.1
3.9
4.3
2.5
3.0
2.0
4.2
5.0
5.0
4.8
5.1
4.8
5.1
4.7
5.1
4.8
5.1
5.2
3.5
1.1
1.9
4.5
4.6
1.6
5.1
4.7
4.8
4.9
5.0
5.0
5.2
5.5
5.4
5.3
5.2
4.4
5.1
5.3
3.8
4.7
4.4
4.2
4.9
2.6
5.2
4.7
4.7
5.2
5.0
5.3
4.6
3.6
4.3
3.9
5.1
5.4
5.3
4.4
5.2
6.6
6.3
6.0
2.8
7.2
5.2
5.7
4.5
4.7
5.8
5.6
6.2
4.0
4.8
5.3
6.6
6.7
5.3
5.3
5.4
3.7
2.8
6.7
5.7
5.8
5.6
6.7
6.1
6.8
5.7
7.3
6.7
6.8
6.8
4.8
1.4
4.5
6.8
7.0
5.9
6.8
6.9
5.8
6.8
5.9
6.3
6.7
7.0
7.5
7.5
7.2
5.6
6.8
6.7
4.2
6.8
4.8
4.7
6.7
3.8
6.7
6.8
5.8
6.5
6.3
6.8
6.6
4.6
5.3
5.7
6.7
6.8
6.8
5.5
11.2
16.7
17.7
15.8
10.2
17.2
9.9
4.9
17.0
16.7
8.8
16.8
16.3
13.4
15.4
11.2
19.9
8.0
14.7
17.9
17.1
4.8
13.8
12.4
5.4
2.6
13.9
12.5
18.0
6.9
12.4
15.8
17.3
12.2
17.0
10.6
15.3
19.3
11.1
17.6
16.8
14.1
6.4
2.8
7.9
18.4
13.1
13.6
4.2
12.1
2.6
9.9
20.4
20.4
15.6
12.4
10.7
17.0
15.4
15.0
15.7
18.0
9.9
15.5
14.3
15.9
12.4
14.1
15.5
16.7
20.1
16.4
6.1
15.0
13.7
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
43
TABLE 3 — Continued
HIP1
94540
94540
94666
94751
94802
94905
94922
95293
95309
95492
95589
95696
95769
96037
96185
96395
96395
96434
96620
96895
96979
97148
97255
97255
97295
97295
97295
97312
97321
97477
97527
97675
97675
97837
98020
98829
98874
98921
98946
99210
99232
99376
99500
99530
99572
99729
99737
99965
99965
100259
100896
101234
101430
101430
101852
101966
102040
102523
102655
102815
102945
103232
103247
103455
103569
103569
103641
103641
103749
103833
103983
103987
104075
104514
104660
Comp.
B
A
A
A
A
A
C
A
A
A
A
A
A
A
A
A
B
A
A
B
B
A
A
B
F
G
B
A
A
A
B
A
C
A
A
A
A
A
A
A
A
A
B
A
C
B
A
F
A
A
B
A
A
B
A
A
C
A
B
A
A
A
A
A
A
C
D
A
A
A
A
A
A
A
A
RA (2000)
Dec (2000)
h m s
◦ 0 00
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
14
14
15
16
17
18
18
23
23
25
26
27
28
31
33
35
35
36
38
41
42
44
45
45
45
46
46
46
46
48
49
51
51
52
55
04
04
05
05
08
08
10
11
11
12
14
14
16
16
20
27
31
33
33
38
39
40
46
47
49
51
54
55
57
59
59
58
59
01
02
04
04
05
10
11
27.21
29.20
48.79
48.59
22.31
45.16
41.21
12.55
24.69
25.76
33.77
51.77
41.80
37.81
27.08
55.61
54.46
23.01
41.18
51.97
44.14
44.82
57.35
57.33
33.53
25.60
27.53
36.10
41.31
43.80
23.62
01.64
00.67
52.57
09.68
10.62
46.07
09.78
21.50
26.96
35.94
13.33
22.47
59.07
09.46
09.18
13.93
43.97
54.54
03.65
26.93
12.36
19.99
18.74
21.11
51.88
44.52
35.48
44.84
46.46
25.75
49.88
02.41
39.68
04.48
05.11
11.47
55.28
26.13
25.91
05.69
07.39
07.95
14.25
59.52
+34
+34
+38
+18
+71
+16
+49
+19
+20
+24
+27
+08
+34
+17
+33
+56
+56
+15
+54
+50
+08
+18
+04
+04
+33
+33
+33
+07
+44
+35
+41
+10
+10
+41
+10
+42
+72
+38
+56
+15
+85
+43
+62
+59
−12
+06
+35
+50
+50
+23
−02
+56
+33
+33
−04
+11
+19
+59
−06
+25
−05
+32
+28
+26
+04
+04
+40
+40
+40
+27
+03
+02
+07
+20
+24
33
33
22
58
20
29
54
22
34
54
19
58
36
46
12
59
58
53
58
31
22
43
14
14
36
43
43
03
20
18
35
24
24
04
44
30
59
28
20
40
07
56
04
41
53
34
21
17
16
38
07
53
23
23
30
14
54
51
02
46
37
42
05
24
17
17
11
15
37
48
58
59
56
44
10
28.7
51.6
49.1
34.8
49.3
18.1
11.8
31.5
07.6
46.0
21.6
10.8
40.2
58.6
06.7
02.0
58.7
32.4
25.6
03.1
49.3
42.6
54.6
44.5
07.2
41.4
49.1
20.4
54.7
41.3
23.0
56.6
40.0
49.8
27.4
41.7
48.0
42.4
29.1
29.9
27.2
44.1
10.9
29.6
35.4
38.0
42.0
14.4
43.5
17.2
10.3
24.2
23.6
16.6
42.7
58.7
03.1
09.5
21.8
15.3
35.9
23.2
25.8
18.3
36.5
40.6
29.0
31.8
04.6
26.4
50.4
40.1
43.6
37.0
05.4
V
(mag)
Sep.
(00 )
Epoch
+2000
0.00 15
(mag)
0.00 8
(mag)
2.00 1
(mag)
ρmax
(00 )
10.26
7.26
7.75
7.02
7.07
7.01
15.48
7.81
7.91
6.19
7.46
8.06
8.19
8.27
6.62
6.73
0.00
7.12
5.89
6.25
8.70
7.72
7.02
11.30
7.68
8.54
9.25
8.20
7.07
6.66
10.47
5.12
13.70
7.72
8.83
9.68
8.51
6.17
6.19
7.90
7.13
7.41
15.50
7.09
11.30
8.01
7.56
13.50
8.15
8.27
7.49
7.95
8.22
11.90
7.78
6.39
12.27
8.54
9.74
7.67
5.99
7.46
7.80
6.93
5.30
7.35
10.90
6.58
7.14
7.33
8.39
7.31
7.97
8.14
8.06
33.6
0.0
0.0
0.0
0.0
0.0
215.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10.0
0.0
0.0
35.2
27.3
0.0
0.0
10.1
792.2
2.1
26.0
0.0
0.0
0.0
66.9
0.0
22.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
93.0
0.0
1021.0
43.3
0.0
106.0
0.0
0.0
59.9
0.0
0.0
17.2
0.0
0.0
124.9
0.0
391.3
0.0
0.0
0.0
0.0
0.0
0.0
10.5
1132.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13.2994
13.6302
13.5532
12.7617
12.7754
12.7617
13.5532
12.7618
12.7618
13.5533
13.6302
12.7589
13.5532
12.7615
12.7590
13.6217
13.6217
12.7589
13.5532
13.6219
12.7589
12.7615
12.7617
12.7617
13.2992
13.2992
13.2992
12.7589
12.7616
12.7616
12.7590
13.2992
13.2992
12.7590
12.7589
12.7616
12.7672
13.5729
13.5532
12.7564
12.7705
12.7616
13.5533
13.5533
13.6352
12.7589
12.7590
12.7648
12.7757
12.7565
13.5728
12.7592
12.7566
12.7566
12.7588
12.7589
13.2993
12.7649
12.7671
12.7565
13.6326
13.6192
12.7565
12.7565
12.7617
12.7617
12.7567
12.7616
12.7590
12.7018
12.7018
12.7018
12.7018
13.5729
12.7758
2.2
2.2
1.6
1.1
1.9
0.8
1.4
1.1
1.5
2.5
3.1
1.5
2.5
2.2
1.8
2.0
1.5
1.5
3.4
2.3
1.5
2.1
2.2
2.7
2.3
1.1
2.2
1.6
1.7
1.4
1.9
2.2
1.0
1.8
1.4
0.9
2.2
1.7
2.1
2.5
2.5
1.0
2.0
2.1
1.4
1.3
1.9
0.9
2.5
2.1
1.8
1.6
1.7
2.4
1.4
1.7
2.4
1.4
2.5
1.9
2.8
2.4
1.4
1.2
2.6
2.1
1.0
1.6
1.4
2.1
2.2
2.0
1.9
1.8
1.8
2.2
4.2
5.4
4.2
5.1
3.6
4.5
3.6
2.1
4.9
4.4
5.0
5.0
4.5
2.6
5.2
3.0
4.2
4.7
5.2
4.7
2.4
4.9
4.4
4.5
4.8
4.9
4.5
4.3
3.8
5.7
2.9
1.1
4.7
4.7
2.8
4.7
4.8
4.9
5.1
4.8
1.9
5.2
4.8
4.8
4.8
2.6
4.4
5.1
5.2
4.3
4.6
5.6
5.2
3.6
4.9
2.4
4.6
4.6
5.2
2.1
2.7
4.2
5.4
4.1
4.8
3.8
4.8
4.0
4.8
4.5
4.9
4.9
4.9
5.2
3.0
6.1
6.9
6.2
6.8
6.0
4.9
5.2
4.2
6.7
2.0
6.7
6.4
5.5
4.9
7.0
3.0
5.9
6.3
6.8
6.0
5.0
6.7
5.1
6.1
4.0
6.0
6.4
5.8
5.8
7.8
5.0
2.8
5.9
5.8
5.4
6.7
6.4
6.8
6.7
6.7
5.0
6.7
6.2
6.9
6.6
4.3
6.3
6.7
6.7
5.3
5.9
7.6
6.9
4.6
6.7
3.9
6.3
6.4
6.8
6.1
5.6
6.5
7.6
6.5
5.8
6.8
4.7
5.8
5.5
6.4
6.4
6.8
6.7
6.4
14.2
14.1
13.5
10.3
7.2
7.1
15.8
7.3
11.7
13.7
12.0
3.5
16.3
14.9
7.1
19.6
12.8
8.1
12.2
11.3
5.4
16.1
18.2
14.3
20.0
21.0
9.9
8.3
18.2
20.1
8.2
2.5
8.3
2.9
7.2
12.9
11.2
3.2
7.7
16.1
4.3
11.4
8.9
8.0
16.3
12.3
14.9
19.9
7.9
16.3
4.1
10.0
13.9
13.3
12.8
9.7
6.9
5.6
7.4
14.1
16.8
17.7
15.7
12.6
10.1
9.2
18.2
4.4
19.1
4.0
18.1
17.3
12.0
11.7
18.6
44
Riddle et al.
TABLE 3 — Continued
HIP1
104788
104858
105200
105406
105431
105557
105676
106040
106601
106632
106632
107228
107868
107868
107958
108144
108228
108456
108456
108468
108473
108473
108602
108649
109067
109110
109176
109361
109587
109587
109951
109961
109961
110291
110447
110447
110548
110574
110623
110626
111148
111170
111805
111823
111910
111965
112042
112222
112229
112240
112447
112506
112595
112935
113092
113355
113445
113514
113699
113884
113896
114313
114378
114378
114385
114385
114432
114456
114616
114702
114702
114962
114962
115012
115655
Comp.
A
A
A
A
A
A
A
A
A
A
B
A
A
B
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
B
A
A
B
A
A
B
A
A
A
A
B
A
A
A
A
A
A
A
A
A
B
A
A
B
B
A
A
A
A
A
A
A
A
B
A
B
B
B
A
A
B
A
E
A
B
RA (2000)
Dec (2000)
h m s
◦ 0 00
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
13
14
18
21
21
22
24
28
35
35
35
43
51
51
52
54
55
58
58
58
58
58
00
00
05
06
07
09
11
11
16
16
16
20
22
22
23
24
24
24
31
31
38
38
40
40
41
43
43
44
46
47
48
52
54
57
58
59
01
03
03
09
09
09
09
09
10
10
13
14
14
17
17
17
25
42.48
28.82
34.88
01.42
21.58
41.67
16.24
43.45
23.16
55.48
55.82
03.78
18.34
18.26
19.66
45.30
31.37
12.88
19.74
24.33
28.42
29.24
02.26
38.90
40.70
05.34
00.67
22.49
58.62
59.55
06.56
17.41
17.71
23.85
17.81
16.98
39.56
01.32
37.40
37.86
06.54
18.31
47.47
57.93
07.98
47.96
38.12
42.70
50.72
05.00
42.34
21.70
13.95
29.86
12.24
25.92
35.08
19.45
39.40
50.58
57.27
04.05
57.10
54.90
58.88
57.37
31.16
54.84
11.04
07.47
07.62
05.04
06.01
37.62
57.77
+64
+10
+11
+40
+10
+76
+37
+26
+00
+00
+00
+55
+08
+08
+39
−03
+10
+82
+82
−12
+03
+03
+54
−14
+12
−05
+25
+35
+37
+37
−07
+33
+33
+46
+11
+11
+20
+06
+16
+39
+45
−06
+44
+17
−09
−03
+44
+10
+03
+06
+12
+17
+41
+09
+28
−03
+09
+12
+04
+21
−04
−02
+14
+14
+47
+47
+41
+45
+26
−08
−08
−13
−13
−01
+45
24
00
34
20
19
33
39
34
58
40
40
12
20
21
48
18
52
52
52
39
46
46
06
09
22
21
20
07
39
39
05
43
43
25
04
04
50
12
53
25
09
33
18
06
21
33
27
56
53
44
10
48
31
54
00
09
21
11
27
35
47
33
25
25
57
57
18
30
53
55
55
51
50
31
23
14.2
25.1
07.8
42.2
56.2
18.2
44.3
11.2
31.9
52.0
41.7
33.5
49.8
04.3
06.2
34.4
48.4
10.2
15.6
52.8
36.9
36.8
27.2
51.6
36.0
28.9
42.4
45.5
04.1
08.8
26.6
55.9
43.6
05.7
48.6
51.3
53.6
10.2
49.1
50.7
43.9
18.5
50.0
10.0
33.2
15.3
02.5
21.7
12.6
10.8
21.4
46.0
57.0
03.5
46.6
26.7
24.7
32.4
40.1
53.7
41.5
01.7
35.6
35.6
33.9
30.1
02.1
44.2
32.7
27.6
52.8
03.6
53.1
18.3
05.5
V
(mag)
Sep.
(00 )
Epoch
+2000
0.00 15
(mag)
0.00 8
(mag)
2.00 1
(mag)
ρmax
(00 )
6.38
4.47
7.01
6.39
6.72
6.85
7.80
7.80
7.27
8.75
10.00
8.35
8.51
11.52
8.24
15.16
7.72
6.92
7.45
7.16
6.95
13.70
7.54
7.72
9.55
7.57
3.77
7.45
8.00
9.78
8.72
7.38
10.99
8.50
9.13
10.16
6.20
8.11
8.28
8.03
13.74
6.15
6.82
7.76
6.89
6.32
7.93
6.51
7.41
7.66
12.36
7.99
8.04
13.23
10.47
7.73
6.43
8.35
7.06
7.22
6.68
9.26
6.54
10.28
7.11
7.91
10.27
15.32
8.84
7.55
8.20
8.16
16.80
7.88
8.57
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11.4
0.0
0.0
14.5
0.0
143.7
0.0
0.0
13.8
0.0
0.0
12.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11.9
0.0
0.0
12.9
0.0
0.0
12.8
0.0
0.0
0.0
0.0
62.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11.1
0.0
0.0
250.4
17.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
32.0
0.0
15.7
79.6
50.0
0.0
0.0
24.9
0.0
18.6
0.0
185.5
12.7650
13.5729
12.7018
12.7567
12.7018
12.7705
12.7566
12.7018
12.7018
12.6770
12.6770
12.7568
12.6770
12.6770
12.7566
13.5535
12.7617
12.7705
12.7705
13.6303
12.7018
12.7018
12.7048
13.6330
12.7047
13.5537
13.5703
12.7047
12.7019
12.7019
13.5537
12.7019
12.7019
12.7048
12.7019
12.7019
13.5703
12.7047
12.7047
12.7047
12.7019
13.5537
12.7047
12.7047
13.5730
12.7048
12.7047
12.7047
12.7617
12.7047
13.6166
12.7047
12.7047
12.7018
12.7019
12.7048
12.7047
12.7047
12.6772
12.6772
12.6774
12.6774
13.6166
13.6166
12.6746
12.6746
12.6746
13.6165
12.7618
13.6221
13.5702
13.6221
13.6221
12.7676
12.6746
1.1
0.3
2.3
2.1
1.3
1.4
1.6
1.7
2.6
2.4
2.2
1.7
1.5
2.7
1.8
1.9
2.5
1.6
1.5
1.5
2.3
1.7
1.7
1.8
2.2
2.2
1.2
1.7
2.3
1.5
1.8
1.5
1.0
1.5
1.7
2.2
2.1
2.2
1.7
1.8
3.3
3.1
1.5
1.3
2.0
1.8
1.6
2.8
2.0
2.4
2.5
1.8
1.9
1.5
2.5
2.3
1.0
2.4
2.7
2.5
2.4
2.2
2.5
1.7
2.6
2.6
1.6
2.9
2.5
1.7
2.5
2.1
0.9
1.0
1.9
2.7
3.6
2.6
5.1
4.6
4.8
5.1
4.5
5.0
5.0
4.8
4.9
5.2
5.3
5.3
4.6
3.4
5.0
4.9
4.2
5.0
2.0
4.8
4.3
4.9
5.3
5.0
5.1
5.4
4.7
4.1
4.6
4.1
4.9
5.1
5.1
3.4
5.0
5.0
5.0
5.7
5.2
4.4
4.4
4.8
5.3
5.1
5.3
4.3
4.8
3.4
4.6
5.3
4.7
4.9
4.2
4.2
5.1
5.2
5.3
5.3
5.2
5.2
4.8
5.2
5.1
4.6
4.4
5.3
4.8
5.2
2.1
1.5
3.7
5.1
6.4
6.3
6.5
6.8
6.0
6.9
6.7
5.4
6.6
6.9
6.9
6.9
7.7
7.0
7.8
4.9
5.8
7.4
6.9
6.0
6.7
2.0
5.7
6.5
6.3
6.5
7.3
6.5
6.9
5.4
4.8
6.7
5.0
6.8
6.7
6.0
7.0
6.3
6.8
6.8
6.4
6.7
5.2
5.6
6.3
6.9
7.1
6.6
5.7
6.5
3.9
5.7
6.8
6.0
6.0
4.6
6.1
6.7
6.9
7.0
6.8
7.1
6.7
6.8
6.9
6.8
6.9
4.9
7.0
6.8
6.9
6.2
1.5
4.9
7.0
15.4
8.4
11.7
14.4
11.3
7.7
12.1
7.1
11.9
3.8
12.5
11.8
12.9
5.9
15.4
8.0
17.9
8.2
17.3
13.4
8.9
20.0
9.8
19.3
18.3
8.4
5.6
15.3
12.9
16.5
10.7
5.4
15.5
12.0
16.6
10.6
2.6
15.3
15.2
13.2
20.2
8.8
10.6
15.4
3.5
17.4
5.4
13.8
12.4
13.6
18.7
11.3
18.9
10.5
9.4
18.1
14.4
18.8
7.9
5.0
14.9
9.2
2.8
12.3
6.2
16.4
20.2
18.2
8.6
2.7
16.5
14.3
11.0
17.0
20.5
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
45
TABLE 3 — Continued
HIP1
115715
115715
115779
116255
116259
116478
116537
116740
116849
116906
117029
117475
117573
117573
117666
118213
118213
118225
118254
118281
118281
Comp.
A
C
A
A
A
A
A
A
A
B
A
A
A
B
A
A
B
A
C
A
B
RA (2000)
Dec (2000)
h m s
◦ 0 00
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
26
26
27
33
33
36
37
39
41
41
43
49
50
50
51
58
58
58
59
59
59
40.36
39.65
20.93
22.83
24.06
06.00
03.58
30.97
05.44
45.18
27.04
14.47
37.98
38.93
46.83
45.84
46.21
50.20
06.86
29.29
29.15
+45
+45
+04
+76
+42
+18
−13
+28
+46
−05
+58
+04
+54
+54
−06
+31
+31
+33
+41
+33
+33
20
21
27
36
50
26
33
14
13
58
04
58
11
12
36
56
56
44
10
43
43
17.3
10.4
00.1
53.3
47.9
33.8
45.9
47.4
05.7
14.0
49.1
56.6
53.6
05.6
47.1
22.2
22.4
32.7
14.0
25.9
29.1
V
(mag)
Sep.
(00 )
Epoch
+2000
0.00 15
(mag)
0.00 8
(mag)
2.00 1
(mag)
ρmax
(00 )
7.36
12.39
8.71
8.89
7.14
7.64
8.11
7.04
6.97
14.50
7.14
8.42
7.15
10.96
8.75
8.28
16.53
7.83
8.29
5.81
6.72
0.0
53.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
109.5
0.0
0.0
0.0
14.6
0.0
0.0
4.8
0.0
114.9
0.0
3.7
12.6773
12.6746
12.7049
12.7705
12.6773
12.6772
13.5730
12.6773
12.6773
13.6195
12.6772
12.6772
12.6746
12.6746
12.6774
12.6773
12.6773
12.6773
12.6746
13.6165
13.6165
1.6
2.8
3.1
1.6
1.2
1.8
2.3
2.6
1.6
3.2
2.1
2.4
2.5
1.9
1.4
2.2
1.5
2.2
2.2
1.7
1.7
3.6
4.9
4.8
5.0
4.6
4.9
4.3
5.2
5.0
3.2
4.8
5.0
4.8
4.9
5.1
5.3
2.4
5.2
5.1
5.3
5.6
6.8
6.7
5.9
7.8
6.3
6.9
4.9
7.0
6.8
4.8
7.0
6.9
6.7
6.4
7.1
6.9
2.1
7.1
6.9
3.6
2.6
16.0
10.2
17.5
10.8
9.9
9.1
10.0
11.7
19.2
15.2
9.7
11.3
7.4
18.6
2.6
10.1
16.5
8.4
19.7
17.5
15.9
46
Riddle et al.
TABLE 4
Measurements of binary stars with Robo-AO
WDS
(2000)
Discoverer
Designation
HIP1
Epoch
+2000
N
θ
(deg)
σθ
(deg)
12.7049
12.7723
13.0478
13.0478
12.7050
12.6748
12.7050
12.7020
13.5730
13.5730
12.6748
12.7621
12.7621
13.6208
12.7050
12.7020
12.6748
12.6748
13.5730
12.6747
13.6167
13.6357
12.6747
12.6747
12.6748
12.6748
12.6775
12.6775
12.6776
13.5703
12.6776
12.7021
13.6195
13.5730
12.7050
12.7050
12.7050
12.6775
12.7621
12.7621
12.6749
12.7458
13.0573
13.0546
13.6222
12.7050
12.7513
13.0477
12.7479
13.0572
12.6749
13.5731
12.7050
12.7050
12.6750
12.6777
12.7050
12.6776
12.6777
12.6777
12.6777
12.7700
13.0572
12.6750
12.6750
12.6776
12.7021
12.7021
12.6750
13.6167
13.6250
12.7050
12.6750
12.7021
12.7022
1
3
2
2
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
2
1
1
1
5
2
4
1
1
1
1
1
1
1
1
1
2
2
1
7
2
1
1
1
1
1
1
1
1
1
1
1
1
160.8
186.9
186.4
325.5
6.7
48.6
140.1
279.3
176.8
157.6
166.4
167.3
170.0
166.7
276.5
150.5
67.2
302.5
295.2
277.7
275.6
275.6
223.1
322.4
270.4
82.5
36.2
147.0
335.4
334.2
244.7
163.6
302.7
76.7
111.7
234.9
159.8
204.4
204.3
204.5
83.0
185.2
182.2
352.1
331.3
226.4
230.6
230.6
175.3
174.5
31.2
260.3
67.9
343.0
233.7
47.3
222.4
313.3
265.7
179.4
202.7
301.2
304.5
265.6
207.0
333.8
207.8
169.0
285.9
285.2
36.2
340.7
342.2
211.1
270.7
0.0
0.2
0.1
0.3
0.1
0.0
0.1
0.1
0.0
0.1
0.0
0.0
0.0
1.1
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.1
0.0
0.1
0.2
0.1
0.0
1.8
2.5
0.0
0.0
0.1
0.3
0.4
0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.1
0.0
0.1
0.2
0.0
0.0
0.2
0.0
0.0
0.0
0.2
0.0
0.0
0.0
0.0
0.0
00028+0208
00057+4549
BU
STT
281 AB
547 AB
223
473
00057+4549
00073+2058
00109+4807
00144+6020
00251+4803
00261−1123
00271−0753
00293−0555
POP 217 AP
HDS
12
LEP
2
A
902
HDS
56 AB
YR
4
A
431 AB
RAO
1 BC
473
601
889
1148
1987
2066
2143
2350
00308+4732
00335+4006
00346+6235
00346+6235
00352−0336
00409+3107
BU
394 AB
HO
3
RAO
2 BC
RAO
2 BD
HO
212 AB
RAO
3 Ba,Bb
2414
2643
2717B
2717B
2762
3214B
00452+0015
00487+1841
00515+5630
00515+5630
01027+0908
01027+0908
01075+4116
RAO
RAO
RAO
RAO
RAO
RAO
RAO
4 BC
5 Ca,Cb
38 BC
38 CD
39 AB
39 AC
40
3540B
3795C
4016B
4016B
4878
4878
5276
01080+3915
01108+6747
01125−0913
01144−0755
01158+0947
01166+1831
01234+5809
01253+0128
RAO
HDS
RST
WSI
A
HDS
STF
RAO
41
155
4167
70 Aa,Ab
2102
169
115 AB
6
5313
5531
5644
5799
5898
5952
6486
6653
01290+7412
01297+2250
HJ
A
2045
1910 AB
6914
6966
01297+2250
01337−1213
01377+4825
01409+6410
A
1910 AC
HWE
4
HDS 215
HDS 221 AB
6966
7274
7589
7845
01409+6410
RAO
32 AC
7845
01413+2545
01417−1119
01559+0151
02037+2556
02128−0224
02157+2503
02174+6121
02179+1941
02249+3039
02249+3039
02262+3428
02278+0426
STF
STF
STF
STF
STF
COU
STF
TOK
HDS
UC
HDS
A
145 AB
147
186
208 AB
231 AB
79
234 AB
72
314 Aa,Ab
733 AB
318
2329
7874
7916
8998
9621
10305
10535
10677
10710
11253
11253
11352
11452
02308+5533
02308+5533
02329+1502
02355+5948
02356+6106
02370+2439
STF 270 BD
RAO 42 BE
TOK 12
RAO 43
RAO
7
RAO
8 BC
11696B
11696B
11843
12062
12067
12184
02371−1112
02407+2637
02424+3837
02430+5812
02440−0601
HU 1216 AB
STT
43
AG
49
RAO 44
TOK 75
12204
12491
12638
12685
12764
ρ
(00 )
σρ
(mas)
∆m
(mag)
1.567
6.026
5.758
13.140
1.864
22.880
0.244
0.324
0.376
0.166
0.528
0.539
0.566
0.526
0.693
0.320
3.550
3.180
0.244
1.614
1.629
1.622
1.521
0.674
16.999
1.720
2.927
32.155
6.167
6.044
26.235
0.121
2.578
0.197
0.238
0.633
0.369
1.779
1.835
1.827
26.888
0.186
0.182
18.796
0.869
0.653
0.741
0.748
24.846
24.188
10.314
0.176
0.798
1.384
17.226
0.191
0.641
14.357
0.366
20.177
0.124
0.346
0.317
32.417
15.677
1.352
14.472
5.709
0.528
0.536
0.638
0.673
14.136
21.670
5.723
0.5
42.8
68.7
49.4
2.0
0.0
0.4
0.5
0.0
0.3
0.0
0.0
0.0
18.5
0.1
0.1
0.0
0.0
0.1
0.0
1.8
1.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
1.1
0.7
0.1
2.0
5.7
2.8
0.0
8.4
1.1
0.0
0.1
0.7
10.9
6.2
352.1
0.0
0.0
0.1
0.1
0.2
0.0
0.0
0.2
0.0
0.9
144.1
0.0
0.5
1.2
0.0
0.0
4.4
0.0
0.0
0.0
2.1
0.0
0.3
0.0
0.0
0.0
1.66
0.09
0.16
5.03
2.38
1.97
2.03
2.19
3.12
0.00
3.38
3.06
3.87
3.19
0.17
1.43
4.35
6.85
1.18
0.00
0.00
0.00
3.54
1.31
3.97
1.28
6.57
6.33
6.39
6.32
4.40
0.99
4.47
2.68
2.46
3.02
0.13
4.20
4.93
3.72
4.37
0.66
0.58
5.37
0.29
3.02
3.65
3.46
6.54
6.70
3.86
1.06
0.21
2.08
2.24
0.20
0.63
3.99
2.10
3.34
0.20
0.15
0.14
4.81
5.11
5.37
6.15
5.08
4.32
4.31
1.35
1.02
1.26
4.08
6.01
[O−C]θ
(deg)
[O−C]ρ
(00 )
Ref.
−0.3
−0.9
0.001
−0.266
1
1
−0.8
−0.016
2
−5.0
−0.019
3
0.1
9.4
−0.019
−0.021
4
5
−0.3
0.001
6
−2.3
−0.009
7
9.2
−0.9
0.8
0.076
0.013
0.004
8
9
10
4.1
1.7
−0.008
−0.014
11
11
−0.3
−0.060
12
−0.6
−2.5
0.002
−0.077
13
14
0.1
−3.0
0.006
−0.066
15
16
0.3
0.017
17
−4.1
0.5
0.7
0.001
−0.008
−0.006
18
19
19
−9.1
−0.0
0.091
0.038
20
21
:
:
z
r
w
:
:
r
z
:
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
47
TABLE 4 — Continued
WDS
(2000)
02442+4914
02462+0536
02493−1033
02517+4559
02517+4559
02572+0153
03023+4124
03030−0205
03035−1059
03035+2304
Discoverer
Designation
HIP1
Epoch
+2000
N
θ
(deg)
σθ
(deg)
STF 296 AB
RAO
9
12777
12925
13.6168
12.6776
12.7621
12.7621
13.6251
12.7050
12.7050
12.7050
12.6751
12.7023
13.6251
12.7022
12.7622
12.7022
12.7022
12.7622
12.6997
12.6751
12.7650
12.7624
12.7378
13.0572
13.6196
12.7622
12.6764
12.7622
12.7650
12.6778
12.7492
13.0600
12.6998
12.6875
12.7625
12.7625
12.6900
12.7622
12.7023
12.7622
12.7023
12.7023
13.5731
12.7622
12.7051
12.7023
12.7023
12.6751
12.7593
13.0478
12.7569
13.6307
13.5703
13.6361
12.6779
12.7571
12.7625
12.7626
12.7555
13.0573
13.5731
12.7626
12.7626
12.7681
12.6779
12.7651
12.7651
12.7651
12.7625
12.7627
12.7571
12.7189
12.7691
13.0478
12.7681
12.7652
12.7652
12.7680
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
2
1
1
2
1
1
1
5
1
1
2
1
1
2
1
1
1
1
1
1
1
2
1
1
1
10
2
1
1
1
1
1
1
1
1
7
3
1
1
1
1
1
2
2
1
1
1
1
2
9
2
1
1
1
1
304.7
252.8
252.6
253.0
164.9
141.4
81.8
161.7
163.4
220.8
228.7
359.1
3.4
208.8
100.9
100.4
355.7
178.3
149.0
131.4
121.2
120.6
120.4
237.3
223.4
223.0
80.7
256.3
211.9
215.8
145.2
75.9
71.7
77.5
136.9
343.8
142.9
60.4
88.1
269.0
269.7
19.8
312.4
37.4
241.6
263.4
177.0
176.3
308.4
276.6
294.3
294.6
165.7
103.5
358.1
333.1
271.2
271.3
236.7
234.7
133.3
84.9
35.9
310.3
177.4
14.4
337.5
275.9
224.0
277.3
293.6
293.3
159.9
324.2
242.8
20.8
0.0
0.1
0.2
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.3
0.4
0.1
0.0
0.4
0.0
0.0
0.0
0.5
0.1
0.0
2.4
0.0
0.0
0.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.2
0.7
0.0
0.1
0.0
0.0
0.0
0.1
0.0
0.0
0.2
0.2
0.1
0.1
0.0
0.3
0.0
0.0
1.7
0.0
0.0
0.1
0.0
0.2
0.1
0.1
0.0
0.0
0.0
0.0
STF
A
RAO
A
STF
STF
BU
HDS
315
1281 AB
45 AC
2413
337 AB
341
1174
389 AB
13168
13336
13336
13773
14134
14194
14235
14230
03035+2304
03035+2304
MET
MET
20 AC
20 CD
14230
14230C
03096+0512
03112+2225
03127+7133
03140+0044
03167−0332
A
H 5
STT
STF
TOK
2030
117 BC
50 AB
367
189 Aa,Ab
14676
14809B
14944
15058
15247
03177+3838
03177+3838
STT
RAO
53 AB
10 Ca,Cb
15329
15329C
03196+6714
03263−0102
03272+0944
HU 1056
STF 393
HDS 433
15482
16021
16083
03305+2006
03305+2006
STF 399 AB
RAO 11 Ba,Bb
16329
16329B
03321+4340
03362+4220
03390+4232
03401+3407
03413+4554
03413+4554
03426+1718
03439+6025
03496−0220
03537+5316
03537+5316
03544+0116
03556+5238
LDS
A
RAO
STF
BU
RAO
RAO
HDS
YR
A
RAO
TOK
HDS
9155 AC
1535
47
425
1181 AB
48 AC
78 AB
474
23
1293 AB
49 AC
81
494
16467
16793
17022
17129
17217
17217
17336
17418
17895
18218
18218
18261
18370
04007+2023
04070−1000
04092+4010
RAO 50
HDS 521 AB
RAO 79 CD
18719
19206
19389C
04096+3139
04163+0710
04199+1631
04227+1503
04233+1123
HO
WSI
STT
STT
STF
327 AC
97
79
82 AB
535
19428
19911
20215
20440
20472
04242+1445
04245+1653
04245+5051
04257−0214
04289+3022
04313+2008
04313+2008
04363+5502
04422+3731
04476+1816
04512+1104
04559+0440
04582+4003
HDS
PAT
COU
BU
STF
RAO
RAO
RAO
STF
PAT
BU
LDS
COU
564
6
2459 AB
403
548 AB
51 AB
51 BC
35
577
17
883 AB
9181 AB
1525
04584−0344
05017+2050
05017+2050
05017+2640
HDS 644
HU
445 AB
RAO 52 AC
A
1844 AB
20553
20577
20586
20673
20904
21099
21099B
21443
21878
22265
22550
22919
23100
23116
23396
23396
23395
ρ
(00 )
σρ
(mas)
20.692
1.906
1.910
1.901
1.300
0.657
15.195
0.582
17.853
9.032
0.600
0.134
0.131
4.516
0.371
0.366
0.285
15.337
1.057
1.224
0.866
0.875
0.863
0.629
1.560
1.634
1.086
15.678
0.281
0.313
19.641
0.159
0.139
0.167
14.667
0.753
1.741
1.943
0.119
4.835
10.388
0.783
0.340
0.122
25.912
15.501
0.744
0.725
5.905
0.180
9.584
9.588
14.121
0.119
0.509
1.268
1.129
1.129
0.447
1.245
0.965
0.910
14.475
18.800
0.917
5.737
0.739
0.108
0.258
21.745
1.832
1.836
0.591
0.288
38.414
0.319
0.0
3.0
5.3
11.9
0.1
0.2
0.0
0.1
0.0
0.0
0.8
0.1
0.3
0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.5
3.7
2.2
0.1
15.4
0.0
0.0
0.0
14.1
0.5
0.0
2.6
0.0
0.0
63.7
0.1
0.0
0.1
0.0
0.0
0.0
0.4
0.9
0.1
0.0
0.0
3.9
19.4
0.0
0.2
0.0
0.0
0.0
0.2
0.2
0.2
0.8
1.0
1.0
3.1
0.5
4.6
0.0
11.0
1.3
0.0
0.1
0.2
0.1
2.7
1.9
7.1
0.0
0.0
0.0
0.0
∆m
(mag)
3.27
4.39
3.56
4.96
0.85
1.45
6.30
0.31
1.83
1.83
3.35
1.52
1.17
6.63
1.26
1.37
0.47
4.14
0.27
0.72
3.72
3.65
3.83
0.58
4.03
2.83
0.20
2.55
2.85
3.23
2.04
0.87
0.97
0.52
2.56
0.67
6.24
0.25
0.36
6.44
6.44
1.51
0.44
0.60
6.65
4.61
2.84
2.89
6.35
1.38
3.04
3.01
4.90
0.91
1.16
1.13
0.97
1.04
2.33
4.07
2.58
2.37
1.90
6.32
0.26
4.65
0.11
1.83
0.09
3.44
3.36
3.33
2.74
0.52
3.85
1.63
[O−C]θ
(deg)
[O−C]ρ
(00 )
−0.0
0.396
22
1.4
0.038
23
0.4
0.019
24
0.3
4.1
0.009
0.003
18
18
−1.7
−0.007
25
1.6
2.8
0.121
0.077
26
27
−0.9
0.027
28
3.3
2.2
0.004
0.021
29
29
1.3
0.029
30
−80.4
0.053
31
−1.5
0.008
32
−1.9
−0.7
1.5
1.9
2.5
−0.021
0.040
0.076
0.078
−0.004
10
33
34
34
35
7.8
0.173
33
1.0
−0.005
10
:
:
182.2
−0.087
24
:
−2.1
−0.015
6
:
Ref.
z
r
r
:
:z
:
z
r
z
:
w
:
:
:
48
Riddle et al.
TABLE 4 — Continued
WDS
(2000)
Discoverer
Designation
HIP1
Epoch
+2000
N
θ
(deg)
σθ
(deg)
12.7626
12.7025
12.7573
12.7706
12.7707
12.7707
12.7025
12.7025
12.7682
12.7025
12.7025
12.7708
12.7628
13.2956
13.6252
12.7764
12.7026
12.7764
13.6279
13.3011
13.0578
12.7764
12.7764
13.0521
12.7737
13.2956
13.3038
13.3038
13.0551
12.7710
12.7709
13.0604
13.0524
13.0523
13.0523
13.0523
13.0604
13.3038
13.0524
13.0524
12.7710
13.3025
13.0579
13.0608
13.2956
13.0393
13.3039
13.3039
13.2997
13.3011
13.0609
13.0526
13.0610
13.2983
13.0526
13.0529
13.0609
13.0610
13.0394
13.2957
13.2957
13.3041
13.2956
13.0610
13.3015
13.0610
13.0556
13.2958
13.0612
13.2961
13.3042
13.3041
13.2960
13.0556
13.0555
13.3019
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
3
2
1
1
2
2
1
1
1
1
1
2
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
121.7
106.2
351.5
167.1
117.6
227.1
34.9
157.2
253.1
69.6
151.9
68.5
300.9
215.7
215.7
50.5
158.8
330.9
221.9
255.9
156.6
111.2
10.6
346.9
139.4
126.6
46.3
77.3
145.8
118.8
36.9
186.2
17.4
28.6
63.3
199.5
37.8
37.6
95.7
170.6
245.6
310.0
25.3
238.6
357.6
89.5
158.9
0.2
260.0
206.9
353.0
333.5
106.6
106.9
345.1
83.8
254.1
21.1
71.4
169.7
173.9
232.0
166.9
332.5
199.1
346.3
342.7
187.7
98.4
97.8
36.7
279.8
331.1
347.3
32.1
246.1
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.5
0.0
0.0
0.1
0.0
0.1
0.0
0.0
0.0
0.1
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.1
0.0
0.0
0.5
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.2
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
05067+1405
05096+2947
05134+0341
05140+5126
05247+6323
05247+6323
05376+0607
05376+0607
05429−0648
05444+4024
05444+4024
05465+7437
05540+1225
06156+3609
HEI
RAO
TOK
HU
STF
RAO
RAO
RAO
A
STF
RAO
RAO
TOK
STF
105
53 BC
211
821
677 AB
36 AC
54 BC
54 BD
494 AB
775 AB
55 AC
37 AC
192 Aa,Ab
872 AB
23789
24016B
24336
24397
25300
25300
26444B
26444B
26926
27067
27067
27246
27878
29725
06173+0506
06173+0506
06314+0749
06335+4822
06375+0909
06562+4032
07043−0303
07043−0303
07092+1903
07151+5717
07172+3306
07304+1352
07304+1352
07435+0329
07475+7012
07480+6018
07485+4746
07573+0108
08122+1739
08122+1739
08122+1739
08138+6306
CAT
PRV
A
RAO
HO
RAO
A
RAO
CHR
LDS
RAO
STF
STF
STF
RAO
HU
ES
STT
STF
STF
HUT
RAO
1 Aa,Ab
3 Ea,Eb
2817
80 AC
515 AB
56
519 AB
57 AC
216
2529
58 BC
1102 AB
1102 AC
1134 AB
59 AC
1247
589
185
1196 AB
1196 AC
1 Ca,Cb
60 BC
29860
29860E
31089
31267
31655
33355
34110
34110
34524
35069
35265B
36485
36497
37645
38018
38052
38104
38870
40167
40167
40167
40298B
08151−0655
08159+0227
08211+6527
08258+1703
08358+0637
08494+0341
08508+3504
08531+5457
08561+3626
09035+3750
09076+0004
09207−0742
09273+0614
09278−0604
09285+0903
MET 52
RAO 61
RAO 13 BC
RAO 62 BC
STF 1245 AB
A
2899
RAO 63 CD
A
1584
HDS 1291
MUG
1
TOK 126
A
1082 AB
STF 1355
B
2530
STF 1356
40419
40479
40882
41319B
42172
43304
43426C
43630
43861
44458
44777
45838B
46367
46404
46454
09383+0150
09505+0421
09522+0807
10002+0615
10079+6650
10083+3136
10083+3136
10227+1521
10326+5151
10387+0544
10442+3955
10526+0500
11161+5246
11182+3132
11239+1032
TOK
LEP
A
STF
RAO
KUI
HJ
STT
LDS
STF
YR
A
STF
STF
STF
358
9001 Ba,Bb
2762
1401
15
48 AB
475 AC
216
2868
1457
26
2773
1520
1523 AB
1536 AB
47292
48273B
48412
49030
49638
49658
49658
50829
51613
52097
52510
53165
55044
55203
55642
11243+1354
11293+3025
11317+1422
11323+5606
11323+6105
11387+4507
HDS
L
STF
STF
STT
STF
1622
11
1547 AB
1546
235 AB
1561 AB
55661
56054
56242
56289
56290
56809
ρ
(00 )
σρ
(mas)
∆m
(mag)
0.951
26.153
1.212
0.755
1.120
6.840
4.526
4.398
0.163
21.784
11.103
10.851
1.378
11.811
11.818
0.952
0.641
0.123
4.967
10.759
5.510
0.095
15.713
0.139
27.787
17.637
7.486
21.766
9.447
15.476
0.172
11.035
0.388
1.112
6.601
0.349
13.190
13.074
1.474
31.245
2.788
16.798
9.827
0.681
18.943
0.678
0.772
1.716
13.177
0.475
1.777
0.283
0.792
0.793
0.447
0.160
0.444
21.925
0.510
0.206
28.689
2.291
10.687
1.794
0.533
1.658
12.056
1.636
2.055
2.098
0.827
1.027
15.409
10.934
0.823
9.089
0.7
0.0
1.1
0.3
0.1
0.0
0.0
0.0
0.1
0.0
0.0
0.0
9.2
0.0
0.0
1.3
0.0
0.1
0.0
0.0
0.0
0.2
0.0
0.2
0.0
0.0
5.8
56.8
0.0
0.0
0.1
0.0
0.1
0.1
0.0
0.0
0.0
208.6
0.7
0.0
0.0
21.9
179.7
1.3
0.0
0.9
0.3
1.3
86.8
0.9
0.5
0.1
0.1
0.1
0.0
0.0
0.8
0.0
1.8
0.1
0.0
0.0
0.0
0.7
1.0
0.4
0.0
0.0
0.0
0.0
0.3
0.4
0.0
0.0
0.1
34.6
2.57
6.58
2.63
2.09
0.66
5.48
5.79
6.12
0.92
1.64
5.55
3.50
5.22
0.58
0.76
4.11
2.43
0.53
5.35
3.66
6.35
0.65
6.64
1.92
4.49
5.45
1.80
6.08
3.06
5.87
0.46
4.05
0.15
0.99
0.52
2.70
3.51
3.48
5.58
6.42
3.22
4.19
1.13
3.48
3.20
0.00
2.31
3.92
5.13
0.67
0.91
1.44
0.95
0.78
2.34
0.00
2.50
2.40
3.02
0.77
5.84
2.18
3.91
0.87
3.20
1.54
1.45
0.83
2.43
3.00
2.45
2.76
2.43
2.46
1.46
1.60
:
:
[O−C]θ
(deg)
[O−C]ρ
(00 )
Ref.
−1.9
1.8
−0.073
−0.010
36
30
1.3
−0.001
37
−1.2
0.062
38
24.9
−0.010
39
−27.5
−0.000
40
−4.5
−0.003
11
0.7
1.7
−3.8
0.016
0.012
0.678
37
41
42
−0.3
0.009
43
−0.3
−1.1
−13.4
−0.4
−0.3
−0.000
−0.054
0.157
0.006
0.003
44
46
10
45
45
1.8
0.009
11
−0.2
0.086
47
−0.1
0.8
0.5
−0.044
0.001
0.039
48
10
10
2.2
−0.3
−0.030
0.175
10
49
:
:
:
:
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
49
TABLE 4 — Continued
WDS
(2000)
Discoverer
Designation
HIP1
Epoch
+2000
N
θ
(deg)
σθ
(deg)
11422+3940
12225+0518
12310+3125
12417−0127
HJ
508
STF 1636
MET 60
STF 1670 AB
57090
60353
61072
61941
12547+2206
13198+4747
13284+1543
13309+2414
13309+2414
13381+3910
13381+3910
13404+5031
13453+0903
13461+0507
13491+2659
13563+0517
13577+5200
14094+1015
14109+1513
MET
HU
STT
STT
GAT
STF
TOK
STF
BU
STF
STF
STT
A
RAO
HDS
63008
65026
65725
65921
65921
66514
66514C
66704
67115
67186
67422
68081
68193
69160
69281
14113+5425
14153+0308
14267+7830
14418+2432
RAO 17 BC
STF 1819
MLR 335
RAO 64 BC
69322B
69653
70618
71843B
14463+0939
14489+0557
14493+4950
14515+4456
14525+1844
14525+1844
14534+1542
15038+4739
STF
STF
HDS
STT
BU
BU
STT
STF
1879 AB
1883
2091
287
31 AB
31 AC
288
1909
72221
72447
72486
72666
72764
72764
72846
73695
15183+2650
15187+1026
15193+0146
15277+4253
15387−0847
15413+5959
15420−1108
15489+2314
16044−1127
16147+3352
STF
STF
STF
RAO
STF
STF
STF
HDS
STF
YSC
1932 AB
1931 AB
1930 AB
18 BC
1962
1969
1966
2227
1999 AB
152 Ea,Eb
74893
74930
74975
75676B
76603
76837
76888
77459
78738
79551
16147+3352
16150+6040
16289+1825
RAO 65 EF
RAO 81 Ba,Bb
STF 2052 AB
79607E
79629B
80725
16400−0605
16409+2157
RAO 82 BC
HO
553
81608B
81662
17207−0706
17207−0706
17229−0223
17260−0139
17304−0104
A
TOK
RAO
TOK
STF
2593 AB
178 AC
19 BC
180
2173
84866
84866
85042B
85307
85667
17326+3445
17366+4827
17422+3804
17490+3704
18002+8000
18002+8000
18055+0230
18099−0755
18123+0154
18123+0154
18154+5720
18332+4010
18352+4135
18352+6342
18384−0312
18443+3940
HU
COU
RAO
COU
BAG
STF
STF
HDS
A
RAO
HDS
STT
RAO
STF
A
STF
1181
1922
20
1145
6 Aa,Ab
2308 AB
2272 AB
2561
2260 AB
66 AC
2577
356 AB
83 Ba,Bb
2365
88 AB
2383 CD
85846
86173
86642
87204
88136
88136
88601
88996
89207
89207
89455
90954
91120B
91115
91394
91919
13.2957
13.0612
13.3015
13.0530
13.2985
13.3042
13.2958
13.3043
13.2959
13.2959
13.3043
13.2958
13.2958
13.0613
13.0613
13.2959
13.0613
13.3043
13.0613
13.2960
13.5721
13.3057
13.2962
12.7752
13.2959
13.6352
13.3071
13.3071
13.3043
13.3043
13.3071
13.3071
13.3071
13.2958
13.6023
13.3072
13.2962
13.2990
13.2959
13.2963
13.3072
13.2963
13.3073
13.2963
12.7041
13.5694
12.7041
13.5722
13.2962
13.6010
13.6352
12.7041
13.2990
13.5695
13.2992
13.2992
13.2992
12.6740
13.2992
13.6325
12.7013
12.7014
12.7014
12.7014
12.7725
12.7725
13.6023
12.6741
12.6727
12.6727
13.5532
13.5532
13.6215
13.5532
12.7588
12.6686
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
2
1
1
1
1
1
1
1
1
1
1
2
1
1
2
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
1
2
2
1
1
1
1
1
1
128.0
336.5
342.4
11.0
9.9
51.0
89.0
358.4
80.4
34.5
44.8
231.3
135.9
256.6
192.8
183.2
111.8
120.4
261.2
348.2
349.5
145.9
171.7
85.9
63.8
61.9
82.0
277.5
343.3
0.0
220.3
169.0
160.8
63.5
63.2
264.0
167.1
35.5
100.2
189.7
29.0
52.6
286.3
97.9
183.9
187.5
238.2
42.1
119.3
118.9
148.9
183.7
183.3
183.6
347.5
108.0
86.3
300.4
148.7
148.2
323.0
91.8
302.2
122.4
315.8
230.0
125.5
18.3
107.1
71.9
306.5
302.1
336.1
23.0
289.4
78.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.0
0.2
0.1
0.0
0.0
0.0
0.9
0.6
0.1
0.2
0.0
0.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.7
0.0
0.0
0.2
0.1
0.0
0.0
0.0
0.1
0.0
0.7
0.1
0.0
0.1
0.0
0.1
0.0
0.0
0.0
0.0
0.1
0.0
0.1
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.4
0.4
0.1
0.0
0.0
0.1
0.0
0.0
0.1
0.0
0.1
0.0
9
644 AB
266
268 AB
2 Ba,Bb
1769 AB
29 CE
1774
115 AB
1781
1785
273 AB
1614
16
1989 Aa,Ab
ρ
(00 )
σρ
(mas)
∆m
(mag)
11.617
20.502
2.081
1.950
1.938
1.686
1.165
2.051
18.233
1.585
1.607
10.294
17.419
1.630
0.970
2.956
1.014
1.432
0.119
0.478
0.400
0.577
0.904
1.806
16.552
17.271
1.762
1.000
1.070
0.653
2.062
8.796
1.067
1.244
1.212
1.634
13.596
11.511
0.408
11.865
1.014
23.028
0.640
11.919
0.381
0.407
32.267
0.139
2.351
2.347
27.160
11.804
11.433
11.625
0.273
10.290
0.752
6.034
0.817
0.806
0.113
0.332
2.205
0.160
0.102
19.460
6.158
0.891
1.999
17.237
0.249
28.649
0.136
19.468
0.112
2.376
0.0
0.0
0.0
0.0
0.1
0.7
0.8
0.0
0.0
5.1
0.2
0.0
0.0
4.7
1.1
0.2
0.2
0.1
1.9
5.1
0.5
1.3
0.7
3.1
0.0
0.0
0.1
0.0
0.7
0.0
0.0
0.0
0.1
0.1
20.8
0.0
0.0
89.9
0.8
0.0
0.1
0.0
1.0
0.0
4.5
0.6
0.0
0.3
0.0
15.8
0.0
0.0
0.0
0.0
0.4
0.0
1.0
0.0
0.1
0.0
0.0
0.5
0.0
0.1
0.7
281.1
11.9
0.4
1.4
24.6
0.0
0.0
0.1
0.0
0.2
0.0
1.29
2.45
5.00
0.46
0.93
3.40
0.91
0.42
4.64
0.00
1.76
5.25
3.21
2.53
0.39
1.03
0.43
0.25
0.72
1.60
1.93
1.71
0.23
4.03
2.20
2.02
0.59
0.09
2.89
0.22
1.46
3.68
0.70
1.17
0.60
0.14
0.83
4.24
1.48
0.21
0.42
0.14
3.09
0.44
2.48
2.65
3.74
0.00
0.15
0.14
3.89
4.40
4.54
4.47
0.00
5.07
0.00
6.34
0.26
0.45
0.09
1.50
5.00
0.21
0.46
0.47
1.45
2.75
2.23
6.81
0.97
1.99
0.83
2.34
0.26
0.12
[O−C]θ
(deg)
[O−C]ρ
(00 )
Ref.
0.1
−0.3
−0.010
−0.063
50
50
0.3
1.1
0.067
0.049
51
9
−0.2
−0.9
0.016
−0.031
52
53
−1.5
−0.045
54
0.4
0.013
26
−1.3
0.1
0.043
0.025
55
56
0.4
−0.086
57
1.2
−0.6
−1.3
0.032
0.023
0.027
20
58
58
0.0
0.074
59
−0.1
−0.4
0.068
0.058
10
10
2.6
0.014
60
−0.8
−0.7
2.0
0.2
−0.003
−0.005
0.006
0.001
61
61
10
62
−2.5
−0.001
11
−2.1
0.029
63
−5.5
0.002
64
:
:
w
w
:
50
Riddle et al.
TABLE 4 — Continued
WDS
(2000)
Discoverer
Designation
HIP1
Epoch
+2000
N
θ
(deg)
σθ
(deg)
18581+4711
19091+3436
AG
366
STF 2474 AB
93108
94076
19145+3434
19145+3434
19145+3434
19158+3823
19188+1629
19234+2034
19266+2719
19287+3437
19316+1747
19359+5659
19394+2215
19460+0415
19464+3344
BU
HO
RAO
RAO
RAO
RAO
STF
RAO
STF
RAO
STF
BU
STF
94540B
94540
94540
94666
94905
95309
95589
95769
96037
96395
96691
97255
97222
19464+3344
19464+3344
19464+3344
STF 2576 FI
RAO 69 FK
STF 2576 GJ
97222
97222
97222
19487+3519
19510+1025
20048+7300
20086+8507
STT 387
J
124 AC
A
867
RAO 21 AC
97477
97675
98874
99232
20102+4357
20124−1237
20142+3522
20169+5017
20312+5653
20333+3323
20333+3323
20375+1436
20408+1956
20408+1956
20408+1956
20466+5951
20514−0538
STT
RAO
ES
RAO
RAO
HJ
RAO
BU
RAO
RAO
RAO
MLR
STF
20548+3242
20550+2805
20577+2624
STT 418
BU
367 AB
RAO 24
103232
103247
103455
20591+0418
20591+0418
20599+4016
20599+4016
20599+4016
21041+0300
21102+2045
STF
STF
COU
HDS
RAO
WSI
RAO
2737 AB
2737 AC
2431 Aa,Ab
2989 Da,Db
72 DE
6 AB
25
103569
103569
103641
103502
103641D
103987
104514
21120+2410
21137+6424
21145+1000
21148+3803
21186+1134
21214+1020
21243+3740
21359+0041
21441+2845
21513+0821
21555+1053
STT
H 1
STT
AGC
BU
A
WSI
HJ
STF
STF
BU
430
48
535 AB
13 AB
163 AB
617
7
3039
2822 AB
2831
75 AB
104660
104788
104858
104887
105200
105431
105676
106632
107310
107868
108228
21555+1053
21582+8252
21585+0347
22051+6217
22094+3508
22120+3739
22161−0705
22163+3344
22204+4625
22204+4625
22223+1105
22237+2051
BU
STF
RAO
BU
RAO
STF
HDS
STT
RAO
RAO
STF
STF
75 AC
2873 AB
73
697 AB
26
2876
3158
468
74 AB
74 AC
2898
2900 AB
108228
108456
108473
109017
109361
109587
109951
109961
110291
110291
110447
110548
13.6302
13.2993
13.5533
13.2994
13.6302
13.6302
13.5532
12.7617
12.7618
13.6302
13.5532
12.7615
13.6217
12.6713
12.7617
13.2992
13.5987
13.2992
13.2992
13.5701
13.6274
12.7616
13.2992
12.7713
12.7705
13.6276
12.7616
13.6352
12.7590
12.7648
12.7592
12.7566
12.7566
12.7169
13.2993
13.2993
13.2993
12.7649
12.7671
13.6326
13.6192
12.7565
12.7565
13.6220
12.7617
12.7617
12.7673
12.7567
12.7567
12.7018
12.7018
13.5729
12.7758
12.7650
13.5729
13.6192
12.7018
12.7018
12.7566
12.6770
12.7618
12.6770
12.7617
13.6194
12.7617
12.7705
12.7018
12.7311
12.7047
12.7019
13.5537
12.7019
12.7048
12.7048
12.7019
12.7141
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
2
187.9
262.3
261.7
262.3
91.3
72.2
331.1
190.9
350.9
288.8
348.2
117.2
250.7
348.5
180.1
155.7
157.4
334.9
318.3
247.9
248.9
117.2
220.3
149.5
67.3
65.3
332.2
271.1
280.2
264.2
195.8
245.1
224.7
73.5
59.4
303.0
327.2
40.0
27.6
28.6
283.7
160.4
102.8
99.8
283.7
65.8
207.6
145.4
117.6
276.1
209.0
209.1
193.5
242.5
18.4
213.4
257.3
94.7
43.5
154.9
316.2
355.7
23.8
24.1
211.3
66.2
89.3
93.5
351.0
66.8
121.2
163.1
122.9
232.1
282.0
2.1
0.0
0.0
0.0
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.4
0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.6
0.3
0.3
0.0
0.0
0.0
0.0
0.3
0.0
0.0
2.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.3
0.2
0.2
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.4
0.1
0.0
0.1
0.0
0.0
0.0
0.0
0.1
975 BC
648 AD
84 AE
85 AB
67
68
2525 AB
86 AB
2536
87 AB
2556
468
2576 FG
400
88 CD
204
70 FL
22
1535 AB
71 AE
151 AB
23 Ca,Cb
23 CD
23 CE
236
2729 AB
99376
99572C
99737
99965F
101234
101430
101430
101769
102040C
102040C
102040C
102523
102945
ρ
(00 )
σρ
(mas)
1.456
16.015
16.106
0.981
15.876
2.900
3.565
6.945
5.126
2.151
9.916
1.792
10.083
0.370
9.984
2.908
3.003
38.606
16.402
20.939
20.542
0.513
21.580
1.087
1.276
1.319
0.655
17.823
14.928
15.597
0.175
17.514
12.279
0.187
0.266
20.326
29.350
1.532
0.843
0.820
0.985
0.232
0.610
0.639
0.429
10.574
2.169
0.163
19.752
0.192
3.304
3.390
1.405
0.547
0.285
0.861
0.866
0.176
0.116
11.692
1.709
14.847
1.051
1.023
35.300
13.708
12.388
19.952
0.367
11.772
0.407
13.125
14.980
30.572
12.635
0.700
0.1
0.0
0.0
2.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.7
0.0
0.2
0.0
7.9
41.9
0.0
0.0
0.0
0.0
0.2
0.0
4.2
6.7
6.2
0.5
0.0
0.0
0.0
0.9
0.0
0.0
2.9
0.0
0.0
0.0
0.5
0.2
0.1
0.0
0.1
2.2
3.3
0.0
38.4
30.8
0.0
0.0
0.3
0.0
0.0
0.2
0.1
0.0
0.2
0.2
0.1
0.1
0.0
0.1
0.0
0.1
0.1
0.0
0.0
0.0
40.7
0.6
0.0
0.8
0.0
0.0
0.0
0.0
0.9
∆m
(mag)
0.77
1.17
1.34
0.39
5.05
4.50
5.71
4.85
4.73
0.26
5.75
2.24
5.29
0.58
3.53
0.16
0.11
4.78
6.21
3.51
3.55
0.54
6.33
2.47
5.43
5.45
0.37
5.14
4.15
4.66
0.00
3.35
6.18
0.97
0.00
3.84
4.37
2.60
0.96
1.10
0.28
0.71
4.46
4.88
0.44
1.72
3.30
1.10
5.73
1.75
4.52
4.59
1.98
0.27
0.11
2.61
1.47
0.24
1.13
1.27
1.49
2.50
0.54
0.71
4.92
0.33
5.58
6.33
2.53
1.68
1.14
3.48
4.52
3.82
1.14
2.66
[O−C]θ
(deg)
[O−C]ρ
(00 )
Ref.
−0.8
0.008
36
−5.9
0.064
21
0.9
0.005
65
−1.9
−0.071
10
0.2
−0.000
41
0.3
0.023
57
1.9
0.003
15
−1.3
−1.1
0.105
0.093
20
20
−19.0
0.064
66
0.5
0.059
67
−0.1
180.1
0.4
179.1
1.4
−0.107
0.004
−0.015
0.019
0.002
68
69
15
70
10
−2.7
0.109
71
0.1
−0.0
0.035
−0.003
14
14
Multiplicity survey of nearby solar-type dwarfs with Robo-AO
51
TABLE 4 — Continued
WDS
(2000)
22240+0612
22246+3926
22280+5742
22311+4509
22311+4509
22330+6955
22388+4419
22408−0333
22409+1433
22438+0353
22524+0950
22568+6244
22586+0921
23100+1426
23100+4758
23108+4531
23108+4531
23141−0855
23171−1349
23171−1349
23176−0131
23176−0131
23258+4521
23258+4521
23266+4520
23266+4520
23273+0427
23411+4613
23419−0559
Discoverer
Designation
RAO
RAO
KR
RAO
RAO
STF
HO
KUI
HO
WSI
RAO
MLR
STT
STF
STF
RAO
RAO
STF
BU
LDS
BU
BU
RAO
RAO
YR
HJ
A
MLR
RAO
27 Aa,Ab
28
60 AB
29 BC
29 BD
2924 AB
295 AB
114
296 AB
92
30 Da,Db
266 AB
536 AB
2986
2985 AB
89 CD
89 CE
2993 AB
182 AB
6393 AE
79 AB
79 AC
75 BC
75 CD
17 Aa,Ab
1867 BC
2400
4
31 Ba,Bb
HIP1
110574
110626
110893
111148B
111148B
111314
111805
111965
111974
112229
112935B
113306
113445
114378
114385
114456B
114456B
114702
114962
114962
115012
115012
115655B
115655C
115715
115715B
115779
116849
116906B
23506+5412
23518−0637
23526+1057
23587−0333
23588+3156
ES
700 AB
A
2700
YSC
17
BU
730
RAO 76
117573
117666
117730
118209
118213
23588+3345
RAO
118225
23595+3343
STF 3050 AB
77
118281
Epoch
+2000
N
θ
(deg)
σθ
(deg)
13.5703
12.7047
12.7047
13.5907
12.7019
12.7019
13.5947
12.7047
12.7048
12.7141
12.7647
12.7018
12.7621
13.5701
13.6354
12.7389
12.7047
13.6166
12.6746
13.6192
13.6192
13.6221
13.6221
13.6221
12.7676
12.7676
12.6746
12.6746
12.6773
12.6746
12.7049
12.6773
12.6747
13.6195
13.6357
12.6746
12.6774
12.7141
12.6720
12.6773
13.5704
12.6773
13.5704
12.7451
13.0573
13.6165
1
1
1
2
1
1
2
1
1
2
2
1
1
1
1
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
2
1
1
1
1
1
4
1
1
1.4
327.0
315.8
328.7
215.7
264.4
221.7
332.9
123.5
59.8
298.6
328.3
326.5
319.1
319.3
355.8
167.2
267.8
255.7
22.3
290.6
176.7
227.5
51.7
10.0
155.3
65.4
279.8
217.9
68.1
332.7
110.5
71.3
69.6
68.3
35.1
161.4
353.0
324.6
87.2
87.8
172.9
172.3
338.0
337.9
339.0
0.0
0.1
0.0
1.3
0.3
0.0
0.3
0.1
0.0
0.1
0.1
0.0
0.0
0.1
0.1
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.4
0.0
0.0
0.7
0.1
0.0
0.0
0.7
0.1
0.0
0.0
0.0
0.0
0.1
0.0
0.0
ρ
(00 )
σρ
(mas)
0.744
0.092
4.367
1.467
3.911
12.276
0.212
0.217
0.174
0.492
1.005
0.273
0.283
0.265
0.242
2.897
0.265
31.826
15.784
20.587
15.330
25.942
0.770
18.374
1.615
15.056
13.195
0.612
0.445
24.679
0.561
0.129
0.491
0.518
0.503
13.934
0.186
0.586
0.753
4.848
4.822
5.042
4.915
2.334
2.332
2.363
0.4
0.2
0.0
10.0
18.1
0.0
2.1
0.3
0.1
4.1
6.9
0.0
0.0
0.2
0.3
29.5
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.5
0.0
0.0
0.0
0.0
0.0
9.8
0.0
0.0
5.9
0.7
0.0
0.1
12.7
1.2
0.0
0.0
0.0
0.0
5.1
0.0
0.0
∆m
(mag)
2.70
0.00
6.02
1.40
6.00
3.59
0.45
0.12
1.04
1.07
3.46
0.18
0.21
0.60
0.19
3.53
0.04
2.79
0.59
2.63
3.03
0.68
0.33
6.57
1.33
5.42
5.79
1.01
2.90
1.39
3.03
0.00
0.14
0.00
0.00
3.49
0.27
3.06
4.31
6.55
6.35
6.77
7.04
0.18
0.16
0.18
[O−C]θ
(deg)
[O−C]ρ
(00 )
Ref.
−2.2
0.014
72
3.3
0.1
−1.2
−1.0
−0.015
−0.008
−0.011
0.012
73
11
74
45
−0.3
0.005
10
1.7
0.280
43
−0.0
0.017
75
−2.1
0.004
11
2.5
0.013
40
−1.1
−0.122
76
−0.0
−0.4
0.4
0.018
0.007
0.025
77
77
77
z
w
:
:
w
References. — 1 - Kiyaeva et al. (2001), 2 - Cvetkovic (2011), 3 - Scardia (1981), 4 - Zulevic (1997), 5 - Cvetkovic
& Novakovic (2006), 6 - Mason & Hartkopf (2005), 7 - Balega et al. (2006), 8 - Docobo & Ling (2010), 9 - Hartkopf
& Mason (2011b), 10 - Söderhjelm (1999), 11 - Hartkopf, Mason, & McAlister (1996), 12 - Valbousquet (1981), 13 Brendley, & Mason (2007), 14 - Heintz (1996a) , 15 - Muterspaugh et al. (2010b), 16 - Starikova (1983), 17 - Ling
(2012), 18 - Balega, Leushin, & Weigelt (2005), 19 - Andrade (2007), 20 - Heintz (1998), 21 - Scardia (2001), 22 Hopmann (1958), 23 - Hartkopf & Mason (2009), 24 - Hartkopf & Mason (2010), 25 - Starikova (1978), 26 - Scardia
et al. (2012), 27 - Heintz (1963), 28 - Alzner (1998), 29 - Cvetkovic (2010), 30 - Hartkopf, Mason, & Rafferty (2008),
31 - Ling (1992), 32 - Mason & Hartkopf (2011), 33 - Mason et al. (2004a), 34 - Hartkopf & Mason (2000), 35 - Zirm
(2008), 36 - Heintz (1984), 37 - Mason et al. (2009), 38 - Hartkopf, Tokovinin, & Mason (2000), 39 - Popovic (1969),
40 - Docobo & Ling (2009), 41 - Mason et al. (2006), 42 - Heintz (1996b), 43 - Heintz (1991), 44 - Docobo & Ling
(2011), 45 - Muterspaugh et al. (2010a), 46 - Ling (2011), 47 - Scardia et al. (2009), 48 - Mason et al. (1995), 49 - Hale
(1994), 50 - Scardia et al. (2007), 51 - Mason & Hartkopf (2012), 52 - Alzner (2007), 53 - Heintz (1988), 54 - Heintz
(2001), 55 - Mason, Douglass, & Hartkopf (1999), 56 - Seymour & Mason (2000), 57 - Heintz (1997), 58 - Zirm (2011),
59 - Heintz (1975), 60 - Heintz (1986a), 61 - Heintz (1994), 62 - Docobo & Ling (2008), 63 - Eggenberger (2008), 64
- Hartkopf, McAlister, & Franz (1989), 65 - Aristidi et al. (1999), 66 - Scardia et al. (2003), 67 - Zeller (1965), 68 Scardia et al. (2008), 69 - Muterspaugh et al. (2008), 70 - Fekel et al. (1997), 71 - Heintz (1995), 72 - Heintz (1986b),
73 - Prieur (2010), 74 - Griffin & Heintz (1987), 75 - Mason et al. (2004b), 76 - Seymour et al. (2002), 77 - Hartkopf
& Mason (2011a)