Draft version November 5, 2014 Preprint typeset using LATEX style emulateapj v. 5/2/11 A SURVEY OF THE HIGH ORDER MULTIPLICITY OF NEARBY SOLAR-TYPE BINARY STARS WITH ROBO-AO Reed L. Riddle1 , Andrei Tokovinin2 , Brian D. Mason3 , William I. Hartkopf3 , Lewis C. Roberts, Jr.4 , Christoph Baranec5 , Nicholas M. Law6 , Khanh Bui1 , Mahesh P. Burse7 , H. K. Das7 , Richard G. Dekany1 , Shrinivas Kulkarni1 , Sujit Punnadi7 , A. N. Ramaprakash7 , Shriharsh P. Tendulkar1 arXiv:1411.0682v1 [astro-ph.SR] 3 Nov 2014 1 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 2 Cerro Tololo Inter-American Observatory, Casilla 603, La Serena, Chile 3 U.S. Naval Observatory, 3450 Massachusetts Avenue, Washington, DC 20392-5420, USA 4 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 5 Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700, USA 6 Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA and 7 Inter-University Centre for Astronomy & Astrophysics, Ganeshkhind, Pune, 411007, India To be submitted to ApJ ABSTRACT We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the SDSS i0 band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over 1000 to quantify the still poorly constrained frequency of their sub-systems. Of the 214 secondaries observed, 39 contain such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary sub-systems with periods from 103.5 to 105 days is 0.12±0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of subsystems in both components of the outer binary is correlated. The relatively large abundance of 2+2 quadruple systems is a new finding, and will require more exploration of the formation mechanism of multiple star systems. We also targeted close binaries with periods less than 100 yr, searching for their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a subsample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods from 106 to 107.5 days (separations on the order of 500 AU), the frequency of tertiary components is 0.16±0.03, exceeding by almost a factor of two the frequency of similar systems among all targets (0.09). Measurements of binary stars with Robo-AO allowed us to compute first orbits for 9 pairs and to improve orbits of another 11 pairs. Subject headings: binaries: general – binaries (including multiple): close – stars: formation – instrumentation: adaptive optics – techniques: high angular resolution 1. INTRODUCTION Statistics of hierarchical stellar systems provide important clues to star formation mechanisms that are still actively researched and debated. Current theories give contradictory predictions about hierarchical multiples (for example, N-body dynamics vs. hydrodynamical simulations produce different multiplicity fractions); so far, none of them is capable of modeling the distributions of periods, mass ratios, and hierarchies seen in observations. As periods and separations of stellar pairs vary by several orders of magnitude, comprehensive coverage of the parameter space can be achieved only by combining complementary observing techniques, and only for the nearest stars. However, the number of objects in the best-studied 25-pc sample of Raghavan et al. (2010) is too small for deriving meaningful statistics of triple and higher-order multiples. For this purpose, a larger, distance-limited sample of ∼5000 F- and G-dwarfs within 67 pc of the Sun was constructed from the Hipparcos catalog; it is called FG-67 hereafter. The sample definition and the database are presented in Tokovinin (2014). The census of companions to primary stars in FG-67 is fairly complete over the whole range of periods, with an overall detection probability of about 80%, except for low-mass companions at separations from 0.00 1 to 2000 (see details in the above paper). Such companions can be discovered by highcontrast imaging with adaptive optics (AO). Secondary components can be close pairs as well, but discovery of sub-systems in the secondary components is more problematic, with average detection probability (before this survey) of only about 15%; most sub-systems in the secondaries are presently missed. If they are as frequent as sub-systems in the primaries, the actual number of stellar hierarchies in the FG-67 sample is substantially larger than known today. It is important to test the frequency of sub-systems in the secondaries for constraining mechanisms of multiplestar formation. If chaotic N -body dynamics is the dominant mechanism, sub-systems in the secondaries should be much less common than in the primaries, because in triple encounters, the lightest star is usually ejected while the two most massive stars pair in a binary. On the other 2 Riddle et al. hand, the hydrodynamic simulations of Bate (2012) predict a large fraction of multiple systems, including 2+2 quadruples (i.e., two close pairs in a wide outer binary). Recent advances in observational techniques have substantially improved our knowledge of the distribution of binary periods and mass ratios, as reviewed by Duchêne & Kraus (2013). Lucky imaging has been used to survey large samples (Ginski et al. 2012; Janson et al. 2012; Jodar et al. 2013). Yet, the emphasis is almost always placed on binaries, leaving higher-order hierarchies aside or addressing them casually; a rare exception is the work of Law et al. (2010) who observed a higher than expected high-order multiplicity of M dwarf stars. This survey aims at complementing the statistics of hierarchical systems in the FG-67 sample by imaging with Robo-AO (Baranec et al. 2014). Our main goal is to constrain the multiplicity of secondary components, most of which so far had no high-resolution imaging data. The second goal is to search for additional companions around primary targets which are themselves known close binaries. Here we explore the poorly covered part of the parameter space at separations on the order of an arcsecond, searching for low-mass tertiary components. In short, we focus on binaries (both wide and close) and quantify the frequency of additional companions. We begin with a brief characterization of the surveyed sample in § 2. Observations with Robo-AO and data processing are covered in § 3, with data tables described in § 4. In § 5 the results of this survey are presented, and § 6 is the summary. 2. THE TARGET SAMPLE The targets for this survey were selected from the FG67 database (Tokovinin 2014). We observed known and suspected binary stars and tried to constrain the frequency of additional components in those systems; high priority was placed on distant secondary components in wide binaries. The selection criteria were separations of > 1000 and a declination north of −15◦ . Some brighter secondaries are in the Hipparcos catalog, and therefore “screened” for companions by that space mission (but not as deeply as with Robo-AO). The majority, however, are rather faint. Many of those secondaries were discovered only recently by dedicated programs (Tokovinin 2011; Tokovinin & Lépine 2012). The second-priority list contains mainly targets which are binaries with periods P < 100 yr (separation ∼0.00 5 at 50 pc distance). The rationale for restricting the periods is related to dynamical stability: the semi-major axis of the outer orbit should be at least three times larger than that of the inner orbit, and should match well the discovery space of Robo-AO. Harrington (1992) quantified a value of 3 for the ratio of periastron of the outer binary to apastron of the inner binary as the critical factor for long-term stability (assuming equal masses). The program was later complemented with observations of additional resolved visual binaries with separations from 0.00 2 to 200 , and P > 100 yr. Here the chances of discovering wider tertiary components are small. The chances of resolving a secondary into a hereto unknown close pair are also small. However, observing those stars (mostly resolved) was useful for improving their orbits and for confirming some uncertain visual pairs which were resolved only once in the past and never confirmed since. The program included repeated observations of several known binaries as calibrators for data quality control. We observed most, but not all, components from the original lists: 239 secondaries (212 of those with good quality), 354 close pairs, and 102 resolved binaries. Some secondaries turned out to be too faint. Figure 1 presents the distribution of IC (Cousins I) magnitudes of our primary targets (van Leeuwen 2007) and of their secondary components. The latter are derived from their J magnitudes in the 2MASS catalog (Cutri et al. 2003), assuming that the stars are on the main sequence. All secondaries with useful data have IC < 13.5 mag. The median masses of primary and secondary components estimated from their absolute magnitudes are 1.22 and 0.71 M , respectively; 80% of secondary masses are between 0.31 and 1.04 M . 3. OBSERVATIONS AND DATA REDUCTION The instrument used for this survey was Robo-AO, the first robotic laser guide star AO system (Baranec et al. 2014), which is designed to operate automatically on 13 m class telescopes in order to undertake high efficiency observing programs (e.g., large surveys). The prototype Robo-AO instrument is currently deployed on the Palomar Observatory 60 inch (1.5 m) telescope (P60). As a fully automated system, Robo-AO is unique in its ability to observe targets at both high resolution and high cadence. Robo-AO uses Rayleigh scattering from a UV laser focused at 10 km from the telescope as the wavefront reference, and generates images at the diffraction limit of the P60 (0.00 12 – 0.00 15 FWHM) with Strehl ratios of 10-25% in the visible filters used for this survey. The AO system corrects the high order wavefront aberrations with automated software that operates at a rate of 1.2 kHz, sharpening the instantaneous point spread function (PSF) across the science camera field of view (FOV). A bright star within the FOV is still required to correct the tip-tilt motion; this is achieved in the automated data processing software (§ 3.2). Typically, Robo-AO requires a star brighter than m ≈ 16 mag with a broad-band filter to apply the tip-tilt correction successfully. Instrument parameters for this survey are listed in Table 1. 3.1. Observations Baranec et al. (2013) and Baranec et al. (2014) describe the operation and the science instrumentation of the Robo-AO system. The output of the science camera raw data are image cubes composed of 1024×1024 pixel image frames; a total of 516 frames were gathered during each 60 s exposure, which were then combined into a single image for further analysis by the automated data processing software. Almost all targets were observed with the SDSS i0 filter (York et al. 2000) with a central wavelength of 754 nm and a FWHM bandpass of 119 nm. Some fainter targets were observed with a long pass 600 nm filter (LP600) which transmits all wavelengths longer than 600 nm to the quantum efficiency cutoff of the detector. The pointing error of the P60 telescope with Robo-AO mounted is on the order of 1000 , and can vary between observing runs depending on telescope balance and adjustments. With a 4400 FOV, and no clear way to select one target over another in the stellar field, Robo-AO does not attempt to recenter the target automatically Multiplicity survey of nearby solar-type dwarfs with Robo-AO in fear of selecting the wrong star and moving the science target out of the field. This effect causes a large variation in the placement of the target star in the image frame; a planned upgrade to the Robo-AO software and continuing improvements to the P60 will minimize this effect. All observations were checked to confirm that the science target was captured in the CCD frame. The consequence for this survey is that target placement is across the entire FOV, and targets sometimes ended up uncomfortably close to the edge of the frame, limiting the observable area around the target. When necessary, stars affected were re-observed to capture a larger area and allow a better examination for companions. Robo-AO can observe targets at a rate of ∼20 per hour, with an intelligent queue system selecting the best object to observe at a given time (Riddle et al. 2014). The Robo-AO queue system interleaves several different science programs through a single night. Observations of this survey were spread over a year (July 2012 to August 2013) to gather targets at all hours of right ascension. The entire 695 targets of this survey used 29 total hours of observing time (this time also included calibration binary observations and re-observations). Robo-AO is ideally suited to a large survey such as this one, and is currently the only AO system that can observe this many targets in such a short time (Terziev et al. 2013; Law et al. 2014a). 3.2. Automated data processing The data were processed by automated reduction software developed for Robo-AO image alignment (see Law et al. (2014a) and Law et al. (2014b) for the details). Each individual frame is corrected for bias, dark current and flat field using standard calibration data, and the frames are then run through the software to co-add them and create a final high resolution image oversampled to 2048 × 2048. Stars in each output image were identified visually and their approximate centers were marked. Relative astrometry and photometry of wide pairs where the images do not overlap was done by fitting the scaled and shifted image of the brightest component to the secondary within 10 pixel radius from the image center. For closer (overlapping) binaries we used blind deconvolution, as described by Tokovinin, Hartung, & Hayward (2013). However, most of these “blind” measures are superseded by the results of speckle processing. 3.3. Binary-star measurement by speckle processing Speckle processing is complementary to the blind deconvolution of images, as it delivers diffraction-limited resolution even for low-Strehl data, when the instantaneous PSF has multiple spikes (speckles). The algorithm takes care of the multi-speckle PSF and works well even at low flux, when the selection of the brightest pixel for re-centering lucky images is compromised by the photon noise. Moreover, the power spectrum (or auto-correlation function, ACF) is proportional to the square of the signal and, therefore, it automatically assigns high weight to sharp images. For widely spaced binaries, speckle processing is done for each component individually to detect close sub-systems. Sub-frames of 256×256 original (un-binned) pixels centered on each component were selected from the data 3 cubes. The background was estimated as median signal in each column of the full image and subtracted, removing the systematic bias pattern along the CCD lines. No flat-field correction was applied. The average power spectrum was calculated on the 256-frame cube for each selected component. In parallel, an image was produced from these data by re-centering on the selected component and weighting individual frames with the maximum intensity in each frame. The weight is therefore proportional to the image sharpness. These auxiliary images are not used for astrometry or photometry, but are helpful for verifying companion detection and for resolving the 180◦ ambiguity of position angle inherent to the classical speckle processing. The algorithm of speckle data processing and binarystar measurement used here is adapted from the work of Tokovinin, Mason, & Hartkopf (2010). Figure 2 illustrates the case of a close 0.00 12 pair near the diffraction limit. Extracting astrometry and photometry from the image appears problematic, whereas the “fringes” in the power spectrum are very clear and constrain the position and magnitude difference ∆m. For binaries with nearly equal components, the pipeline image contains an “antipode” because the brightest pixel on which the frames are re-centered may belong to either binary component. In this case the relative photometry derived from the image is wrong (although correctable), but the speckle processing delivers the correct ∆m. It also increases the resolution on distant secondary components where the full-frame images suffer from the tilt anisoplanatism. On the other hand, if the secondary component is very faint, the pipeline technique of re-centering on the bright primary works much better than speckle processing of the secondary alone. We quantify the strength of the speckle signal by its ratio to the level of photon noise at a spatial frequency two times less than the cutoff frequency, and consider all measures resulting from the “weak” data to be uncertain. Speckle processing and imaging are truly complementary. In the final step, we combine binary-star measures from those two processing techniques. For binaries with ρ < 200 the speckle measures are preferred (with a few exceptions where the speckle processing failed), for wider pairs measures from the images are retained. Comparison of repeated measures of the same pairs by speckle and blind deconvolution shows their excellent agreement and gives an idea of the precision. Table 2 lists average values and rms scatter for two sample binaries measured by both methods several times. 3.4. Detection limits Limits for detecting companions in the pipeline images are evaluated in the standard way. Fluctuation of the signal in annular zones surrounding the star are computed and it is assumed that the companions brighter than 5σ are detectable. The same method is applied to the ACFs in the speckle processing. The two estimates of the detection limits obtained in this way are very similar, with the speckle limits being normally a little deeper (Figure 3). Depending on variable AO correction and target brightness, the individual detection limits vary substantially. For each target, we list the best (deepest) limits at three characteristic separations of 0.00 15, 0.00 8 and 2.00 1, selecting the best of two alternative processing techniques. 4 Riddle et al. When the target was observed several times, the deepest detection limits are reported in the table of final results. All of the survey primary targets are bright, but some secondary components present a problem as they are too faint to provide a useful signal in the power spectrum. Their pipeline images can show a bright 1-pixel spike at the center surrounded by a fuzzy halo; this is created by re-centering on the photon events, rather than on the brightest speckle, so the resolution is lost. Detection limits computed formally from such images are over-estimated. Yet, we prefer to keep such weak data in the final table, despite this obvious caveat, because they still contain some information on the duplicity. 3.5. Calibration and distortion correction The re-imaging system of the Robo-AO instrument contains a double optical relay with off-axis parabolic mirrors. Such relays are known to introduce quadratic image distortion. In the case of Robo-AO, the distortion, as reported by the optical design, is quite strong. It is directed along the visible CCD columns and displaces all sources down by as much as 26 pixels in the corners. Independently of the optical design, the distortion in Robo-AO was mapped on the sky using the image of the globular cluster M 15 (S. R. Hildebrandt, private communication, 2012). The pixel scale in the X-direction was found to be 43.74 mas, while the scale in Y was slightly different. The orientation is such that the +Y axis of the detector points at a position angle 23.◦ 9 from North and the +X axis points East (the image has mirror orientation). The quadratic distortion agrees with the optical-design data and is directed along Y. If we express the actual X, Y star coordinates in the image in the “small” over-sampled pixels of the automatic pipeline reduced image, the undistorted coordinate Y 0 is determined as Y 0 = Y − 0.0299∆Y + CX (∆X)2 + CY (∆Y )2 , (1) where ∆X and ∆Y are counted from the pipeline image center at (1024,1024) and the coefficients are CY = −2.54 10−5 , CX = −2.55 10−5 . The linear term in Y corresponds to the modified vertical scale. It is caused by the mismatch between the optical and CCD centers combined with the quadratic distortion. This distortion substantially affects the measurements of even close binaries because the CCD lines projected on the sky are parabolic. The distortion-induced tilt of the lines reaches 5.◦ 6 in the corners of the CCD. We correct the geometric distortion using the pixel coordinates of each source in the images. Equation 1 is applied to each component of a binary. The parameters ρ, θ are recalculated from the difference of un-distorted pixel coordinates X, Y 0 . In some instances the angles of close binaries are changed by as much as 2◦ after distortion correction. The scatter of relative positions of binaries measured several times is reduced after distortion correction, while the relative positions of wide pairs became closer to their positions derived from 2MASS. 3.6. Caveats As with any observing program, there were issues with some of the data collected that required some extra effort to make it useful. Each pipeline image was examined manually to find and remove erroneous measurements or detections; a graphical IDL tool was created to do this, and also used to mark the components and fit wide binaries. Owing to the P60 pointing errors, some images were empty, or the targets were found close to the edge of the FOV (see § 3.1). The quality of AO compensation, Strehl ratio, and the width of the PSF depended on the seeing conditions and varied substantially. As a consequence, the depth of companion detection was also variable. In some instances we detected new companions in the good-quality images, but missed them in the poor ones. The PSF had a persistent structure (“static speckle”) which could be mistaken for a companion. This structure also depended on the AO compensation quality and, possibly, on other factors. Fortunately, there were always other stars observed in the same conditions so the PSF could be compared in order to verify suspicious detections. In a few cases, the pipeline algorithm occasionally centered a frame on a bright spike caused by cosmic rays, while the remaining frames were centered correctly. This produced a false satellite that could be mistaken for a new companion. Also, several faint satellites caused by internal reflections in the optics are always visible around bright (V . 3 mag) targets. These reflections effectively reduce the dynamic range of companion detection. We were able to reduce some images where the primary component was saturated. Such data are still useful for detecting wide faint companions. Relative astrometry and photometry of such binaries was done by fitting PSF within an annulus, i.e. excluding the central saturated PSF core from the fit. The accuracy of the measured positions of wide binaries is less than for the close ones. This is likely caused by the residual tilt anisoplanatism: the differential tilt between the components caused by high-altitude turbulence is not completely averaged during the short 60 s exposure. In many cases, we were able to re-observe targets after the data analysis showed that the data were not sufficient; the ability of Robo-AO to observe quickly and efficiently allowed many objects to be added to the final analysis that would have not been available otherwise. 4. OBSERVING DATA TABLES The list of all components successfully observed in this program is given in Table 31 . The list contains 695 components belonging to 595 systems. Its columns contain the HIP1 designation (which is the Hipparcos number of the primary component in each system, and is used as the main identifier through this paper), component designation, equatorial coordinates of the observed component, its V magnitude, and its separation from the primary (these data are taken from the main database of the FG-67 sample). Secondary components have nonzero separations. The following columns list the date of observation and detection limits at separations of 0.00 15, 0.00 8, and 2.00 1. The last column gives the distance from the star to the nearest frame border, indicating the maximum separation of its detectable satellites. Measurements of resolved doubles are given in Table 41 . Each pair is identified by its WDS code (Mason 1 Full versions of Tables 3 and 4 are published on-line Multiplicity survey of nearby solar-type dwarfs with Robo-AO et al. 2001), discoverer designation, and component designation. In column 3, the HIP1 number of the primary star in each system is given. Following that are the date and number of observations (multiple observations made in the same filter within 0.2 yr are averaged), position angle (degrees), position angle error (degrees), separation (arcseconds), separation error(milliarcseconds), and magnitude difference. The errors of position angle and separation are computed as errors of the mean in the case of averaged data, otherwise estimated from the speckle processing, or listed as zero for PSF fitting of wide pairs. Uncertain measures (weak speckle signal or blind deconvolution) are marked by colons after ∆m. We also mark the bandpass when it differs from i0 (the LP600 filter is denoted by w). The last three columns give deviations in position angle and separation from the orbits, when available. 5. RESULTS 5.1. Newly resolved systems The list of newly resolved binary companions (including unrelated background stars) is extracted from the main table and presented separately in Table 5; they are given the “discoverer code” RAO in the WDS; a space is added between discoverer codes and component designations to make it clear they are not the same (i.e. component designations such as Aa and discoverer codes such as RAO 20 are parallel and must not be confused). Some binaries were measured several times, confirming the measured resolution. Images of new close pairs are presented in Figure 4. The closest pairs are detected in the speckle processing by examining the power spectra; these cases are illustrated by Figure 5. The new wide physical pairs are confirmed by comparing the measured positions of the components with their position in the 2MASS catalog, and by considering additional information such as magnitude, separation, color, crowdedness of the field, and proper motion of the main target. We do not compute the formal probability of physical association based on relative astrometry because the motion can be distorted by subsystems, while chance projections with small and similar motions do happen sometimes (see e.g. Tokovinin & Lépine (2012)). Other factors involved in the classification are difficult to quantify in terms of probability. Most faint companions in Table 5 wider that 1000 are optical with a large confidence; only three of them have an uncertain status. In some instances, the companions are not found in the catalog, but the 2MASS images in the Ks band reveal their presence as blends. This is taken as confirmation, because the companion position matches (at least qualitatively) and because the detection of the blend in 2MASS indicates that the companion is brighter in Ks than in i0 , indicating it is a cooler object below the detection threshold in the catalog. Notes in the Appendix give additional information on the multiple systems appearing in Table 5, the status of the measured binary pairs (’P’ for true physical binaries, ’O’ for chance optical alignments of unrelated stars), and the reasons for this classification. Follow-up observations in September 2013 with the PALM 3000 AO system at the 5-m Hale telescope at Palomar Observatory (Dekany et al. 2013) are mentioned where relevant, while their full results will be published in a forthcoming 5 paper (Roberts et al, in preparation). Two of the systems with newly resolved binaries, HIP 2292B (= HIP 2350) and HIP 12189B (= HIP 12184), are also exoplanet hosts; a complete discussion of their properties are included in Roberts et al. (2014b). Two RAO pairs were also measured by speckle interferometry at the SOAR 4.1-m telescope (Tokovinin et al. 2014). 5.2. Binarity of secondary components Overall, there are 212 secondary components with separations above 1000 that were observed with Robo-AO. Figure 6 illustrates different hierarchies found in this sub-sample. The wide binary is the root of the hierarchy (level 1); in 112 cases there are no sub-systems. Another 100 wide binaries contain inner hierarchies of level 11 (sub-system in the primary component), level 12 (sub-system in the secondary) or both (that is, a 2+2 quadruple). Here we silently ignore several sub-subsystems (levels 111 etc.), and restrict the discussion to the hierarchical levels 1, 11, and 12. As some subsystems are most likely not yet discovered, it is safe to say that at least half of those wide binaries are in fact triple or higher-order multiples. Orbital periods of wide binaries are estimated roughly from their projected separation and denoted as P ∗ to distinguish them from orbital solutions. Masses of binary components and the mass ratio (q = M2 /M1 ) are estimated from their absolute magnitudes, assuming that the stars obey standard relations for the main sequence. The detection limits of imaging are converted from the observed parameters (ρ, ∆m) into binary parameters (P ∗ , q), and combined with the detection limits from spectroscopy and other techniques (more details in Tokovinin 2014). There are 83 primary (level 11) and 39 secondary (level 12) sub-systems in the surveyed objects (Figure 7); nineteen new secondary subsystems were found, doubling their previously observed fraction. At first glance, the primary sub-systems still dominate, but remember that most of the primary targets (bright F- and G-dwarfs) were surveyed in radial velocity (RV), while only a few brighter secondaries have such RV coverage. The primaries also benefit from the Hipparcos discoveries of acceleration sub-systems (Makarov & Kaplan 2005), which explains deeper detections at P ∼ 103 d. At P ∼ 106 d the situation is reversed in favor of secondaries, owing to their imagery with Robo-AO. At still longer periods (separation & 500 ), the companion census for primaries is complete because of 2MASS (Tokovinin 2011) and CPM (Tokovinin & Lépine 2012) data, while for the secondaries the detections are restricted by the size of the Robo-AO field. However, this makes little difference because extremely wide sub-systems are dynamically unstable. It is convenient to express orbital periods by x, the logarithm of the period in days. The criterion of dynamical stability by Mardling & Aarseth (2001) requires that the ratio of outer to inner periods in triple systems be greater than 4.7, depending on the eccentricity in the outer orbit. The dynamical truncation function F (∆x) (where ∆x = xout − xin is the logarithm of the period ratio) is the probability of a given triple system being dynamically stable; it is modeled here as zero for ∆x < 0.7, one for ∆x > 1.7, and linear in-between. Considering the 6 Riddle et al. large range in periods, the exact form of this function has little influence on the results. In the sub-sample of 212 wide binaries, the average dynamical truncation is 0.95 at inner period xin = 5 and 0.5 at xin = 6, explaining the lack of wide sub-systems at levels 11 and 12. There is no need to look for binary secondaries with separations > 1000 because those are intrinsically rare. The limitation imposed by the RoboAO field of view is therefore not important for this work. We select for analysis the period range 3.5 ≤ xin ≤ 5 where the dynamical truncation is not important and the detection of secondary sub-systems with Robo-AO is relatively complete. This range corresponds to 1 decade in separation. We compare the frequency of primary and secondary sub-systems in this range of periods among selected 212 wide binaries in Table 6. The number of missed companions obviously depends on the distribution of the mass ratio, modeled as a power law f (q) ∝ q β . It is generally accepted that the power index β for solartype binaries is close to zero (uniform distribution) or slightly negative (Duchêne & Kraus 2013), while lowmass binaries tend to have more equal components and β ∼ 1. The probability of detecting a sub-system averaged over period (in the selected interval) and over the mass ratio q can be used to correct the raw companion frequency, if β = 0. However, the data collected here indicate that in the secondary sub-systems β ∼ 1, requiring a smaller correction for missed binaries. Therefore, the estimated frequency of secondary sub-systems with 3.5 ≤ xin ≤ 5 is 0.13 ± 0.03, assuming conservatively β = 1. It is only slightly less than the frequency of primary (level-11) sub-systems, which is less sensitive to the assumed β and is somewhere between 0.13 and 0.15 (Table 6). The frequency of sub-systems found here is close to the frequency of solar-type binaries in the same period range. For the log-normal period distribution and the binary fraction of 0.46 derived by Raghavan et al. (2010), the fraction of companions with 3.5 ≤ xin ≤ 5 is 0.112 (a similar estimate is obtained for the full FG-67 sample). The frequency of sub-systems in the components of wide binaries may be enhanced in comparison to the single stars, but only slightly. The actual frequency of sub-systems in secondaries may be even higher because of two additional factors. First, the methods used to identify wide secondaries introduce some selection against close binaries (Tokovinin & Lépine 2012). Second, detection limits here may be over-estimated (see §3.4). When the assumed detection limits are deeper than in reality, the correction of the raw frequency for incomplete detection becomes smaller. Quite surprisingly, the sub-systems in primary and secondary are often found at the same time. Among the 39 secondary sub-systems, 22 (more than half!) belong to 2+2 quadruples (Figure 6). Considering that many secondary sub-systems with short periods are still missed, the actual fraction of 2+2 quadruples among 212 wide binaries should be more than 10%. This surprising correlation likely has a root in stellar system formation processes and requires further study. 5.3. Frequency of tertiary components In the second part of our survey we looked for distant companions to close binaries. In other words, the problem is “reversed” and we explore the hierarchy from inside-out. Similar studies were made by Tokovinin et al. (2006), Allen (2007), Rucinski et al. (2007), and others. The second survey selects main targets which are close binaries with P < 100 yr (x < 4.56). Binaries with yet unknown periods, such as acceleration binaries from Hipparcos (Makarov & Kaplan 2005) and/or spectroscopic binaries from Nordström et al. (2004), are included. We resolved three acceleration binaries (HIP 6653, 101234, 103455) with Robo-AO, while more were resolved by a targeted campaign with the NICI instrument (Tokovinin et al. 2012; Tokovinin, Hartung, & Hayward 2013). However, as both acceleration and RV techniques involve a non-negligible false alarm probability, some of those presumed close binaries are in fact single stars. For the purpose of statistical analysis, we restrict the sample to 241 inner binaries with known periods P < 100 yr. In the cases where even closer inner sub-systems are present (e.g. the A-component of a visual binary is a spectroscopic pair), we select the inner-most (closest) pair and proceed outwards. The 71 close binaries have additional outer (tertiary) companions; some of the tertiary components are themselves close binaries (in 2+2 quadruples), and sometimes there are even more distant companions (3+1 quadruples). The raw frequency of tertiaries is 29%. When we restrict the sample to shorter inner periods, the fraction of triples increases, but the sample becomes smaller and the statistical errors increase. Figure 8 presents tertiary components in the (Pout , q1 ) plane, where q1 = M3 /M1 is the ratio of the masses between tertiary and primary components. The isodetection curves go deeper than for the general sample (compare with Figure 7, lower panel) owing to the RoboAO imaging. Many of tertiary components are found in the 2MASS catalog, but their colors alone were not sufficient to establish that they are physical, especially in crowded fields. The second-epoch imaging with RoboAO helps here. A few uncertain cases (companions detected by Robo-AO in crowded fields without 2nd epoch data) are not yet accepted as real. The average dynamical truncation curve F (xout ) is over-plotted. It explains why tertiaries with short periods xout ≤ 3 are rare. Such tertiaries would be easily detectable by spectroscopy and their scarcity is genuine. As in §5.2, we evaluate the frequency of outer systems in the outer period range of 1.5 dex, 6 ≤ xout ≤ 7.5, – the range free from dynamical truncation and well covered by the detection techniques. It is safe to assume β = 0 for wide components, in which case the average detection probability is 0.88. The raw companion frequency of 34/241 = 0.141 ± 0.024 is corrected to 0.161 ± 0.028. Owing to the deep detection limit, there is little difference between the raw and detection-corrected estimates. The frequency is significantly higher than the companion frequency to main targets in the same period range, 0.090 (again using the data of Raghavan et al. 2010). It is premature to speculate about the meaning of this finding. In Figure 8 we note the “pile-up” of tertiary companions at xout ∼ 7 (separations on the order of 1000 and projected separations on the order of 500 AU). If this feature is not a statistical fluctuation, it might imply some characteristic scale in the formation of solar-type Multiplicity survey of nearby solar-type dwarfs with Robo-AO multiple stars. The overall raw frequency of tertiary components (with all periods) is only 29%. If we assume that the intrinsic distribution of xout is Gaussian (Raghavan et al. 2010) and that their mass ratio q1 is distributed uniformly, the companion frequency of this underlying distribution (before applying dynamical truncation and detection filters) is determined to be 0.54; i.e., slightly but not dramatically enhanced in comparison with 0.46 for all solar-type dwarfs. Most binaries with P < 100 yr do not have outer tertiary companions; a similar conclusion was reached by Tokovinin et al. (2006) for spectroscopic binaries with periods of ∼10 d and longer. On the other hand, the closest binaries, with P < 3 d, are found almost exclusively in triples. 5.4. New and updated orbits For purposes of orbit determination, Robo-AO provides a unique collection of data. While there are certainly exceptions (Tokovinin 2012; Horch et al. 2012), the majority of interferometric data, whether with a filled or dilute aperture, have modest differential magnitude limits of about ∆m = 3 mag. For many pairs of larger magnitude difference, the Robo-AO observation represent the first observation by a high-resolution technique, and given the decline in classical micrometry, the first observation of any kind in many decades. Given these factors, the number of first orbits as well as those with significant changes from the previous determinations is not surprising. New orbits are presented in Table 7. In this Table, the pairs are identified by their WDS and HIP1 numbers, followed by their orbital elements, giving the period P in years, the semimajor axis a in arcseconds, the inclination i and longitude of the node Ω, both in degrees, the epoch of the most recent periatron passage T◦ in Besselian years, the eccentricity e and the longitude of periastron ω in degrees. Following this is the orbit grade (see Hartkopf & Mason 2013b, for details) as an evaluation of the orbit. For those pairs with previous orbit solutions we provide a reference to the previous “best” orbit. Figures 9 to 13 show the new orbital solutions, plotted with all published data in the WDS database. In each of these figures, micrometric observations are indicated by plus signs, high resolution measures by filled circles, Robo-AO observations as filled stars, and Hipparcos observations as filled diamonds. An O−C line connects each measure to its predicted position along the new orbit (shown as a thick solid line). The shaded circle centered on the primary indicates the resolution limit of the P60. A dot-dashed line indicates the line of nodes, and a curved arrow in the lower right corner of each figure indicates the direction of orbital motion. Previous published orbits are shown as dashed ellipses; references to each of the published orbits are given in the notes to Table 7. Orbital elements were determined with orbgrid10, the latest version of the venerable orbit reduction package of Hartkopf, McAlister, & Franz (1989) which utilizes a three dimensional (P , T , and e) grid search of variable grid step sizes from three initial estimates. It has been modified to include weighting methodologies determined in the production of the 5th Catalog of Orbital Elements of Visual Binary Stars (Hartkopf, Mason, & 7 Worley 2001). Some orbits use new speckle data from the SOAR telescope (Tokovinin et al. 2014). The rest of this Section gives notes on some pairs with new orbits. HIP 12204 (=WDS J02371−1112 = HU 1216AB) has only a preliminary orbit of grade 5, hence the formal errors of the elements are very large. HIP 17895 (=WDS J03496−0220 = YR 23): This is the first calculated orbit of this pair announced in Horch et al. (2002b) based on observations with the WIYN telescope. The 2004 measure, obtained with the 26 inch telescope in Washington, D.C. (Mason et al. 2006), is off a bit, which is not surprising given the aperture. HIP 34524 (=WDS J07092+1903 = CHR 216) was resolved by lunar occultations by Africano et al. (1975) and has several speckle measurements. Robo-AO finds it at nearly the same position as Hipparcos (the quadrant of our measure is established by the automatic data reduction co-added image), so the binary has made nearly one full revolution since 1991.25. It was not resolved at SOAR in 2009–2011 (ρ < 0.00 03), but measured in 2012.9, 2013.05, and 2014.06 (these data are used in the orbit calculation). The orbit is very eccentric, but measurements do not constrain the eccentricity, so it was fixed to 0.94 – a provisional value that gives the expected mass sum of 1.8 M . The orbit should be followed by spectroscopy. Unfortunately, the periastron passage in 2010 was missed, we have to wait for the next one in 2038. HIP 40167 (=WDS J08122+1739 = HUT 1Ca,Cb): This is the first calculated orbit of this pair. The existence of the Ca,Cb pair was inferred and the first astrometric orbit calculated by Heintz (1996b). HIP 103987 (=WDS J21041+0300 = WSI 6): This is the first calculated orbit of this pair first split by Mason et al. (2001) with the Struve 2.1 m telescope in an investigation of Hipparcos acceleration (G-type solution) pairs. HIP 105676 (=WDS J21243+3740 = WSI 7): Like HIP 103987 above, this is the first calculated orbit of this pair also first resolved with the same telescope on the same project. 6. SUMMARY A survey of high-resolution imaging with Robo-AO has advanced our knowledge of the multiplicity of solar-type stars in several ways. The binarity of the wide secondary components turned out to be comparable to the frequency of sub-systems in the primary components. This overturns the established paradigm about multiple-star architecture, where sub-systems were thought to be preferentially associated with the primary, most massive star in the system. This traditional view can be traced to the previous technological restrictions allowing to study only bright stars by spectroscopy or high angular resolution, and matched the idea that multiple stars experience chaotic dynamical interactions where the least massive components are ejected onto distant orbits or leave the system altogether. This new paradigm of dynamical evolution of multiple star systems, where wide secondary components retain companions at the same frequency as the primary, will require more exploration to determine how such systems develop. Quite unexpectedly, we discovered that sub-systems 8 Riddle et al. in the primary and secondary components of wide binaries are often present simultaneously, i.e. these systems are in fact 2+2 quadruples. This new result means that 2+2 quadruples are relatively frequent. Note that in the 25-pc sample of Raghavan et al. (2010), 9 out of 11 quadruples have the 2+2 architecture and only two are of the 3+1 “planetary” configuration; this result, based in small-number statistics, is now supported by the much larger FG-67 sample studied with Robo-AO. The high frequency of 2+2 quadruples challenges the paradigm of chaotic N -body dynamics (which can produce such architecture only exceptionally) and calls for exploration of other formation scenarios for multiple stars (e.g. Whitworth 2001). The high dynamic range of the Robo-AO imaging enabled discovery of 17 certain and 2 possible tertiary components to close binaries, converting them into triple or higher-order systems. Statistics of such triples reveal some interesting details, such as the prevalence of outer separations on the order of 500 AU. This result is not yet formally significant, but it highlights the potential of large samples. Historically small binary samples allowed only the first-order description of binary statistics by smooth functions with a few parameters (Duchêne & Kraus 2013). Modern large and homogeneous samples begin to reveal new details in these distributions, such as twin binaries with identical masses (Lucy 2006), bimodal period distribution in Hyades (Griffin 2012), and, possibly, preferred separations of tertiary components seen here. These findings will advance our understanding of multiple-star formation. The large data set that resulted from this survey enabled us to compute first visual orbits for 9 pairs and to update (sometimes dramatically) the existing orbits for 11 more. Accumulation and improvement of the visual-orbit data will lead to a better knowledge of stellar masses and to the statistical analysis of orbital elements. It will also enable dynamical study of visual binaries presenting special interest. We acknowledge the input of the referee that read through this lengthy paper and gave us comments to improve it. The Robo-AO system is supported by collaborating partner institutions, the California Institute of Technology and the Inter-University Centre for Astronomy and Astrophysics, and by the National Science Foundation under Grant Nos. AST-0906060, AST0960343, and AST-1207891, by the Mount Cuba Astronomical Foundation, and by a gift from Samuel Oschin. We are grateful to the Palomar Observatory staff for their ongoing support of Robo-AO on the P60, particularly S. Kunsman, M. Doyle, J. Henning, R. Walters, G. Van Idsinga, B. Baker, K. Dunscombe and D. Roderick. A portion of the research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. C.B. acknowledges support from the Alfred P. Sloan Foundation. This work used the SIMBAD service operated by Centre des Données Stellaires (Strasbourg, France), bibliographic references from the Astrophysics Data System maintained by SAO/NASA, data products of the Two Micron All-Sky Survey (2MASS), the Washington Double Star Catalog maintained at USNO. Facilities: PO:1.5m (Robo-AO) APPENDIX APPENDIX: NOTES ON NEW BINARY STAR SYSTEMS HIP 2292B = HIP 2350 = RAO 1BC is resolved at 0.00 5, with several Robo-AO measures and a confirmation with the Palomar 200 inch (5 m) telescope (P200). It remained fixed during 1 yr, despite the proper motion (PM) of 0.00 25 yr−1 . This star also hosts an exoplanet system with P = 3.44 d. The common-proper-motion (CPM) component A is at 83900 from B. We discuss this multiple system in a separate paper. HIP 2717B = BD+61 119 (V = 8.98, F8V, X-ray source) has two new companions at ∼300 , designated as RAO 2BC and RAO 2BD. We see the brighter companion C in the 2MASS image at a similar position, although it is not listed as a separate point source in 2MASS. On the other hand, the fainter star D is likely optical because the field is crowded and because a trapezium-like configuration of BC and BD would be dynamically unstable. The CPM nature of AB (Tokovinin & Lépine 2012) is confirmed by the data from 2MASS and UCAC (Zacharias et al. 2013). HIP 3214B (V = 14.87) is resolved at 1.00 6. The new pair is considered physical because the companion is bright and because it remained fixed during 1 yr. The 2MASS image is elongated in the E-W direction. HIP 3540 AB is LDS 836 at 55.00 4 separation. We resolved B into a new 1.00 5 pair RAO 4BC, confirmed with the P200. The component A is a spectroscopic binary (SB) with P = 11.4 d (Griffin 2002). The system is thus a 2+2 quadruple. HIP 3795 is another new quadruple system. The AB pair BU 495 has an orbit with P = 413 yr. The CPM component C (V = 10.83m ) at 15200 from AB turns out to be a new 0.00 67 pair RAO 5Ca,Cb. We consider Ca,Cb physical because the companion is bright, the separation is small, and the field is not crowded. HIP 4016B is accompanied by the 1.00 7 pair CD, at a distance of 1700 from B (AB = DAL 11 at 4100 is physical). The field is crowded, so we consider the faint stars C and D to be unrelated to B. BC is at (267.2◦ , 15.00 66) in 2MASS. HIP 4878 has faint stars B and C at 2.00 9 and 32.00 2 distance, respectively (RAO 39). The optical nature of C can be established by its different position (145.◦ 3, 32.00 4) and its color in 2MASS. AB was re-measured with the P200 one year later and found at a slightly different position, so it is likely optical as well, although the field is not crowded. HIP 5276 is an SB with P = 49.5 d (Gorynya & Tokovinin 2014), accompanied by the newly resolved tertiary component RAO 40 at 6.00 2. The physical nature of the tertiary is confirmed by the 2MASS position and by observations with P200. Multiplicity survey of nearby solar-type dwarfs with Robo-AO 9 HIP 5313 is another triple system: Aa,Ab is an acceleration and spectroscopic binary with a distant physical component B (RAO 41) at 26.00 2, confirmed by its position and color in 2MASS. HIP 6653 has a new companion at 1.00 8 (RAO 6). The star is on the Keck exo-planet program, its radial-velocity (RV) trend (D. Fischer, private communication, 2012) could be caused by the companion. The companion B is red, the field has low crowding, so the physical nature of AB is likely. HIP 7845 was measured as a test target, it is not in the FG-67 sample. The faint companion C at 2400 moved substantially during a year, hence it is optical. HIP 11696 is located in a crowded region of the sky. We targeted the component B and found a faint star at 15.00 7 from it (RAO 42BE), considered optical (just as the other components C and D listed in the WDS) because of the high crowding, non-hierarchical configuration, and the 2MASS position of BE. HIP 12062 has an optical companion RAO 43 at 14.00 8. The pair has a different position in 2MASS and the region is crowded. HIP 12067 has a new 5.00 7 companion B (RAO 7), confirmed by the 2MASS position, in addition to the inner acceleration and spectroscopic binary with yet undetermined period. HIP 12189 and HIP 12184 form a 3800 physical pair STFA 5 where each component is, in turn, a close binary: A is SB (P = 1.1 d), B is resolved here into a 0.00 53 pair RAO 8, confirmed next year with Robo-AO and P200. Moreover, an exoplanet with P = 335 d around B was announced. We discuss this multiple system in a separate paper. HIP 12685 has a companion at 21.00 7 (RAO 44) which is also present in 2MASS at approximately the same position. However, the PM is small, the field is crowded, and the color of B does not match a dwarf at the same distance as A, so we consider B optical. HIP 12925 has a new companion at 1.00 9, measured several times with Robo-AO and confirmed with the P200. This is a young multiple system: the radial velocity (RV) of A is variable (Nordström et al. 2004), there is a CPM companion at 49400 (Tokovinin & Lépine 2012), and HIP 12862 at 540 is co-moving. HIP 13336 contains the visual binary A 281AB and a companion RAO 45AC at 1500 , considered optical because it is found at a different position in 2MASS. HIP 15329 contains the AB pair (STF 53, P = 113 yr) and a CPM companion C (V = 13.24) at 10700 found by (Tokovinin & Lépine 2012). Here C is resolved at 1.00 6 (RAO 10Ca,Cb), revealing this system as a 2+2 quadruple. We believe that Ca,Cb is physical because of its small separation, moderate crowding, and the red color of Cb (∆i = 4.0 mag, ∆z = 2.8 mag). HIP 16329 Ba,Bb = RAO 11Ba,Bb (also known as J 207) is a spectroscopic binary in the Hyades cluster with a period of about 30.74 yr (Griffin 2012). Assuming the mass of the K7V component Ba to be 0.7 M , the spectroscopic orbit implies a minimum mass of 0.3 M for Bb and a semi-major axis of 0.00 265. The pair Ba,Bb was resolved by Robo-AO three times at 0.00 16 with ∆i = 0.87m , ∆r = 0.97m , and ∆z = 0.52m . This corresponds to a mass for Bb of ∼0.6 M . We can’t help noting that Bb appears redder than Ba, and that its lines were not detected in the spectrum; it could itself by a close binary or a fast rotator. This pair is a secondary component in the wide binary STF 399AB at 2000 separation, also measured here (despite its WDS designation, AB was first resolved by W. Herschel in 1782, not by W. Struve). The primary component A = vB 3 is itself a close binary with astrometric acceleration (Makarov & Kaplan 2005), although Griffin states that RV(A) is constant; it is not resolved by Robo-AO. HIP 17022 has an astrometric orbit with P = 3.06 yr. This binary is too close to be resolved with Robo-AO, but we found another faint star at 1.00 7 (RAO 47) which is confirmed as physical with the P200. HIP 17217 is a triple system with inner binary BU 1181 and a new component at 4.00 8 (RAO 48AC) confirmed as physical by its presence in the 2MASS image. HIP 17336 has a new companion at 10.00 4 which is not found in the 2MASS point-source catalog, but is seen at 270◦ and 1200 from A in the J-band image. The difference in positions matches the reflex PM of A, hence the new companion is optical. HIP 18218 is the binary A 1293AB. The new companion C at 2600 is optical, as evidenced by its position in 2MASS and high crowding. HIP 18719 is an SB in the Hyades (Griffin 2012) which is not resolved here. The faint star at 5.00 9 found here is optical because it is not seen in the 2MASS images. HIP 19389 has a CPM companion C at 6100 (Tokovinin & Lépine 2012), targeted here. The pair CD is found in 2MASS, which shows that D is optical to C, as the change in its position simply reflects the PM(C). HIP 21099 is a member of the Hyades. The faint 0.00 9 pair BC seen at 1900 from A is optical, as evidenced by its position in 2MASS. HIP 21443 has a new companion B at 5.00 7, revealed as physical by its color and position in 2MASS and confirmed with the P200. However, the PM(A) is small and the region is crowded, so the status of the new companion is not certain. The main target is also an SB1 with a period of 2.06 d (Gorynya & Tokovinin 2014). HIP 23396 is the binary HU 445 which deviates from its orbit. The star C at 3800 is classified as optical by comparing with its position in 2MASS. HIP 24016 is a double-lined SB with a CPM companion B = HIP 24005 at 6900 . We targeted B and found a star C at 106.◦ 2, 26.00 2 from it in this crowded field. The star is at 103.9.◦ 1 and 27.00 32 in 2MASS, hence it is optical. HIP 25300 is a system consisting of the 1.00 1 visual binary STF 677AB and a new tertiary component C at 6.00 8, confirmed as physical by its presence in the 2MASS images. Observations with the P200 also confirmed C and resolved B into a close pair. HIP 26444 is only triple – a single-lined SB coupled to the CPM component B at 22900 distance (Tokovinin & Lépine 10 Riddle et al. 2012). We targeted B and found two stars around it at ∼400 . They are not present in the 2MASS Ks -band image and hence are considered optical. HIP 27067 and HIP 27070 form the 2200 binary STF 775. We measured another star C at 1100 from A in this crowded field; AC is optical judging by its position in 2MASS. HIP 27246 is a new triple. The 11.1-yr spectroscopic and astrometric binary was recently resolved by Horch et al. (2012). The new component C at 10.00 9 is confirmed as physical by its position and color in 2MASS. HIP 31267 is another triple system consisting of an SB and the newly found tertiary component C, confirmed as physical by the 2MASS image and follow-up observations with the P200. The 5300 pair UC 1450AB is not physical because because the red color of the secondary places it well above the main sequence, while the small common PM is likely a chance coincidence. HIP 33355 is an SB with a new companion at 5.00 5 which could be physical. The Ks -band image in 2MASS is extended towards a position angle of 90◦ and the companion is confirmed with the P200. Yet, the small PM of the target makes it difficult to make a firm conclusion on the companion’s status. HIP 34110 is a triple system with a 5.1-d SB in the visual pair A 619, which deviates substantially from its orbit. The new component C at 15.00 7 is optical as shown the 2MASS data. HIP 35265 has a wide CPM companion B at 92700 (Tokovinin & Lépine 2012), whose physical nature is not certain, but likely, given the substantial PM. We targeted B and measured RAO 58BC at 17.00 6. This pair has a different position in 2MASS, hence is optical. HIP 38018 has an optical companion C at 118.◦ 7, 15.00 4, with a different position in 2MASS. HIP 40298 has a CPM companion B at 24400 (LDS 2564) which was targeted. The pair BC found here is optical. HIP 40479 has an optical companion at 3100 , with different position in 2MASS. HIP 40918 has a CPM companion B = HIP 40882 at 25800 which is resolved here into the 2.00 8 pair RAO 13BC and confirmed by the 2MASS image. Considering that A itself is a long-period SB, this is another 2+2 quadruple discovered by this survey. HIP 41319 has a CPM companion at 69200 , likely physical considering its large PM. It was targeted here, but the 16.00 8 pair RAO 62BC is optical, as revealed by its different position in 2MASS. HIP 43426 is a visual triple with two companions at 3.00 6 and 4900 from it. The distant component C was targeted. We measured RAO 63CD at 18.00 9, but this pair is optical. HIP 48273 is a double-lined SB with P = 3.955 d (Griffin & Suchkov 2003) and has a CPM companion B at 115500 (Tokovinin & Lépine 2012), considered physical because of the substantial common PM and matching colors. This secondary was resolved here at 0.00 16 (RAO 90Ba,Bb), converting the system into a quadruple. The pair Ba,Bb was measured at SOAR on 2013.13 at similar position. HIP 49638 is an astrometric binary with P = 4.2 yr and an estimated semi-major axis of 0.00 05. We detect the new companion RAO 15 at 0.00 5, converting this into a triple system. HIP 69160 is a double-lined SB with P = 8.4 yr (D. Latham, private communication, 2012) and expected semi-major axis of 0.00 09. It is resolved here at 0.00 12. HIP 69322 has a CPM component B (V = 13.92) at 60600 (Tokovinin & Lépine 2012), which is resolved twice into a new 0.00 58 pair RAO 17BC. HIP 71843 has a CPM component B at 21600 , V = 14.9. We measured a pair BC at 17.00 3 twice. Its position in the 2MASS is similar, but C is “bluer” than B, hence it could be a white dwarf, although more likely it is a background star, considering the small PM of the system. HIP 75676 is a 4000 physical binary KU 108 known since 1893. Both its components are SBs (D. Latham, private communication, 2012). In addition, we found the new 0.00 4 pair BC, making this a quintuple system. HIP 79607 is a known quintuple system. The component E (STF 2032AE, E=HIP 79551=GJ 615.2C) is resolved here at 0.00 4 (but not for the first time: Ea,Eb=YSC 152). Another star F at 3200 from E (RAO 65) appears optical; it is not found in 2MASS. HIP 79629 has a CPM component B at 10700 , V = 14.2. It is resolved here into a 0.00 14 pair of equal stars, converting binary into a triple. HIP 81608 has a CPM component B at 17900 . The 2700 pair RAO 82BC is optical, it has a different position in 2MASS. HIP 85042 has a CPM companion B at 4900 according to Raghavan et al. (2010). The secondary is resolved here at 00 0. 75 (RAO 19BC), while A itself is single. HIP 86642 is a double-lined SB (D. Latham, private communication, 2012) with a newly discovered tertiary component at 2.00 2. The 2MASS image does not resolve this pair, but it is confirmed with the P200, where the inner binary was also resolved. HIP 89207 is a 200 binary AB (A 2260). Another star C found here at 1700 is likely optical, as the field is very crowded. HIP 91120 has a CPM companion B at 62100 , V = 11.14. It is resolved here at 0.00 14 (RAO 83Ba,Bb). HIP 94540 is a visual triple system where the 100 pair BU 975BC is located at 33.00 6 from A. However, it was outside the Robo-AO field, and we measured only the known optical pair AD at 15.00 9 and the new companion E at 2.00 9 (RAO 84AE). The star E is not seen in the the Ks -band 2MASS image and is presumed to be optical, until proven otherwise. HIP 94666 is an SB for which we find a distant companion at 3.00 6, confirmed in the 2MASS image. HIP 94905 is a double-lined SB with P = 5.38 d. The companion RAO 67 at 6.00 9 has the same position in 2MASS. Multiplicity survey of nearby solar-type dwarfs with Robo-AO 11 However, the field is extremely crowded and the PM(A) is small, so the new companion is considered to be likely optical. HIP 95309 is similar to the previous case: we find a new 5.00 1 companion to the SB in a very crowded field. However, the PM(A) is 0.00 2 yr−1 , so comparison with the 2MASS position confirms the physical nature of RAO 68. HIP 95769 is a spectroscopic and astrometric binary with P = 2.26 yr. The companion B at 9.00 9 is optical; it has a different position in 2MASS and the field is crowded. HIP 96395 is an SB converted into a triple by establishing the physical nature of the 1000 companion noted previously by Fuhrmann (2004). Its position in 2MASS is same as measured here, its color matches a main-sequence dwarf. HIP 97222 is the binary STF 2576. It forms a quadruple or quintuple system with HIP 97295 at 79200 , which is the primary (Raghavan et al. 2010). The field is crowded and several optical components are listed in the WDS. We add to this list another optical pair RAO 69FK at 16.00 4. HIP 99232 appears to be triple. It was resolved at 0.00 065 as WSI 109 (not confirmed yet by a second measure), while Robo-AO finds a faint companion C at 1.00 9, re-observed within a year. We consider RAO 21AC physical (the field is not crowded), although a larger time base is needed for a solid confirmation because PM(A) is small. HIP 99572 has a CPM companion C at 102100 (AC = TDT 2085) which was targeted by Robo-AO. The 1800 pair RAO 88CD is optical (D is not found in 2MASS). HIP 99965: we targeted the CPM companion F (V = 13.5, AF = GIC 155) at 10600 and measured another star in the field; the pair RAO 70FL is optical, its position in 2MASS is very different. HIP 101234 is an acceleration binary, resolved here for the first time into a 0.00 17 pair of equal stars RAO 22, and confirmed with the P200. HIP 101430 appears to be a quadruple system. The outer 1700 pair AB=HJ 1535 is composed of the spectroscopic and astrometric binary Aa,Ab and a 0.00 17 pair Ba,Bb tentatively seen in the pipeline RoboAO image, but not confirmed by speckle processing. This sub-system is not listed in Table 6 for that reason, but it was resolved with the P200 nevertheless. The 1200 pair RAO 71AE is optical, with a different position in 2MASS in a crowded field. HIP 102040: The CPM companion C at 12500 from A (AC = LDS 1045) was targeted and resolved at 0.00 27 (RAO 23Ca,Cb). The two other wide companions D and E are optical; they are not recovered in 2MASS, while the field is crowded. HIP 103455 is an acceleration binary resolved here at 0.00 6 (RAO 24) and confirmed later with the P200. Metchev & Hillenbrand (2009) did not resolve this system, although its separation implies an orbital period of several decades. HIP 103641 is a quintuple system which consists of two visual pairs COU 2431Aa,Ab (Aa is also a close SB) and HDS 2989Da,Db (HIP 103052) at 113200 from A. We targeted D and measured the close pair, as well as an optical star at 19.00 7 from it (RAO 72DE), which has a different position in 2MASS. The WDS components B and C are also optical (crowded field). HIP 104514 has variable RV according to Nordström et al. (2004). We found a new physical companion at 3.00 4 and measured it twice. The companion is confirmed in the 2MASS image and with the P200. HIP 108473 is a 7.18-yr SB with a new physical companion RAO 73 at 12.00 4, confirmed by its position and color in 2MASS. HIP 109361 is an acceleration binary with variable RV, resolved here at 0.00 37 (RAO 26). HIP 110291 is astrometric and spectroscopic binary with P = 2.11 yr. The two wide companions B and C measured in this crowded field are optical, as evidenced by their respective positions in 2MASS. HIP 110574 is acceleration binary resolved here at 0.00 09 and confirmed with the P200 and at SOAR. The CPM companion B at 17100 (V = 15.88) was not targeted, being too faint. HIP 110626 is also an acceleration binary, but the new physical companion at 4.00 4 discovered by Robo-AO (and confirmed in the 2MASS image) is too distant to cause the acceleration. The system is therefore triple. HIP 111148 has a CPM companion B (V = 13.74) at 6200 , AB = LEP 108. We targeted B and found two faint stars C and D at 3.00 9 and 12.00 3, respectively. Both companions are considered optical (C is not seen in the 2MASS image, D has a different position of 268.◦ 3, 14.00 59, and the field is crowded). HIP 112935 is triple. Its CPM companion D (V = 13.3, AB = LDS 6388) at 25000 is resolved here at 0.00 24 several times at fixed position during one year, despite the fast PM of 0.00 5 yr−1 . HIP 114456 has a CPM companion C at 5000 (Raghavan et al. 2010) (the WDS pair HJ 1853AB is optical). We found only two optical stars around C, RAO 89CD and CE. They have diffferent positions in 2MASS. HIP 115655 has a CPM companion B = HD 20748 at 18500 . We measure a faint CD pair at 1300 from B. The color of C in 2MASS, J − K = 0.65, suggests that it is optical, although PM(A) is small and the position of BC in 2MASS is close to its measured position. HIP 116906 has a CPM companion B at 109.00 5 (LDS 5112, V = 14.5), which is resolved here into a 0.00 5 pair RAO 31Ba,Bb (three measurements within a year). The main star hosts an exo-planet with P = 572 d. HIP 118213 is an acceleration binary. We discover a tertiary companion at 4.00 8, confirmed by its repeated measurement within a year and seen in the 2MASS image. The new pair RAO 76 was also measured with the P200, where the inner binary was resolved as well. HIP 118225 is an SB with P = 25.4 d. We discovered another component at 500 , confirmed by its repeated measurement and by the 2MASS image. Table 8 summarizes the position measurements for the Robo-AO and 2MASS data used to determine if components 12 Riddle et al. are physical or optical pairs in many of the newly resolved systems. Some of the Robo-AO pairs were not resolvable by 2MASS, so they are not included in the table. The table lists the binaries by HIP number, and the components that are being measured, followed by the measured angle (in degrees) and separation (in arcseconds) for the RoboAO and 2MASS data, and the epoch of observation by 2MASS. The column ∆ gives the total displacement between the Robo-AO and 2MASS measurements. The next column µ∆t gives the displacement produced by proper motion, assuming ∆t = 12 years. The last 2 columns are the proper motion of the main target. The 2MASS measurements at ∼500 separations are likely less accurate than its astrometry in general (∼70 mas). The Robo-AO astrometry of wide pairs is accurate to ∼0.00 1 (Law et al. 2014a). The PM of companion candidates is unknown and comparable to the PM of some targets. Considering that the relative PM is not known, the assumption of a 12 year time base is good enough for estimating the expected displacement. REFERENCES Africano, J. L., Cobb, C. L., Dunham, D. W. et al. 1975, AJ, 80, 689 Aitken, R. G. 1914, Lick Obs. Bull. 8, 93 Allen, P. R. 2007, ApJ 668, 492 Alzner, A. 1998, A&AS 132, 253 Alzner, A. 2007 IAU Commission 26 Circular #163, 1 Andrade, M. 2007, RevMexA&A 43, 237 Aristidi, E., Prieur, J.-L., Scardia, M., Koechlin, L., Avila, R., Carbillet, M., Lopez, B., Rabbia, Y. et al. 1999, A&AS 134, 545 Baranec, C., Riddle, R., Law, N. M., et al. 2013, Journal of Visualized Experiments, 72, e50021 Baranec, C., Riddle, R., Law, N. M., et al. 2014, ApJ, 790, L8 Balega, I. I., Balega, Y. Y., Hoffmann, K.-H., Malogolovets, E., Schertl, D., Shkhagosheva, Z. U. & Weigelt, G. 2006, A&A 448, 703 Balega, Y. Y., Leushin, V. V. & Weigelt, G. 2005,Astron. Reports 49, 217 Bate, M. R. 2012, MNRAS 419, 3115 Brendley, M. & Mason, B. D. 2007, IAU Commission 26 Circular #163, 1 Burnham, S. W. 1873a, MNRAS 34, 59 Burnham, S. W. 1873b, MNRAS 33, 351 Burnham, S. W. 1894, Pub. Lick Obs. 2, 206 Couteau, P. 1990, A&AS 83, 331 Cutri, R. M., Skrutskie, M. F., van Dyk, S. et al. 2003 The IRSA 2MASS All-Sky Point Source Catalog. NASA/IPAC Infrared Science Archive. Cvetkovic, Z. 2010, IAU Commission 26 Circular #172, 1 Cvetkovic, Z. 2011, AJ 141, 116 Cvetkovic, Z. & Novakovic, B. 2006, Serbian AJ 173, 73 Dawes, W. R. 1835, MemRAS 8, 61 Dekany, R., Roberts, J., Burruss, R., et al. 2013, ApJ, 776, 130 Docobo, J. A. & Ling, J.F. 2008, IAU Commission 26 Circular #165, 1 Docobo, J. A. & Ling, J.F. 2009, AJ 138, 1159 Docobo, J. A. & Ling, J.F. 2010, IAU Commission 26 Circular #172, 1 Docobo, J. A. & Ling, J.F. 2011, IAU Commission 26 Circular #174, 1 Duchêne, G. & Kraus, A. 2013, ARAA, 51 (ArXiv:1303:3028) Eggenberger, A., Udry, S., Chauvin, G. et al. 2007, A&A, 474, 273 Eggenberger, P., Miglio, A., Carrier, F., Fernandes, J. & Santos, N. C. 2008, A&A 482, 631 Espin, T. E. 1908, MNRAS 68, 202 Fekel, F. C., Scarfe, C. D., Barlow, D. J., Duquennoy, A., McAlister, H. A., Hartkopf, W. I., Mason, B. D. & Tokovinin, A. A. 1997, AJ 113, 1095 Fuhrmann, K. 2004, AN 325, 3 Ginski, C., Mugrauer, M., Seeliger, M. & Eisenbeiss, T. 2012, MNRAS 421, 2498 Gorynya, N. A., & Tokovinin, A. 2014, MNRAS, 441, 2316 Griffin, R. F. 2002, Observatory, 121, 221 Griffin, R. F. & Suchkov, A. A. 2003, ApJS, 147, 103 Griffin, R. F. 2012, JAA, 33, 29 Griffin, R. F. & Heintz, W. D. 1987, JRASC 81, 3 Hale, A. 1994, AJ 107, 306 Harrington, R. S. 1992, “A Review of Dynamical Studies of Multiple Stars”, Complementary Approaches to Double and Multiple Star Research, ASP Conference Series, Vol. 32, IAU Colloquium 135, H.A. McAlister and W.I. Hartkopf, Eds., p. 212 Hartkopf, W. I. & Mason, B. D. 2000, IAU Commission 26 Circular #142, 1 Hartkopf, W. I. & Mason, B. D. 2009, AJ 138, 813 Hartkopf, W. I. & Mason, B. D. 2010, IAU Commission 26 Circular #170, 1 Hartkopf, W. I. & Mason, B. D. 2011a, AJ 142, 56 Hartkopf, W. I. & Mason, B. D. 2011b, IAU Commission 26 Circular #175, 1 Hartkopf, W. I. & Mason, B. D. 2013b, Catalog of Rectilinear Elements, USNO2 Hartkopf, W. I. & Mason, B. D. 2013c, Sixth Catalog of Orbits of Visual Binary Stars, USNO3 Hartkopf, W. I., Mason, B. D. & McAlister, H. A. 1996, AJ 111, 370 Hartkopf, W. I., Mason, B. D. & McAlister, H. A. 2001, AJ 122, 3480 Hartkopf, W. I., Mason, B. D. & Rafferty, T. 2008, AJ 135, 1334 Hartkopf, W. I., Mason, B. D. & Worley, C. E. 2001, AJ 122, 3472 Hartkopf, W. I., McAlister, H. A. & Franz, O. G. 1989, AJ 98, 1014 Hartkopf, W. I., Tokovinin, A. & Mason, B. D. 2012, AJ 143, 42 Heintz, W. D. 1963, Veroff. Sternw. Munchen 5, 247 Heintz, W. D. 1975, ApJS 29, 331 Heintz, W. D. 1984, A&AS 56, 5 Heintz, W. D. 1986a, A&AS 64, 1 Heintz, W. D. 1986b, A&AS 65, 411 Heintz, W. D. 1988, A&AS 72, 543 Heintz, W. D. 1991, A&AS 90, 311 Heintz, W. D. 1994, AJ 108, 2338 Heintz, W. D. 1995, ApJS 99, 693 Heintz, W. D. 1996a, ApJS 105, 475 Heintz, W. D. 1996b, AJ 111, 408 Heintz, W. D. 1997, ApJS 111, 335 Heintz, W. D. 1998, ApJS 117, 587 Heintz, W. D. 2001, IAU Commission 26 Circular #143, 1 Henry, T. J. & McCarthy, D. W. 1993, AJ 106, 773 Hopmann, J. 1958, Mitt. Sternw. Wien 9, 177 Horch, E. P., Bahi, L. A. P., Gaulin, J. R. et al. 2012, AJ 143, 10 Horch, E. P., Robinson, S. E., Meyer, R. D., van Altena, W. F., Ninkov, Z. & Piterman, A. 2002a, AJ 123, 3442 Horch, E. P., Robinson, S. E., Ninkov, Z., van Altena, W. F., Meyer, R. D., Urban, S. E. & Mason, B. D. 2002b, AJ 124, 2245 Hough, G. W. 1890, AJ 9, 177 Janson, M., Hormuth, F., Bergfors, C. et al. 2012, ApJ 754, 44 Jodar, E., Pérez-Garrido, A., Dı́az-Sánchez, A. et al. 2013, MNRAS, 429, 859 Kiyaeva, O. V., Kisselev, A. A., Polyakov, E. V. & RafalŚkii, V. B. 2001, SvAL 27, 391 de Lalande, J.-J. 1831, MemRAS 4, 165 Lang, K. R. 1992, Astrophysical data. Planets and Stars (Berlin: Springer-Verlag) Law, N. M., Dhital, S., Kraus, A., Stassun, K. G., & West, A. A. 2010, ApJ, 720, 1727 Law, N. M., Morton, T., Baranec, C., Riddle, R., Ravichandran, G., Ziegler, C., Johnson, J. A., Tendulkar, S. P., Bui, K., Burse, M. P., Das, H. K., Dekany, R. G., Kulkarni, S., Punnadi, S., Ramaprakash, A. N., 2014, ApJ, 791, 35 2 3 http://ad.usno.navy.mil/wds/lin1.html http://ad.usno.navy.mil/wds/orb6.html Multiplicity survey of nearby solar-type dwarfs with Robo-AO Law, N. M., Baranec, C., Riddle, R., 2014, Proc. SPIE, Adaptive Optics Systems IV, 91480A (July 21, 2014); doi:10.1117/12.2056994 Lewis, T. 1900, MNRAS 60, 494 Ling, J. F. 1992, AN 313, 91 Ling, J. F. 2011, IAU Commission 26 Circular #174, 1 Ling, J. F. 2012, IAU Commission 26 Circular #176, 1 Lucy, L. B. 2006, A&A, 457, 629 Makarov, V. V. & Kaplan, G. H. 2005, AJ 129, 2420 Mardling, R.A. & Aarseth, S.J. 2001, MNRAS 321, 398 Mason, B. D. 1996, AJ 112, 2260 Mason, B. D. & Hartkopf, W. I. 2005, IAU Commission 26 Circular #156, 1 Mason, B. D. & Hartkopf, W. I. 2011, IAU Commission 26 Circular #173, 1 Mason, B. D. & Hartkopf, W. I. 2012, IAU Commission 26 Circular #178, 1 Mason, B. D., Douglass, G. G. & Hartkopf, W. I. 1999, AJ 117, 1023 Mason, B. D., Hartkopf, W. I., Gies, D. R., Henry, T. J. & Helsel, J.W. 2009, AJ 137, 3358 Mason, B. D., Hartkopf, W. I., Holdenried, E. R. & Rafferty, T. J. 2001b, AJ 121, 3224 Mason, B. D., Hartkopf, W. I., Wycoff, G. L. & Rafferty, T. J. 2006, AJ 131, 2687 Mason, B. D., Hartkopf, W. I., Wycoff, G. L., Pascu, D., Urban, S. E., Hall, D. M., Hennessy, G. S., Rafferty, T. J., Flagg, L., Kang, D., Ries, P. & Holdenried, E. 2004a, AJ 127, 539 Mason, B. D., Hartkopf, W. I., Wycoff, G. L., Rafferty, T. J., Urban, S. E. & Flagg, L. 2004b, AJ 128, 3012 Mason, B. D., McAlister, H. A., Hartkopf, W. I. & Shara, M. M. 1995, AJ 109, 332 Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G. & Worley, C. E. 2001, AJ 122, 3466 Metchev, S. A. & Hillenbrand, L. A. 2009, ApJS 181, 62 Muterspaugh, M. W., Lane, B. F., Fekel, F. C., Konacki, M., Burke, B. F., Kulkarni, S. R., Colavita, M. M., Shao, M. & Wiktorowicz, S. J. 2008, AJ 135, 766 Muterspaugh, M. W., Hartkopf, W. I., Lane. B. F., O’Connell, J., Williamson, M., Kulkarni, S. R., Konacki, M., Burke, B. F., Colavita, M. M., Shao, M. & Wiktorowicz, S. J. 2010a, AJ 140,1623 Muterspaugh, M.W., Lane, B.F., Kulkarni, S.R., Konacki, M., Burke, B.F., Colavita, M.M., Shao, M., Hartkopf, W., Boss, A.P. & Williamson, M. 2010b, AJ 140, 1657 Nordström, B., Mayor, M., Andersen, et. al., & Mowlavi, N. 2004, A&A, 418, 989 Perryman, M.A.C. & ESA 1997, in ESA Publ. Ser. 1200, The Hipparcos and Tycho Catalogues, (Noordwijk: ESA), Vol. 1 Popovic, G. M. 1969, Bull. Obs. Astron. Belgrade 27, 33 Pourbaix, D., Tokovinin, A. A., Batten, A. H. et al. 2004 A&A 424, 727 Prieur, J.-L., Scardia, M., Pansecchi, L., Argyle, R. W. & Sala, M. 2010, MNRAS 407, 1913 Raghavan, D., McAlister, H. A., Henry, T. J. et al. 2010, ApJS 190, 1 Rica, F. 2013, IAU Commission 26 Circular # 181, 1 Riddle, R. L., Hogstrom, K., Papadopoulos, A., Baranec, C., & Law, N. M. 2014, arXiv:1407.4484 Roberts, L. C., Tokovinin, A., Riddle, R., Mason, B. D., Hartkopf, W. I., 2014, AJ, in preparation 13 Rucinski, S. M., Pribulla, T., & van Kerkwijk, M. H. 2007, AJ, 134, 2353 Scardia, M. 1981, AN 302, 35 Scardia, M. 2001, IAU Commission 26 Circular #145, 2 Scardia, M., Argyle, R. W., Prieur, J.-L., Pansecchi, L., Basso, S., Law, N. M. & Mackay, C. D. 2007, AN 328, 146 Scardia, M., Prieur, J.-L., Koechlin, L. & Aristidi, E. 2001, AN 322, 161 Scardia, M., Prieur, J.-L., Koechlin, L. & Aristidi, E. 2003, IAU Commission 26 Circular #151, 2 Scardia, M., Prieur, J.-L., Pansecchi, L. & Argyle, R. W. 2009, IAU Commission 26 Circular #168, 1 Scardia, M., Prieur, J.-L., Pansecchi, L. & Argyle, R. W. 2012, IAU Commission 26 Circular #177, 1 Scardia, M., Prieur, J.-L., Pansecchi, L., Argyle, R. W., Sala, M., Basso, S., Ghigo, M., Koechlin, L. & Aristidi, E. 2008, AN 329, 54 Seymour, D. & Mason, B. 2000, IAU Commission 26 Circular #141, 2 Seymour, D., Mason, B. D., Hartkopf, W. I. & Wycoff, G. L. 2002, AJ 123, 1023 Söderhjelm, S. 1999, A&A 341, 121 Starikova, G. A. 1978, SvAL 4, 296 Starikova, G. A. 1983, SvAL 9, 189 Struve, F. G. W. 1837, Mensurae Micrometricae Petropoli (see also 1837, AN 14, 249) Terziev, E., Law, N. M., Arcavi, I., Baranec, C., Bloom, J. S., Bui, K., Burse, M. P., Chorida, P., Das, H. K., Dekany, R. G., Kraus, A. L., Kulkarni, S. R., Nugent, P., Ofek, E. O., Punnadi, S., Ramaprakash, A. N., Riddle, R., Sullivan, M., & Tendulkar, S. P. 2013, ApJS, 206, 18 Tokovinin, A. 1997, A&AS 124, 75 Tokovinin, A. 2011, AJ 141, 52 Tokovinin, A. 2012, AJ 144, 56 Tokovinin, A. 2014, AJ, 147, 86 Tokovinin, A., Hartung, M. & Hayward, Th. L. 2010, AJ 140, 510 Tokovinin, A., Hartung, M., Hayward, Th. L. & Makarov, V.V. 2012, AJ 144, 7 Tokovinin, A., Hartung, M., & Hayward, T. L. 2013, AJ, 146, 8 Tokovinin, A. & Lépine, S. 2012, AJ 144, 102 Tokovinin, A., Mason, B. D. & Hartkopf, W. I. 2010, AJ 139, 743 Tokovinin, A., Mason, B. D., & Hartkopf, W. I. 2014, AJ, 147, 123 Tokovinin, A. A. & Smekhov, M. G. 2002, A&A 382, 118 Tokovinin, A., Thomas, S., Sterzik, M. & Udry, S. 2006, A&A 450, 681 Valbousquet, A. 1981, A&AS 45, 181 van Leeuwen, F. 2007, A&A, 474, 653 York, D. G., Adelman, J., Anderson, Jr., et. al., 2000, AJ, 120, 1579 Whitworth, A. P. 2001, in: Proc. IAU Symp. 200, eds. H. Zinnecker & R. D. Mathieu (ASP: San Francisco). Zacharias, N., Finch, C. T., Girard, T. M., Henden, A., Bartlett, J. L., Monet, D. G., & Zacharias, M. I. 2013, AJ 145, 44 Zeller, G. 1965, Ann. Sternw. Wien 26, 111 Zirm, H. 2008, IAU Commission 26 Circular #166, 1 Zirm, H. 2011, JDSO 7, 24 Zulevic, D. J. 1997, Bull. Obs. Astron. Belgrade #155, 109 14 Riddle et al. Fig. 1.— Cumulative histograms of the IC magnitudes of components observed with Robo-AO. Multiplicity survey of nearby solar-type dwarfs with Robo-AO 15 HIP 17217 Fig. 2.— Power spectrum (left, inverse logarithmic scale from 10−2 to 10−7 ) and lucky image (right) of HIP 17217 (separation 0.00 118, ∆m = 0.36). 16 Riddle et al. Fig. 3.— Median detection limit ∆m(ρ) determined on the images (full line) and on the speckle ACFs (dashed line). Measured pairs are plotted as crosses. Multiplicity survey of nearby solar-type dwarfs with Robo-AO 2292B 3795C 17 12189B 3214B 3540B 15329C 29860E 48273B 69322B 75676B 79629B 85042B 91120B 99232 101234 102040C 103455 109361 112935B 116906B N E Fig. 4.— Images of some new binaries discovered with Robo-AO. Each fragment of the pipeline image has a size of 100 pixels (2.00 2), the intensity scale is adjusted to highlight the companions, indicated by arrows. The images are displayed without rotation and labeled by HIP numbers. 18 Riddle et al. 91120B 16329B 49638 79629B 110574 Fig. 5.— Power spectra of some newly resolved close binaries. Primaries are identified by their HIP1 number. Multiplicity survey of nearby solar-type dwarfs with Robo-AO Aa 112 A A 61 19 total: 212 11 Aa Ab 1 1 22 B B 11 Ab 1 A 17 A Ba B 1 12 Ba B Bb 12 Bb Fig. 6.— Observed numbers of different hierarchies in 212 wide binaries surveyed by Robo-AO. 20 Riddle et al. Fig. 7.— Distribution of 39 secondary sub-systems (upper panel) and 83 primary sub-systems (lower panel) of wide binaries in the (P, q) plane. The contours indicate average detection probability. The angular separation on the upper axis corresponds to the distance of 50 pc. Multiplicity survey of nearby solar-type dwarfs with Robo-AO 21 Fig. 8.— Periods and mass ratios of 71 tertiary components to 241 binaries with P ∗ < 100 yr observed with Robo-AO. The contours indicate average detection probability. The full line over-plots the average dynamical truncation (not to be confused with q). 22 Riddle et al. 4 WDS 01158+0947 A 2102 WDS 01417-1119 STF 147 0.6 0.4 2 0.2 0 0.0 -0.2 -2 -0.4 E E N -0.6 -0.6 N -4 -0.4 -0.2 0.0 0.2 WDS 02371-1112 0.4 0.6 0 HU 1216AB 2 4 WDS 03140+0044 6 STF 367 1 0.5 0.0 0 -0.5 -1 E -1.0 E N -0.5 0.0 0.5 1.0 N -1 0 1 Fig. 9.— New orbits for the systems listed in Table 7, together with all published data in the WDS database. See § 5.4 for a description of symbols used in this and the following figures. In all of these figures, Figure a. is the upper left corner, b. the upper right, c. the lower left, and d. the lower right. In this figure: a. HIP 5898; b. HIP 7916; c. HIP 12204; d. HIP 15058. Multiplicity survey of nearby solar-type dwarfs with Robo-AO 23 0.3 WDS 03413+4554 BU 1181AB WDS 03496-0220 YR 23 0.2 0.2 0.1 0.0 0.0 -0.1 -0.2 -0.2 E -0.3 E -0.4 N -0.1 0.0 0.1 0.2 0.3 N 0.4 0.5 -0.6 -0.4 -0.2 0.0 0.2 0.2 WDS 04163+0710 WSI 97 2 WDS 04422+3731 STF 577 0.1 1 0.0 0 -0.1 -1 E E -0.2 N -0.2 -0.1 0.0 0.1 N 0.2 -1 0 1 2 Fig. 10.— New orbits for the systems listed in Table 7 (continued). In this figure: a. HIP 17217; b. HIP 17895; c. HIP 19911; d. HIP 21878. 24 Riddle et al. 0.3 WDS 07043-0303 A 519AB WDS 07092+1903 CHR 216 0.00 0.2 0.1 -0.05 0.0 -0.1 -0.10 -0.2 E E -0.15 -0.3 N -0.4 -0.3 -0.2 -0.1 WDS 08122+1739 0.0 N 0.1 0.2 -0.10 HUT 1Ca,Cb -0.05 0.00 WDS 10387+0544 0.05 STF1457 0.4 0.5 0.2 0.0 -0.5 0.0 -1.0 -0.2 -1.5 E -0.4 N -0.4 -0.2 0.0 0.2 0.4 E -2.0 -2.0 N -1.5 -1.0 -0.5 0.0 0.5 1.0 Fig. 11.— New orbits for the systems listed in Table 7 (continued). In this figure: a. HIP 34110; b. HIP 34524; c. HIP 40167; d. HIP 52097. Multiplicity survey of nearby solar-type dwarfs with Robo-AO WDS 11293+3025 L 1.5 11 25 WDS 13577+5200 A 1614 0.5 1.0 0.0 0.5 -0.5 0.0 -1.0 -0.5 E E N -1.5 -1.0 -0.5 0.0 N 0.5 1.0 -0.5 -1.0 0.0 0.5 1.0 1.5 0.5 WDS 15413+5959 0.4 STF1969 0.0 WDS 18154+5720 HDS2577 0.2 0.0 -0.5 -0.2 -1.0 -0.4 E E -1.5 N -0.5 0.0 0.5 1.0 N 1.5 -0.4 -0.2 0.0 0.2 0.4 0.6 Fig. 12.— New orbits for the systems listed in Table 7 (continued). In this figure: a. HIP 56054; b. HIP 68193; c. HIP 76837; d. HIP 89455. 26 Riddle et al. WDS 20514-0538 1.0 STF2729AB WDS 21041+0300 WSI 6AB 0.2 0.5 0.1 0.0 0.0 -0.5 -0.1 -1.0 -0.2 E E N N -1.5 -1.0 0.2 -0.5 0.0 WDS 21243+3740 0.5 1.0 1.5 -0.3 -0.2 0.6 WSI 7 -0.1 0.0 WDS 22161-0705 0.1 0.2 HDS3158 0.4 0.1 0.2 0.0 0.0 -0.1 -0.2 E E N -0.1 0.0 0.1 N 0.2 -0.4 -0.2 0.0 0.2 0.4 Fig. 13.— New orbits for the systems listed in Table 7 (continued). In this figure: a. HIP 102945; b. HIP 103987; c. HIP 105676; d. HIP 109951. Multiplicity survey of nearby solar-type dwarfs with Robo-AO TABLE 1 Robo-AO Observation Parameters Observation date range Targets observed Total observing time Observation filters Exposure time Typical FWHM resolution Typical contrast ratio at 0.5” August 31, 2012 to August 21, 2013 695 29 hours SDSS i0 , LP600 60 s 0.00 12 to 0.00 15 4 ∼ 5 mag. 27 28 Riddle et al. TABLE 2 Comparison between speckle and blind deconvolution HIP1 Discoverer Nobs 20472 STF 535 9 23100 COU 1525 8 Speckle (mean, rms) θ ρ ∆m 271.15 0.32 293.55 0.21 1.130 0.002 1.833 0.007 0.98 0.10 3.36 0.05 Blind (mean, rms) θ ρ ∆m 271.18 0.30 293.56 0.24 1.129 0.002 1.832 0.007 1.04 0.06 3.32 0.12 Multiplicity survey of nearby solar-type dwarfs with Robo-AO 29 TABLE 3 List of observed components and detection limits HIP1 179 223 394 493 601 754 Comp. A A A D A B RA (2000) Dec (2000) h m s ◦ 0 00 00 00 00 00 00 00 02 02 04 05 07 09 16.68 47.17 53.76 54.75 18.15 13.92 −13 +02 +34 +18 +20 +25 24 07 39 14 57 16 26.8 48.5 35.3 06.0 54.3 38.9 V (mag) Sep. (00 ) Epoch +2000 0.00 15 (mag) 0.00 8 (mag) 2.00 1 (mag) ρmax (00 ) 6.90 7.17 6.09 7.47 9.14 11.46 0.0 0.0 0.0 0.0 0.0 29.6 13.5730 12.7049 12.7020 12.6747 12.7050 12.6747 2.7 2.1 1.7 1.2 1.8 1.6 5.2 4.9 5.1 4.5 4.2 4.7 6.3 5.7 6.7 6.9 4.7 6.8 13.9 17.5 15.1 11.8 17.9 12.2 Note. — Table 3 is published in its entirety in the electronic edition; a portion is shown here for guidance regarding its form and content. 30 Riddle et al. TABLE 4 Measurements of binary stars with Robo-AO WDS (2000) Discoverer Designation HIP1 00028+0208 00057+4549 BU 281 AB STT 547 AB 223 473 00057+4549 00073+2058 00251+4803 00261−1123 00271−0753 POP 217 AP HDS 12 HDS 56 AB YR 4 A 431 AB 473 601 1987 2066 2143 Epoch +2000 N θ (deg) σθ (deg) 12.7049 12.7723 13.0478 13.0478 12.7050 12.7020 13.5730 13.5730 1 3 2 2 1 1 1 1 160.8 186.9 186.4 325.5 6.7 279.3 176.8 157.6 0.0 0.2 0.1 0.3 0.1 0.1 0.0 0.1 ρ (00 ) σρ (mas) ∆m (mag) 1.567 6.026 5.758 13.140 1.864 0.324 0.376 0.166 0.5 42.8 68.7 49.4 2.0 0.5 0.0 0.3 1.66 0.09 0.16 5.03 2.38 : 2.19 3.12 : 0.00 [O−C]θ (deg) [O−C]ρ (00 ) Ref. −0.3 −0.9 0.001 −0.266 1 1 −0.8 −0.016 2 −5.0 −0.019 3 References. — 1 - Kiyaeva et al. (2001), 2 - Cvetkovic (2011), 3 - Scardia (1981) Note. — Table 4 is published in its entirety in the electronic edition; a portion is shown here for guidance regarding its form and content. Multiplicity survey of nearby solar-type dwarfs with Robo-AO TABLE 5 New pairs resolved with Robo-AO WDS (2000) HIP1 00293−0555 00346+6235 00346+6235 00409+3107 00452+0015 00487+1841 00515+5630 00515+5630 01027+0908 01027+0908 01075+4116 01080+3915 01253+0128 01409+6410 02308+5533 02355+5948 02356+6106 02370+2439 02430+5812 02462+0536 02517+4559 03177+3838 03305+2006 03390+4232 03413+4554 03426+1718 03537+5316 04007+2023 04092+4010 04313+2008 04313+2008 04363+5502 05017+2050 05096+2947 05247+6323 05376+0607 05376+0607 05444+4024 05465+7437 06335+4822 06562+4032 07043−0303 07172+3306 07475+7012 08138+6306 08159+0227 08211+6527 08258+1703 08508+3504 09505+0421 10079+6650 14094+1015 14113+5424 14418+2432 15277+4253 16147+3352 16150+6040 16400−0605 17229−0223 17422+3804 18123+0154 18352+4135 19145+3434 19158+3823 19188+1629 19234+2034 19287+3437 19359+5659 19464+3344 20086+8507 20124−1237 20169+5017 20312+5653 2292 2717 2717 3214 3540 3795 4016 4016 4878 4878 5276 5313 6653 7845 11696 12062 12067 12189 12685 12925 13336 15329 16329 17022 17217 17336 18218 18719 19389 21099 21099 21443 23396 24016 25300 26444 26444 27067 27246 31267 33355 34110 35265 38018 40298 40479 40918 41319 43426 48273 49638 69160 69322 71843 75676 79607 79629 81608 85042 86642 89207 91120 94540 94666 94905 95309 95769 96395 97222 99232 99572 99965 101234 Discoverer Designation RAO 1 RAO 2 RAO 2 RAO 3 RAO 4 RAO 5 RAO 38 RAO 38 RAO 39 RAO 39 RAO 40 RAO 41 RAO 6 RAO 32 RAO 42 RAO 43 RAO 7 RAO 8 RAO 44 RAO 9 RAO 45 RAO 10 RAO 11 RAO 47 RAO 48 RAO 78 RAO 49 RAO 50 RAO 79 RAO 51 RAO 51 RAO 35 RAO 52 RAO 53 RAO 36 RAO 54 RAO 54 RAO 55 RAO 37 RAO 80 RAO 56 RAO 57 RAO 58 RAO 59 RAO 60 RAO 61 RAO 13 RAO 62 RAO 63 RAO 90 RAO 15 RAO 16 RAO 17 RAO 64 RAO 18 RAO 65 RAO 81 RAO 82 RAO 19 RAO 20 RAO 66 RAO 83 RAO 84 RAO 85 RAO 67 RAO 68 RAO 86 RAO 87 RAO 69 RAO 21 RAO 88 RAO 70 RAO 22 BC BC BD Ba,Bb BC Ca,Cb BC CD AB AC AB AB AB AC BE AB AB BC AB AB AC Ca,Cb Ba,Bb AB AC AB AC AB CD AB BC AB AC BC AC BC BD AC AC AC AB AC BC AC BC AB BC BC CD Ba,Bb AB AB BC BC BC EF Ba,Bb BC BC AB AC Ba,Bb AE AB AB AB AB AB FK AC CD FL AB N θ (deg) ρ (00 ) ∆m (mag) Status, remarks 5 1 1 3 1 1 1 1 1 1 2 1 3 5 1 1 1 2 1 3 1 3 4 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 166.7 67.2 302.5 275.6 223.1 322.4 270.4 82.5 36.2 147.0 335.4 244.7 204.5 175.3 207.0 207.8 169.0 285.2 211.1 252.8 81.8 223.4 75.9 142.9 269.0 269.7 241.6 308.4 294.3 310.3 177.4 14.4 242.8 106.2 227.1 34.9 157.2 151.9 68.5 221.9 156.6 10.6 126.6 118.8 37.6 170.6 245.6 310.0 357.6 83.8 71.4 261.2 145.9 61.9 100.2 238.2 42.1 148.9 86.3 302.2 71.9 336.1 72.2 331.1 190.9 350.9 348.2 250.7 318.3 65.3 271.1 264.2 195.8 0.53 3.55 3.180 1.629 1.521 0.674 16.999 1.720 2.927 32.155 6.167 26.24 1.827 24.84 15.677 14.472 5.71 0.536 21.670 1.91 15.195 1.560 0.159 1.741 4.83 10.388 25.912 5.905 9.584 18.800 0.917 5.737 38.414 26.153 6.84 4.526 4.398 11.103 10.85 4.97 5.510 15.713 17.637 15.476 13.074 31.245 2.79 16.798 18.943 0.160 0.510 0.119 0.577 17.271 0.408 32.267 0.139 27.160 0.752 2.20 17.237 0.136 2.900 3.57 6.945 5.13 9.916 10.08 16.402 1.32 17.823 15.597 0.175 3.3 4.3 6.85 0.0 3.5 1.3 3.97 1.28 6.57 6.33 6.4 4.4 4.2 6.5 5.11 6.15 5.1 4.3 4.08 4.4 6.30 4.0 0.9 6.2 6.4 6.44 6.65 6.35 3.04 6.32 0.26 4.65 3.85 6.58 5.5 5.79 6.12 5.55 3.5 5.3 6.35 6.64 5.45 5.87 3.48 6.42 3.2 4.19 3.20 0.0 3.0 : 0.7 1.7 2.02 1.5 3.74 0.0 3.89 0.0 5.0 6.81 0.8 4.50 5.7 4.85 4.7 5.75 5.3 6.21 5.5 5.14 4.66 0.0 P (fixed for 1 yr), B=HIP 2350 P (2MASS image) O (crowded field, non-hierarchical) P (bright, 2MASS image, fixed for 1 yr) P (confirmed with P200, low crowding) P (bright & close, low crowding) O (crowded field, 2MASS position) O? CD is unrelated to B O? (different position in 1 yr) O (2MASS position, small PM) P (2MASS position, conf. with P200) P (2MASS position, color) P (low crowding, red color) O (fast relative motion), not in FG-67 O (2MASS position, high crowding) O (2MASS position, high crowding) P (2MASS position) P (fixed position, conf. with P200). B=HIP 12184 O? (color, high crowding) P (fixed position, low crowding) O (2MASS position) P (small separation, red color) P (spectroscopic binary), B = HD 21663 P (confirmed with P200) P (2MASS image) O (2MASS position) O (2MASS position, high crowding) O (not found in 2MASS images) O (2MASS position) O (2MASS position) O? (unrelated to A) P? (2MASS position & color, confirmed with P200) O (2MASS position) O (2MASS position), B = HIP 24005 P (2MASS image, conf. with P200) O (not in 2MASS image) O (not in 2MASS image) O (2MASS position, high crowding) P (2MASS position, color) P (2MASS image, conf. with P200) P? (2MASS image, conf. with P200) O (2MASS position) O (2MASS position, high crowding) O (2MASS position) O (2MASS position) O (2MASS position) P (2MASS image), B = HIP 40882 O (2MASS position) O (2MASS position) P (close pair) P (close pair, low crowding) P (SB2 resolved) P (close pair, low crowding) O (blue color) P (close pair, small ∆m) O (not found in 2MASS), E = HIP 79551 P (close pair, small ∆m) O (2MASS position) P (close pair, small ∆m) P (confirmed with P200) O? (2MASS position, crowded field) P (close pair, small ∆m) O? (not confirmed in 2MASS image) P (2MASS image) O? (very crowded field, small PM) P (2MASS position) O (2MASS position, high crowding) P (2MASS position & color) O (2MASS position) P? (small separation, low crowding) O (not found in 2MASS) O (2MASS position, high crowding) P (acceleration binary, conf. with P200) 31 32 Riddle et al. TABLE 5 — Continued WDS (2000) HIP1 20333+3323 20408+1956 20408+1956 20408+1956 20577+2624 20599+4016 21102+2045 21585+0347 22094+3508 22204+4625 22204+4625 22240+0612 22246+3926 22311+4509 22311+4509 22524+0950 23108+4531 23108+4531 23258+4521 23258+4521 23419−0559 23588+3156 23588+3345 101430 102040 102040 102040 103455 103641 104514 108473 109361 110291 110291 110574 110626 111148 111148 112935 114456 114456 115655 115655 116906 118213 118225 Discoverer Designation RAO 71 RAO 23 RAO 23 RAO 23 RAO 24 RAO 72 RAO 25 RAO 73 RAO 26 RAO 74 RAO 74 RAO 27 RAO 28 RAO 29 RAO 29 RAO 30 RAO 89 RAO 89 RAO 75 RAO 75 RAO 31 RAO 76 RAO 77 AE Ca,Cb CD CE AB DE AB AB AB AB AC Aa,Ab AB BC BD Da,Db CD CE BC CD Ba,Bb AB AB N θ (deg) ρ (00 ) ∆m (mag) 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 4 1 1 1 1 3 2 2 224.7 59.4 303.0 327.2 102.8 117.6 209.1 89.3 351.0 122.9 232.1 327.0 315.8 215.7 264.4 319.3 22.3 290.6 65.4 279.8 69.6 87.8 172.3 12.279 0.266 20.326 29.350 0.610 19.752 3.39 12.39 0.368 14.980 30.572 0.092 4.37 3.9108 12.276 0.242 20.587 15.330 13.195 0.612 0.519 4.82 4.91 6.18 0.0 3.84 4.37 4.9 5.73 4.6 5.6 2.5 4.52 3.82 0.0 6.0 6.00 3.59 0.2 2.63 3.03 5.79 1.01 0.1 6.3 7.0 Status, remarks O (2MASS position, high crowding) P (close and bright) O (not found in 2MASS, high crowding) O (not found in 2MASS, high crowding) P (acceleration binary, conf. with P200) O (2MASS position, crowding), D = HIP 103052 P (2MASS image, conf. with P200) P (2MASS position & color) P (aceleration & SB1) O (2MASS position, crowding) O (2MASS position, crowding) P (acceleration binary, conf. with P200) P (2MASS image) O (not found in 2MASS, high crowding) O (2MASS position, crowding) P (close, fixed for 1 yr) O (2MASS position) O (2MASS position) O?(2MASS color) O (unrelated to B) P (close & bright, fixed for 1 yr) P (2MASS image, conf. with P200) P (2MASS image, fixed for 1 yr) Multiplicity survey of nearby solar-type dwarfs with Robo-AO TABLE 6 Frequency of levels 11 and 12 with 3.5 ≤ xin ≤ 5 Parameter Primary Secondary Total number Raw frequency Average detection Frequency (β = 0) Frequency (β = 1) 25 0.118±0.023 0.88 0.153±0.003 0.130±0.026 20 0.094±0.021 0.58 0.164±0.037 0.127±0.028 33 34 Riddle et al. TABLE 7 New Orbital Elements WDS HIP1 Figure 01158+0947 5898 9a 01417−1119 7916 9b 02371−1112 12204 9c 03140+0044 15058 9d 03413+4554 17217 10a 03496−0220 17895 10b 04163+0710 19911 10c 04422+3731 21878 10d 07043−0303 34110 11a 07092+1903 34524 11b 08122+1739 40167 11c 10387+0544 52097 11d 11293+3025 56054 12a 13577+5200 68193 12b 15413+5959 76837 12c 18154+5720 89455 12d 20514−0538 102945 13a 21041+0300 103987 13b 21243+3740 105676 13c 22161−0705 109951 13d P (yr) 162. ±13. 601. ±107. 351. ±271. 753. ±84. 46.2 ±1.1 54. ±29. 12.38 ±0.03 564. ±119. 46.88 ±0.50 27.60 ±1.1 19.05 ±0.46 488.0 ±3.6 254.9 ±7.9 205. ±20. 434. ±30. 82. ±65. 199.8 ±3.0 21.5 ±6.6 17.8 ±1.9 44. ±24. a (00 ) 0.607 ±0.035 2.42 ±0.19 1.01 ±0.34 1.32 ±0.13 0.27 ±0.13 0.49 ±0.12 0.2016 ±0.0066 1.51 ±0.22 0.273 ±0.014 0.179 ±0.013 0.3728 ±0.0068 1.1962 ±0.0051 1.18 ±0.12 0.857 ±0.028 1.013 ±0.036 0.40 ±0.21 0.844 ±0.015 0.231 ±0.041 0.167 ±0.015 0.30 ±0.16 i (deg) 101.7 ±1.0 82.6 ±2.2 64.4 ±3.4 132.5 ±2.8 90.3 ±3.6 114.5 ±1.4 69.99 ±0.75 141.2 ±6.0 99.2 ±2.2 103.3 ±1.9 149.2 ±7.2 66. ±22. 117. ±98. 139.5 ±9.2 74.4 ±1.2 62. ±14. 65.13 ±0.70 65.4 ±6.2 122.1 ±4.8 36. ±101. Ω (deg) 151.2 ±2.1 267.98 ±0.93 277. ±12. 123.7 ±7.8 269.9 ±4.5 234. ±23. 144.8 ±1.5 209.1 ±7.6 99.4 ±1.1 355.6 ±1.7 262. ±12. 159.89 ±0.36 246. ±20. 276.8 ±5.5 211.83 ±0.74 259. ±19. 173.36 ±0.86 102.3 ±6.6 247.3 ±7.8 160. ±62. T◦ (yr) 2101. ±13. 2015.23 ±0.87 1902. ±15. 1883. ±27. 1974.8 ±1.7 1992.8 ±3.4 2004.40 ±0.04 2024.9 ±8.0 1968.59 ±0.76 2010.81 ±0.25 1983.05 ±0.32 1748. ±14. 2075. ±61. 1911.6 ±2.3 1959.42 ±0.95 1997.8 ±6.6 1896.99 ±0.81 1985.0 ±6.9 2014.6 ±1.3 1989.0 ±5.3 e 0.447 ±0.054 0.901 ±0.030 0.508 ±0.044 0.281 ±0.020 0.79 ±0.76 0.750 ±0.012 0.1677 ±0.0043 0.4531 ±0.0071 0.635 ±0.037 0.94 * 0.088 ±0.013 0.5967 ±0.0018 0.65 ±0.12 0.717 ±0.025 0.828 ±0.016 0.36 ±0.36 0.526 ±0.014 0.24 ±0.21 0.31 ±0.10 0.55 ±0.59 ω (deg) 262.8 ±6.6 348.3 ±9.7 309. ±43. 254. ±30. 50.1 ±9.0 105. ±12. 65.6 ±1.5 262. ±11. 33.1 ±5.9 244.5 ±2.3 41. ±23. 339.20 ±0.29 92. ±48. 330. ±11. 21.4 ±2.2 313. ±51. 47.9 ±2.4 25. ±18. 285.6 ±7.4 126. ±104. Gr Ref. 4 a 4 b 5 c 4 d 4 — 4 — 3 — 4 e 3 f 4 — 4 g 4 — 5 — 3 h 4 i 4 — 2 j 3 — 3 — 4 k References. — a: Docobo & Ling (2010); b: Rica (2013); c: Heintz (1998); d: Heintz (1963); e: Mason et al. (2004a); f: Docobo & Ling (2009); g: Heintz (1996b); h: citetHeintz2001; i: Heintz (1975); j: Heintz (1998); k: Cvetkovic (2011) Multiplicity survey of nearby solar-type dwarfs with Robo-AO 35 TABLE 8 Comparison of positions measured by Robo-AO with 2MASS HIP1 Comp θRAO (deg) ρRAO (arcsec) 2MASS Epoch θ2MASS (deg) ρ2MASS (arcsec) 4016 4878 5276 5313 7845 11696 12062 12067 12685 13336 18218 19389 21099 21443 23396 24016 27067 27246 34110 35265 38018 40298 40479 41319 43426 71843 81608 89207 94905 95309 95769 96395 97222 99965 101430 103641 108473 110291 110291 111148 114456 114456 115655 BC AC AB AB AC BE AB AB AB AC AC CD AB AB AC BC AC AC AC BC AC BC AB BC CD BC BC AC AB AB AB AB FK FL AE DE AB AB AC BD CD CE BC 270.4 147.0 335.4 244.7 175.3 207.0 207.8 169.0 211.1 81.8 241.6 294.3 310.3 14.4 242.8 106.2 151.9 68.5 10.6 126.6 118.8 37.6 170.6 310.0 357.6 61.9 148.9 71.9 190.9 350.9 348.2 250.7 318.3 264.2 224.7 117.6 89.3 122.9 232.1 264.4 22.3 290.6 65.4 17.00 32.16 6.17 26.24 24.84 15.68 14.47 5.71 21.67 15.20 25.91 9.58 18.80 5.74 38.41 26.15 11.10 10.85 15.71 17.64 15.48 13.07 31.25 16.80 18.94 17.27 27.16 17.24 6.95 5.13 9.92 10.08 16.40 15.60 12.28 19.75 12.39 14.98 30.57 12.28 20.59 15.33 13.20 1998.97 2000.79 1999.97 1998.79 2000.01 1999.95 2003.60 2000.89 1997.77 2000.75 1999.78 1999.76 1999.83 2000.00 1997.84 1997.93 2000.86 2000.23 1998.94 1999.98 1999.08 2000.17 2000.07 1997.85 1999.85 2000.20 1999.27 2000.54 2000.32 1997.45 1997.86 1997.47 1998.33 2000.37 1998.48 2000.36 2000.75 1998.78 1998.78 1998.78 1999.76 1999.76 1998.80 267.2 145.3 338.0 245.0 174.6 201.6 199.4 172.4 212.2 92.3 241.4 284.2 310.9 12.6 242.1 103.9 154.2 67.9 8.3 135.4 127.1 39.2 169.1 298.4 350.9 61.7 151.9 72.9 192.7 349.9 341.8 249.3 304.1 257.3 224.4 108.4 89.5 131.5 233.1 268.3 23.7 273.6 66.8 15.66 32.42 5.32 25.99 24.44 16.68 14.09 5.25 21.26 20.79 26.18 9.39 17.41 5.32 40.04 27.32 12.07 10.93 15.23 18.43 15.66 15.53 32.09 18.15 20.72 16.38 28.53 16.51 6.68 4.80 12.02 10.06 13.05 18.70 9.12 21.29 12.37 13.62 33.69 14.59 16.84 15.74 13.81 ∆ (arcsec) µ∆t (arcsec) µ∗α (mas yr−1 ) µδ (mas yr−1 ) 1.6 1.0 0.9 0.3 0.5 1.8 4.2 0.6 0.6 6.5 0.3 1.7 1.4 0.5 1.7 1.6 1.1 0.1 0.8 2.9 2.3 2.5 1.2 3.8 2.9 0.9 2.0 0.8 0.3 0.3 2.4 0.2 6.5 3.7 3.2 3.6 0.1 2.5 3.2 2.5 3.8 4.6 0.7 1.2 0.8 1.6 1.0 0.0 1.5 2.9 1.5 0.3 6.8 1.0 1.6 1.3 0.2 1.3 0.7 1.1 2.8 0.7 2.2 2.1 2.2 0.9 2.9 2.5 0.7 1.2 0.5 0.4 2.2 2.8 2.4 5.3 3.7 2.5 3.8 3.4 2.4 2.4 2.2 3.6 3.6 0.8 62 66 118 −79 −2 81 230 97 −22 487 −43 −25 102 −5 −63 58 20 142 −50 −58 −93 142 71 −192 −173 −58 −28 −1 −29 13 49 0 13 −221 154 232 −248 −190 −190 −176 −86 −86 47 −79 −23 −55 −2 2 −97 −83 −76 4 −283 −67 −126 −41 20 −92 −5 −85 −187 −20 −173 −151 113 −15 −152 113 −18 −98 −39 −10 −186 229 −200 −441 −216 140 209 −133 −64 −64 34 −286 −286 −45 Note. — The measurement for HIP 12062 comes from Zacharias et al. (2013), all others are 2MASS positions. 36 Riddle et al. TABLE 3 List of observed components and detection limits HIP1 179 223 394 493 601 754 759 889 889 999 1103 1148 1274 1573 1987 1989 2066 2143 2292 2358 2414 2414 2563 2643 2717 2760 2762 2927 2981 3086 3214 3540 3540 3795 4016 4878 5034 5144 5276 5276 5313 5313 5531 5644 5685 5697 5799 5799 5881 5898 5952 6380 6439 6442 6486 6542 6653 6668 6702 6712 6752 6776 6914 6914 7274 7370 7427 7580 7589 7669 7852 7852 7874 7874 Comp. A A A D A B A A B A A A A A A A A A B A C A A A B A A A A A B A B C B A A A A B A B A A A A B A A A A A A A A A A C A A B A A B A A A A A A A B A B RA (2000) Dec (2000) h m s ◦ 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 04 05 07 09 09 10 10 12 13 14 15 19 25 25 26 27 29 30 30 30 32 33 34 35 35 37 37 39 41 45 45 48 51 02 04 05 07 07 07 07 10 12 13 13 14 14 15 15 16 21 22 22 23 24 25 25 26 26 26 27 29 29 33 34 35 37 37 38 40 41 41 41 16.68 47.17 53.76 54.75 18.15 13.92 19.44 56.07 57.82 30.31 45.70 21.54 59.86 36.48 08.74 11.02 08.68 07.77 59.87 08.69 41.91 45.56 34.06 29.96 38.31 13.77 14.88 08.20 56.99 13.26 45.67 10.96 13.57 51.85 25.31 42.64 27.63 51.44 28.74 28.55 58.74 56.71 50.74 30.05 08.90 18.82 22.46 24.04 31.26 46.74 36.45 59.72 43.11 43.45 21.42 03.46 20.11 38.55 08.79 19.21 33.20 06.33 02.10 08.67 42.40 58.10 40.97 37.71 44.49 44.76 58.77 03.11 18.38 18.75 −13 +02 +34 +18 +20 +25 +17 +48 +48 +14 +08 +60 −09 −07 +48 +16 −11 −07 −05 +04 +47 +47 +28 +40 +62 +51 −03 +15 +47 +03 +30 +00 +00 +18 +56 +09 +29 +04 +41 +41 +39 +39 +67 −09 +11 −01 −07 −07 +37 +09 +18 +15 +17 +10 +58 +54 +01 +31 +34 −04 +37 +34 +74 +74 −12 +33 −05 −09 +48 −05 −05 −05 +25 +25 24 07 39 14 57 16 32 06 06 33 11 20 28 13 02 59 22 52 45 51 30 31 11 06 37 50 35 08 24 08 59 15 15 39 29 07 39 54 15 15 15 14 46 13 40 51 54 55 44 47 31 10 11 22 08 21 27 32 34 40 28 22 12 12 12 07 04 24 24 44 24 22 44 44 26.8 48.5 35.3 06.0 54.3 38.9 02.1 37.5 53.8 48.7 36.6 30.1 46.4 26.5 51.0 30.9 37.1 33.6 50.4 36.4 08.8 47.5 51.5 20.3 19.6 17.6 34.2 23.2 27.8 02.1 36.4 11.8 51.0 13.1 40.6 58.6 31.7 33.9 32.0 36.8 09.0 58.1 48.3 25.4 57.7 43.6 39.8 22.2 36.2 05.5 21.6 37.6 49.4 10.3 34.8 32.7 39.1 46.2 46.9 26.8 15.7 39.2 18.1 21.9 46.4 04.3 38.6 13.6 45.9 07.4 13.1 25.5 44.6 53.5 V (mag) Sep. (00 ) Epoch +2000 0.00 15 (mag) 0.00 8 (mag) 2.00 1 (mag) ρmax (00 ) 6.90 7.17 6.09 7.47 9.14 11.46 7.07 8.41 10.72 8.44 7.41 8.51 8.57 7.03 7.52 7.89 8.25 8.09 9.44 6.52 10.95 7.74 8.66 7.76 8.98 7.37 5.20 8.10 7.53 7.34 14.87 7.01 13.85 10.83 11.29 6.83 6.20 7.26 7.24 15.30 7.78 12.77 6.55 7.74 7.86 8.95 7.85 5.14 8.87 7.16 8.47 8.02 7.16 7.47 6.36 8.25 7.38 8.03 6.34 8.14 9.04 6.27 7.24 12.61 8.51 6.74 7.79 6.24 6.77 7.35 8.48 12.10 6.20 10.90 0.0 0.0 0.0 0.0 0.0 29.6 0.0 0.0 24.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 839.3 0.0 105.4 0.0 0.0 0.0 115.5 0.0 0.0 0.0 0.0 0.0 811.7 0.0 55.4 152.3 40.9 0.0 0.0 0.0 0.0 5.3 0.0 26.0 0.0 0.0 0.0 0.0 49.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 56.7 0.0 0.0 256.9 0.0 0.0 27.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 125.5 0.0 10.5 13.5730 12.7049 12.7020 12.6747 12.7050 12.6747 12.7020 12.6748 12.6748 12.6775 12.6774 12.7050 13.5730 13.5730 12.7020 12.6775 13.5730 13.5730 12.6748 13.5729 12.6748 12.7050 12.7020 12.7020 12.6748 12.7020 13.5730 12.6774 12.7020 12.6774 12.6747 12.6774 12.6747 12.6747 12.6748 12.6775 12.6775 12.6775 12.6776 12.6776 12.6776 12.6776 12.7021 13.6195 12.6776 12.7021 13.5702 13.5730 13.5704 12.7050 12.7050 12.6776 12.6775 12.6775 12.7050 12.6776 12.6775 12.6749 13.5704 12.7022 12.6749 12.6776 12.7021 12.6749 13.6222 12.6776 12.7021 13.5731 12.7050 12.7022 12.7022 12.6749 12.6749 12.6749 2.7 2.1 1.7 1.2 1.8 1.6 2.8 3.0 1.5 2.6 2.4 2.2 2.9 2.4 1.4 1.2 2.2 0.8 2.1 2.7 1.5 1.8 2.5 2.0 1.4 1.7 1.8 2.2 1.7 2.3 2.1 2.3 1.3 1.8 1.6 2.5 2.4 2.2 2.7 1.4 2.1 0.7 1.5 2.7 1.3 2.4 2.4 2.3 2.3 1.8 2.0 2.4 2.4 2.2 2.1 2.3 2.4 2.6 2.4 2.1 1.2 2.8 2.0 1.6 1.9 2.7 2.1 2.4 2.6 2.6 2.6 2.0 1.1 2.5 5.2 4.9 5.1 4.5 4.2 4.7 5.3 5.1 4.6 5.2 5.2 4.9 4.2 5.0 4.9 4.9 3.6 3.8 5.2 5.4 4.8 2.4 4.8 4.9 4.9 4.8 4.8 5.4 4.7 5.2 4.1 5.2 4.0 2.1 4.5 5.3 5.4 5.2 5.2 1.6 5.3 2.4 4.7 3.7 5.2 5.2 5.2 5.0 5.0 4.9 4.8 5.1 5.3 5.3 3.1 5.2 5.2 5.3 4.8 5.0 5.3 5.3 4.7 5.0 1.8 5.3 4.3 4.7 4.7 5.4 5.5 5.0 4.6 5.1 6.3 5.7 6.7 6.9 4.7 6.8 6.7 6.8 6.3 6.9 6.8 6.3 4.6 6.2 6.5 6.6 5.2 4.2 7.0 6.9 6.7 6.0 6.5 6.8 7.2 6.7 6.4 7.0 6.2 6.9 3.7 7.0 4.7 6.8 5.6 6.9 7.1 6.6 6.9 1.5 6.9 2.3 6.8 4.1 6.9 6.7 6.8 6.3 6.6 5.7 6.9 6.9 7.0 6.9 6.2 7.0 6.8 7.0 6.8 6.8 7.8 7.0 7.4 6.7 6.6 7.0 5.5 6.1 6.6 6.6 6.7 6.8 7.2 6.2 13.9 17.5 15.1 11.8 17.9 12.2 11.9 7.6 14.6 10.9 4.9 7.5 15.3 14.2 14.0 14.0 17.0 13.5 19.6 17.1 17.2 12.6 13.7 18.2 15.6 13.0 18.9 10.1 18.1 11.4 13.3 18.8 17.7 14.1 16.1 7.3 18.1 10.7 15.2 13.2 16.9 4.2 12.1 15.5 14.3 4.9 11.1 16.1 12.9 7.1 11.1 15.9 17.7 13.1 15.6 16.0 18.3 10.3 11.5 5.4 16.7 19.2 6.1 13.2 18.2 17.2 12.6 16.1 19.0 4.2 4.2 13.6 18.8 12.8 Multiplicity survey of nearby solar-type dwarfs with Robo-AO 37 TABLE 3 — Continued HIP1 7916 7918 8109 8370 8433 8796 8998 9073 9621 9974 10305 10305 10306 10321 10535 10644 10677 10680 10710 10710 10961 11137 11218 11253 11253 11352 11417 11548 11696 11843 11906 11923 12062 12067 12067 12153 12189 12189 12204 12204 12306 12350 12444 12491 12638 12638 12685 12764 12777 12925 13168 13336 13677 13702 13773 14075 14134 14134 14194 14194 14230 14230 14235 14286 14548 14676 14809 14944 15058 15062 15247 15304 15329 15329 15482 Comp. A A A A A A A B A A A B A A A A A B A B A B A A C A A A B A A A A A B A B A C A A A A A A B A A B A A A C A A A A B A B A C A C B A B A A A A C C A A RA (2000) Dec (2000) h m s ◦ 0 00 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 41 41 44 47 48 53 55 56 03 08 12 12 12 12 15 17 17 17 17 17 21 23 24 24 24 26 27 28 30 32 33 33 35 35 35 36 36 37 36 37 38 39 40 40 42 42 42 44 44 46 49 51 56 56 57 01 02 02 03 03 03 03 03 04 07 09 11 12 14 14 16 17 17 17 19 44.83 47.14 14.08 48.01 41.56 04.91 53.83 50.16 39.35 26.07 47.54 46.65 48.09 55.01 42.78 03.23 23.05 24.73 55.54 54.78 12.96 17.10 23.31 51.15 51.17 09.59 10.94 48.49 48.58 54.14 40.25 53.73 32.80 35.56 35.69 37.92 57.74 00.52 58.36 08.63 27.86 00.81 12.42 42.29 21.31 20.94 58.66 00.95 10.12 14.61 19.90 39.56 18.76 26.16 14.96 22.69 16.80 17.29 01.79 01.38 28.65 28.50 31.99 43.45 58.29 36.35 12.33 39.12 02.89 04.79 40.67 32.78 44.18 44.02 35.28 −11 +42 +54 +46 +32 +29 +01 +23 +25 +43 −02 −02 +21 +40 +25 +34 +61 +28 +19 +19 +54 +15 −03 +30 +30 +34 +03 +29 +55 +15 +77 +49 +59 +61 +61 +12 +24 +24 −11 −11 +30 −08 −09 +26 +38 +38 +58 −06 +49 +05 −10 +45 +72 +18 +01 +06 +41 +41 −02 −02 +23 +23 −10 +61 +25 +05 +22 +71 +00 +18 −03 +07 +38 +38 +67 19 36 53 13 41 34 50 02 56 11 23 23 12 40 02 13 21 44 40 41 30 25 06 38 38 28 09 55 33 02 40 30 47 06 06 26 38 38 13 11 48 55 27 37 37 37 11 00 13 35 33 58 52 01 53 14 23 23 05 05 03 03 58 44 32 12 25 33 44 18 31 41 36 38 14 28.8 48.1 11.2 47.1 24.8 43.8 59.9 20.2 07.7 27.6 37.1 46.8 39.6 06.0 35.0 27.2 05.7 30.3 50.2 00.0 36.3 01.2 14.5 48.3 28.2 10.0 23.1 54.3 06.6 04.4 20.2 21.7 32.4 22.4 17.3 51.5 53.0 50.0 42.8 51.2 59.9 40.4 10.4 20.3 07.2 21.1 52.1 33.6 55.2 33.3 02.0 45.7 41.8 23.2 14.4 56.9 45.7 28.9 11.3 17.9 41.3 37.4 30.2 08.0 01.1 10.4 22.7 20.8 21.7 13.7 48.9 24.6 34.1 21.2 15.2 V (mag) Sep. (00 ) Epoch +2000 0.00 15 (mag) 0.00 8 (mag) 2.00 1 (mag) ρmax (00 ) 5.75 4.96 7.27 6.33 5.78 3.42 6.01 10.98 5.64 7.60 5.65 7.56 5.23 7.19 5.57 4.84 8.22 7.75 8.90 14.03 6.86 9.36 7.20 8.16 12.00 8.00 8.43 5.89 9.66 6.00 7.67 7.77 8.95 8.42 14.94 5.64 7.10 6.48 11.84 8.01 7.36 6.98 5.79 7.55 8.70 10.21 8.28 7.07 10.25 7.88 7.61 8.66 10.14 5.58 7.56 8.82 7.96 9.73 7.51 9.97 7.09 12.96 7.10 13.16 14.69 7.99 10.55 7.64 7.36 8.12 7.48 7.78 13.34 7.26 8.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59.4 0.0 0.0 0.0 16.6 0.0 0.0 0.0 0.0 0.0 13.8 0.0 14.3 0.0 34.7 0.0 0.0 20.5 0.0 0.0 0.0 21.5 0.0 0.0 0.0 0.0 0.0 5.8 0.0 38.1 0.0 188.0 0.0 0.0 0.0 0.0 0.0 0.0 14.6 0.0 0.0 22.3 0.0 0.0 0.0 42.8 0.0 0.0 0.0 0.0 17.6 0.0 8.9 0.0 4.5 0.0 263.8 124.1 0.0 33.2 0.0 0.0 0.0 0.0 155.9 107.0 0.0 0.0 13.5731 13.5704 12.7648 12.6776 12.6776 13.5704 12.7050 12.6748 12.7050 12.6777 12.6750 12.6750 12.6777 12.6777 12.6777 12.6777 12.7050 12.6750 12.6776 12.6776 12.6777 12.6750 12.7022 12.6777 12.6777 12.6777 12.6776 12.6777 12.6750 12.6776 12.7568 12.6777 12.7021 12.7021 12.7021 12.6776 12.7648 12.6777 13.6250 13.6250 12.6777 13.6197 13.6197 12.7050 12.6750 12.6750 12.7021 12.7022 13.6168 12.6776 13.6251 12.7050 12.6750 12.6776 12.7050 12.6998 12.6751 12.6751 12.7023 12.7023 12.7022 12.7022 13.6251 13.6170 12.6751 12.6997 12.6751 12.7650 12.7624 12.6998 13.6196 12.6751 12.6752 12.7622 12.7650 1.8 1.9 1.8 2.3 2.6 2.2 1.8 2.3 2.9 2.3 1.9 1.8 1.0 2.5 0.9 2.3 2.7 2.1 1.2 1.2 1.3 2.6 2.6 1.8 1.2 1.3 1.8 3.0 1.9 2.4 2.6 2.4 1.8 1.7 1.3 1.3 1.9 2.7 2.7 0.7 2.1 3.3 3.2 2.3 2.9 2.4 1.9 2.2 1.4 2.6 2.0 2.8 1.5 1.3 2.0 2.7 1.2 1.6 2.3 1.3 1.7 1.2 1.7 1.5 2.7 0.9 2.3 1.5 3.2 2.7 2.7 1.6 1.2 2.6 1.4 5.3 4.9 4.8 5.6 5.3 4.5 1.8 4.9 5.3 5.2 5.0 4.9 5.3 5.2 5.0 4.9 3.2 5.2 5.2 4.2 4.9 5.2 5.1 5.0 3.7 5.1 5.2 5.3 4.9 5.2 4.2 5.1 5.0 4.8 3.1 5.3 5.2 5.4 5.7 1.6 5.2 5.4 5.1 3.1 5.1 5.1 4.8 4.9 5.1 5.3 4.7 3.3 4.9 5.2 3.6 4.9 5.3 5.0 5.2 4.1 5.1 1.2 5.0 4.6 4.2 3.6 5.2 3.0 3.2 5.2 4.4 5.4 5.0 2.8 3.0 6.9 6.5 6.7 7.2 7.0 6.6 6.3 6.4 6.8 7.0 7.0 6.9 8.2 7.1 7.8 6.9 5.8 6.8 7.8 4.3 7.7 6.8 6.6 6.8 5.0 7.1 7.7 7.0 6.8 7.0 5.0 7.0 6.8 6.8 3.2 7.9 6.7 7.1 6.7 5.9 7.0 6.8 6.2 6.0 6.8 6.8 6.8 6.6 6.6 6.5 5.8 6.4 7.3 7.9 6.4 6.6 8.0 7.1 6.4 4.6 7.1 1.1 6.9 6.9 4.7 6.6 7.0 5.0 2.5 6.9 6.4 7.5 6.1 6.0 5.1 16.5 8.9 10.7 16.5 19.0 13.2 3.0 4.4 6.4 14.9 2.6 17.7 13.3 15.8 12.2 8.0 14.2 10.2 10.9 4.6 13.8 6.0 11.7 18.7 4.7 19.4 17.5 14.7 12.5 16.4 2.6 7.1 7.6 8.8 7.9 15.6 16.9 15.6 18.3 19.1 13.3 13.1 14.9 3.0 5.7 15.0 7.8 11.8 13.6 18.2 20.2 11.7 15.5 17.3 2.8 13.9 2.6 16.4 8.3 5.7 14.6 14.9 20.7 9.3 14.6 11.4 16.7 11.9 15.5 17.8 17.7 8.1 12.2 14.3 19.9 38 Riddle et al. TABLE 3 — Continued HIP1 15572 15784 15843 16021 16021 16329 16329 16467 16467 16517 16723 16788 16793 16852 16879 16900 16930 17022 17118 17129 17217 17217 17320 17336 17418 17482 17895 18218 18261 18261 18719 18994 19016 19076 19147 19206 19219 19389 19428 19428 19431 19508 19610 19781 19859 19911 20215 20284 20440 20553 20577 20586 20586 20626 20661 20673 20693 20712 20719 20904 20904 20916 21008 21053 21099 21308 21386 21443 21832 21878 22221 22265 22429 22496 22505 Comp. B A A A B A B A C A B A A A A A A A B A A C A A A A A A A B A A A A A A A C A C A A A A B A A A A A A C A B A A A A A A B A A A A A A A A A A A A A A RA (2000) Dec (2000) h m s ◦ 0 00 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 20 23 24 26 26 30 30 32 32 32 35 36 36 36 37 37 37 38 40 40 41 41 42 42 43 44 49 53 54 54 00 04 04 05 06 07 07 09 09 09 09 10 12 14 15 16 19 20 22 24 24 24 24 25 25 25 25 26 26 28 28 28 30 30 31 34 35 36 41 42 46 47 49 50 50 42.49 25.05 04.49 17.33 16.32 30.43 31.24 05.10 06.02 39.92 19.21 03.18 09.47 52.38 11.04 27.93 52.47 57.18 05.39 07.19 15.93 15.46 27.64 36.89 55.10 45.00 38.65 43.64 22.63 21.62 39.54 10.09 26.75 20.26 13.05 00.56 09.86 05.39 38.86 39.14 40.89 44.52 08.85 25.65 25.79 16.51 54.86 52.72 44.17 12.46 28.32 31.96 32.79 07.65 37.32 41.85 57.34 18.50 24.61 51.99 52.65 59.77 17.97 46.80 15.69 30.20 24.21 18.27 36.32 13.48 45.57 37.57 33.35 23.93 33.82 +09 −14 +74 −01 −01 +20 +20 +43 +43 +35 +05 +16 +42 +00 +25 +31 +05 +42 +63 +34 +45 +45 +32 +17 +60 +27 −02 +53 +01 +01 +20 +42 −10 +22 +08 −10 +27 +40 +31 +31 −07 −04 −10 +14 +06 +07 +16 +13 +15 +14 +16 +50 +50 +25 +15 −02 +05 +21 +16 +30 +30 +16 +19 +16 +20 +10 +85 +55 +42 +37 +09 +18 +53 +17 +15 02 52 10 02 02 06 05 40 39 39 43 28 20 24 59 07 38 32 52 06 53 53 56 17 24 55 19 16 15 15 22 31 14 00 30 00 30 10 39 38 53 52 28 37 11 09 31 51 03 45 53 44 50 44 56 13 09 28 51 21 21 09 50 08 07 00 31 01 07 30 01 15 21 12 05 09.3 33.5 15.6 06.3 09.5 11.8 55.5 11.5 58.8 33.5 31.1 02.7 21.9 06.0 27.9 12.8 28.7 17.8 28.7 59.3 45.0 44.9 21.2 36.6 37.4 15.8 42.8 22.9 41.8 40.0 49.5 39.8 06.7 32.0 10.4 01.6 33.2 05.4 07.7 54.2 34.3 29.4 10.0 30.1 58.7 34.0 21.3 51.9 21.9 29.5 10.2 35.1 42.6 57.9 27.6 56.8 00.5 13.5 12.0 41.3 53.4 32.7 26.1 55.3 59.4 59.1 37.3 35.9 06.5 53.7 02.7 31.4 56.5 09.6 00.4 V (mag) Sep. (00 ) Epoch +2000 0.00 15 (mag) 0.00 8 (mag) 2.00 1 (mag) ρmax (00 ) 15.46 7.61 6.93 8.68 11.42 8.29 10.75 8.56 13.09 7.29 12.30 7.65 8.32 4.29 7.28 6.96 7.78 6.73 8.21 6.82 7.93 15.92 6.77 7.07 10.43 6.86 7.22 8.15 7.97 13.93 8.66 8.19 8.11 5.90 7.76 6.88 8.55 15.76 6.88 14.10 7.03 7.36 8.40 8.45 6.94 7.50 6.85 6.15 6.97 7.58 7.79 10.37 6.87 15.40 6.44 7.25 7.36 7.36 8.04 6.38 8.21 6.59 7.09 6.50 8.59 7.72 6.55 8.61 7.29 7.60 7.24 8.54 8.21 7.10 7.73 81.8 0.0 0.0 0.0 15.5 0.0 19.9 0.0 16.2 0.0 141.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.0 0.0 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 61.1 0.0 13.9 0.0 0.0 0.0 0.0 64.3 0.0 0.0 0.0 0.0 0.0 0.0 367.6 0.0 42.9 0.0 0.0 0.0 0.0 0.0 0.0 14.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.6361 13.6334 13.5731 12.6778 12.6778 12.6998 12.6998 12.7023 12.7023 12.7023 12.6751 12.7625 12.7622 13.6196 12.7022 12.7022 12.6997 13.5730 12.6778 12.7622 12.7023 12.7023 12.7023 13.5731 12.7622 12.7022 12.7050 12.7023 12.6751 12.6751 12.7569 12.7598 13.6307 13.5731 12.7571 13.6307 12.7569 13.5703 12.6779 12.6779 13.6306 12.7572 13.6334 12.7623 13.6196 12.7571 12.7625 12.7626 12.7626 13.5731 12.7626 12.6779 12.7626 13.6361 12.7600 12.7681 12.7571 13.5731 12.7626 12.6779 12.6779 12.7600 12.7649 12.7600 12.7650 12.7571 12.7568 12.7651 12.7598 12.7625 12.7571 12.7627 12.7651 12.7626 12.7599 1.2 1.5 2.6 2.1 2.4 2.5 1.0 2.9 2.8 2.3 2.2 2.1 2.1 3.2 2.2 2.4 2.8 2.6 1.2 1.7 1.5 1.1 1.3 2.8 1.6 2.2 1.7 1.1 1.5 2.4 2.1 2.2 1.7 2.6 1.6 2.0 2.0 1.5 2.7 1.2 1.8 2.6 2.5 1.9 2.6 1.4 2.6 2.6 2.1 2.9 1.7 2.7 1.3 1.6 3.8 1.5 2.1 2.8 2.9 2.5 1.5 1.2 2.3 3.6 2.5 1.9 2.3 2.3 2.8 2.3 1.9 2.7 2.1 2.3 1.7 4.8 3.9 5.0 5.3 5.2 5.1 5.1 5.0 5.2 5.1 5.1 4.9 2.1 5.2 4.9 5.2 5.1 5.3 4.2 4.7 4.5 1.7 5.1 5.2 2.2 5.1 3.9 4.6 5.1 5.1 5.1 4.7 4.1 5.2 4.3 4.9 5.2 4.6 4.4 4.8 4.5 5.2 2.9 5.1 5.5 4.8 4.3 5.0 4.6 4.3 4.7 5.1 3.8 4.4 4.6 2.4 5.0 5.1 5.1 4.9 5.2 3.5 5.0 3.6 5.2 4.4 4.5 4.6 4.7 2.3 5.0 4.9 4.7 5.2 3.1 5.8 5.2 6.4 6.9 6.2 6.8 7.6 7.0 6.9 6.8 6.8 6.8 4.6 6.5 6.8 6.8 6.9 6.4 7.3 3.2 6.6 1.1 7.4 6.4 6.2 6.9 5.6 6.8 7.7 6.2 6.5 5.5 5.0 6.6 5.1 6.4 6.9 5.2 6.6 6.0 6.4 6.6 4.4 7.0 7.0 6.3 6.5 6.8 6.4 5.6 6.5 6.9 6.4 5.3 6.0 4.7 6.3 6.1 6.9 7.0 7.5 5.7 6.4 5.5 6.7 5.7 6.0 6.6 5.8 4.6 6.2 6.7 7.3 6.6 5.1 12.0 17.6 8.8 12.7 17.5 14.2 11.8 11.1 19.7 16.0 16.0 18.2 13.0 16.2 16.9 15.0 13.6 13.6 10.9 15.6 16.1 18.2 19.4 14.0 9.8 19.1 21.2 8.3 12.1 18.9 10.3 11.6 16.2 9.7 10.3 16.9 14.6 18.4 5.7 16.9 13.6 15.8 18.4 18.9 16.6 13.6 19.3 9.2 11.0 17.7 10.8 14.4 11.7 21.8 14.4 13.6 7.4 10.9 11.3 10.0 18.5 15.8 11.3 14.8 16.8 11.2 5.2 16.6 2.6 13.3 10.3 14.0 17.9 17.0 13.2 Multiplicity survey of nearby solar-type dwarfs with Robo-AO 39 TABLE 3 — Continued HIP1 22524 22550 22919 22919 23100 23105 23116 23259 23318 23395 23395 23396 23399 23425 23532 23662 23789 23913 24016 24016 24046 24329 24336 24397 24658 25137 25278 25300 25300 25435 25662 25905 26326 26444 26444 26676 26926 27067 27067 27165 27246 27246 27528 27758 27878 27913 29725 29725 29860 29860 29873 30247 30509 31089 31267 31267 31480 31655 31655 31850 32329 32702 33355 33595 34110 34426 34524 34567 35069 35069 35265 36238 36238 36485 36485 Comp. A A A B A A A B A C A A A A B A A A B A B A A A A B C A C B C A A A B A A A B A A B B A A A A B A E B A A A A C A A B A A A A A A B A A A B B B A F A RA (2000) Dec (2000) h m s ◦ 0 00 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 07 07 07 07 07 07 07 07 07 07 07 50 51 55 55 58 58 58 00 00 01 01 01 01 02 03 05 06 08 09 09 10 13 13 14 17 22 23 24 24 26 28 31 36 37 37 40 42 44 44 45 46 46 49 52 53 54 15 15 17 17 18 21 24 31 33 33 35 37 37 39 44 49 56 58 04 08 09 09 15 15 16 27 27 30 30 48.54 12.53 55.88 54.43 13.00 16.99 26.20 19.53 54.02 46.33 44.28 44.22 45.32 05.61 30.78 06.53 43.08 16.22 38.92 43.69 00.87 16.12 25.04 01.74 27.56 38.16 38.38 44.25 43.52 20.30 56.51 44.35 25.01 37.08 52.34 09.73 53.91 24.69 26.33 29.87 29.79 32.40 50.98 29.41 58.75 22.98 39.01 38.45 16.14 10.63 21.26 46.13 47.39 25.84 27.17 26.83 35.85 31.80 31.10 31.48 54.92 21.34 14.74 47.41 20.89 00.24 13.50 35.39 06.73 08.91 12.08 42.55 44.36 32.01 26.23 +16 +11 +04 +04 +40 +00 −03 +25 +77 +26 +26 +20 +42 +69 +63 +06 +14 +52 +29 +29 +27 +73 +03 +51 +60 +47 +17 +63 +63 +03 +12 +00 +32 +06 +06 +12 −06 +40 +40 +52 +74 +74 +32 −02 +12 +20 +36 +36 +05 +05 +57 +53 −05 +07 +48 +48 −02 +09 +09 +24 +20 +43 +40 +26 −03 +15 +19 +25 +57 +57 +33 +21 +21 +13 +13 12 04 40 40 03 27 43 07 46 39 40 49 20 09 04 07 05 22 47 47 38 29 41 25 10 54 19 23 23 51 31 05 00 06 06 10 47 24 24 09 36 36 58 17 25 16 08 08 06 07 27 27 30 49 22 22 14 08 08 36 51 45 32 04 03 31 02 43 16 16 15 27 26 50 51 37.6 04.9 13.5 16.6 24.7 14.2 58.4 51.0 31.8 02.7 16.2 47.4 39.1 37.0 41.4 48.8 05.2 03.2 25.6 55.0 35.5 28.3 13.6 50.5 54.0 42.5 26.8 11.3 06.6 11.2 53.9 55.5 12.7 43.2 19.3 41.2 46.2 16.9 24.9 39.9 36.4 40.7 23.4 07.2 10.0 34.2 55.3 46.1 00.4 02.4 04.9 07.8 13.2 20.4 28.5 24.8 34.8 39.4 36.6 00.6 38.4 32.8 12.8 51.9 02.4 43.0 33.5 43.1 37.1 15.3 15.5 17.7 42.9 39.9 53.8 V (mag) Sep. (00 ) Epoch +2000 0.00 15 (mag) 0.00 8 (mag) 2.00 1 (mag) ρmax (00 ) 7.29 6.79 7.02 14.31 7.21 7.20 6.97 12.43 7.71 8.22 6.79 7.99 8.11 7.12 7.63 7.69 7.30 9.07 8.51 6.67 9.22 8.98 7.82 7.19 6.96 13.09 7.93 7.32 0.00 13.47 14.23 8.36 7.99 7.64 11.83 10.20 5.97 8.28 10.03 6.85 7.33 0.00 8.76 7.26 7.76 4.39 6.86 7.46 5.70 14.04 9.28 5.34 7.70 8.29 8.01 14.78 7.51 7.61 11.60 6.43 7.20 7.30 7.53 6.20 8.17 7.80 8.39 7.09 8.37 15.00 11.84 10.92 5.20 8.04 7.16 0.0 0.0 0.0 22.0 0.0 0.0 0.0 33.9 0.0 78.4 0.0 0.0 0.0 0.0 33.0 0.0 0.0 0.0 68.8 0.0 314.6 0.0 0.0 0.0 0.0 77.4 707.3 0.0 7.0 43.3 99.6 0.0 0.0 0.0 228.8 0.0 0.0 0.0 22.7 0.0 0.0 10.8 60.2 0.0 0.0 0.0 0.0 11.4 0.0 103.0 486.2 0.0 0.0 0.0 0.0 5.0 0.0 0.0 10.7 0.0 0.0 0.0 0.0 0.0 0.0 171.9 0.0 0.0 0.0 28.1 927.6 43.0 0.0 112.0 0.0 12.7600 12.7571 12.6779 12.6779 12.7625 12.7573 12.7681 12.7025 12.7595 12.7025 12.7680 12.7652 12.7651 12.7707 12.7025 12.7600 12.7626 12.7679 12.7025 12.7680 12.7025 12.7707 12.7573 12.7706 12.7707 12.7025 12.7025 12.7707 12.7707 12.7025 12.7025 12.7681 12.7680 12.7025 12.7025 12.7627 12.7682 12.7025 12.7025 12.7733 12.7708 12.7708 12.7025 12.7763 12.7628 12.7682 13.2956 13.2956 12.7764 12.7026 12.7710 12.7738 12.7764 12.7764 13.6279 13.6279 12.7765 13.3011 13.3011 12.7736 12.7736 13.0577 13.0578 12.7762 12.7764 13.3012 13.0521 13.0602 12.7737 12.7737 13.2956 13.0521 13.0521 13.3010 13.3066 2.2 0.6 2.2 2.3 2.4 2.7 1.4 2.7 2.2 2.5 1.3 1.4 2.1 2.2 1.2 2.3 1.7 1.9 2.1 1.9 2.3 1.6 2.1 2.4 1.3 2.5 2.3 2.4 0.8 1.5 1.2 1.9 1.8 1.4 2.5 2.6 1.5 1.4 1.8 1.9 2.5 1.6 2.1 2.9 2.7 1.7 2.5 2.3 1.9 2.4 2.2 2.8 1.5 1.7 2.5 1.2 2.1 2.6 1.6 1.5 2.2 1.3 2.0 1.6 2.0 2.4 2.4 2.9 2.0 0.9 2.2 1.6 1.7 1.2 1.8 5.3 4.1 4.5 5.2 5.1 5.4 3.1 4.8 4.8 5.1 1.7 4.0 4.3 4.7 4.5 4.7 4.1 3.1 5.0 2.9 5.1 4.9 4.8 2.8 5.0 4.6 5.1 3.8 1.6 3.0 3.8 1.9 5.4 4.1 4.8 5.0 5.3 4.3 5.1 4.7 4.9 3.5 5.2 4.6 5.0 5.2 5.6 5.4 4.6 2.9 5.1 4.7 4.6 5.0 4.5 1.4 4.6 4.3 1.6 4.7 5.1 4.9 5.3 4.9 4.4 4.4 5.2 4.7 4.5 3.1 3.4 5.0 5.1 2.7 5.5 6.5 6.2 6.6 7.0 6.2 6.7 4.6 5.9 6.5 6.8 4.2 6.7 7.0 6.5 5.8 6.6 6.5 5.5 6.7 4.6 6.7 7.7 6.0 6.4 7.6 5.5 6.6 5.2 1.6 4.2 5.1 2.6 7.3 6.0 6.2 6.3 6.6 6.8 6.6 6.5 6.6 3.6 6.7 6.0 6.3 6.9 7.1 7.1 6.7 3.7 6.7 6.7 5.8 6.4 6.4 1.3 6.0 5.8 3.3 6.8 6.7 6.8 6.8 6.6 6.1 5.9 6.9 5.7 6.6 3.9 5.2 6.4 6.5 5.6 8.1 19.5 9.7 2.5 16.9 12.8 14.9 16.3 11.3 17.9 11.3 17.8 11.7 16.1 12.9 14.9 17.0 14.8 18.4 15.4 17.5 14.6 7.6 12.5 5.3 15.8 14.6 17.9 14.4 8.1 14.7 16.4 9.1 7.5 17.5 12.9 11.0 13.5 8.4 12.7 14.7 11.6 15.9 17.4 14.3 14.8 19.6 4.0 15.6 13.1 12.8 20.7 12.2 16.9 13.5 8.1 12.9 16.3 10.6 15.9 7.1 11.9 16.4 19.3 18.7 17.6 19.7 16.1 12.1 11.6 5.9 17.7 18.0 18.8 18.1 17.0 40 Riddle et al. TABLE 3 — Continued HIP1 36485 36557 36874 37031 37233 37645 37645 38018 38052 38104 38104 38636 38870 39072 39506 39822 40298 40419 40452 40479 40497 40918 40918 41184 41209 41211 41214 41319 41573 42172 42172 42408 42488 43304 43393 43426 43630 43861 44262 44458 44579 44638 44727 44777 44777 44858 45333 45406 45488 45838 46367 46404 46454 46509 46690 46843 47158 47292 47388 47436 48273 48273 48412 48642 48785 49030 49030 49638 49658 49658 50325 50829 50870 51459 51613 Comp. B A A A A A B A A A B B A A A B B A B A D B A B A A A B A A B A B A A C A A B A B B A A B B A B B A A A A B A B A A B B B A A B B A B A A C B A A B A RA (2000) Dec (2000) h m s ◦ 0 00 07 07 07 07 07 07 07 07 07 07 07 07 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 10 10 10 10 10 10 10 10 10 10 30 31 34 36 38 43 43 47 47 48 48 54 57 59 04 08 14 15 15 15 16 20 21 24 24 24 24 25 28 35 35 38 39 49 50 50 53 56 00 03 04 05 06 07 07 08 14 15 15 20 27 27 28 29 31 32 36 38 39 39 50 50 52 55 57 00 00 07 08 08 16 22 23 30 32 26.60 13.51 50.41 34.71 51.33 31.10 31.45 30.58 57.20 31.81 31.71 34.82 16.29 37.93 29.84 00.20 18.93 07.73 31.34 53.36 10.22 33.36 03.80 13.22 33.26 35.01 36.44 08.98 36.01 50.98 51.27 49.53 44.68 21.21 21.00 44.95 08.04 06.97 53.23 27.08 49.00 51.15 50.56 33.16 32.33 27.16 20.54 10.08 56.37 39.32 16.71 46.78 27.40 09.28 06.19 48.25 33.70 16.95 19.83 28.05 08.21 30.08 11.79 20.82 02.39 13.16 13.74 54.43 15.89 16.19 39.15 43.80 14.61 25.48 35.67 +13 +02 +24 +05 −05 +03 +03 +70 +60 +47 +47 +38 +01 +48 +09 +71 +63 −06 +11 +02 +57 +65 +65 +44 −01 −03 −04 +17 +01 +06 +06 −05 +05 +03 −05 +35 +54 +36 +23 +37 +11 +55 +47 +00 +00 +27 +61 +23 +14 −07 +06 −06 +09 −02 +03 +26 +07 +01 +13 +35 +04 +04 +08 +24 +19 +06 +06 +66 +31 +31 +41 +15 +05 +55 +51 51 10 57 51 27 29 29 12 17 45 45 07 07 46 16 55 04 55 25 27 04 23 26 56 08 45 43 08 14 37 37 56 46 41 32 05 57 26 46 50 33 32 06 03 03 32 25 21 14 41 13 04 03 45 04 59 07 50 18 14 02 20 06 45 45 15 15 50 36 35 18 20 41 59 50 59.3 13.1 16.1 43.8 56.0 09.1 01.1 24.0 45.8 53.8 42.7 09.6 37.3 34.0 04.5 16.8 38.7 08.1 35.0 25.4 48.0 38.3 33.8 45.4 54.3 04.5 01.2 54.1 51.0 12.8 22.0 55.4 13.9 02.4 09.7 03.7 11.0 09.0 58.5 27.5 18.9 19.3 51.1 47.7 45.7 35.3 23.9 32.7 24.8 56.0 58.2 16.3 24.4 02.3 47.3 44.2 21.7 06.3 12.1 35.1 09.2 37.1 44.6 08.8 14.2 02.2 24.8 15.8 14.6 47.2 19.6 39.8 39.3 58.4 43.0 V (mag) Sep. (00 ) Epoch +2000 0.00 15 (mag) 0.00 8 (mag) 2.00 1 (mag) ρmax (00 ) 9.21 7.28 7.37 5.89 7.58 6.97 10.38 7.06 7.01 8.03 14.10 14.53 6.35 8.64 7.26 14.93 13.57 8.27 9.75 8.18 14.36 8.43 8.03 9.25 7.07 5.61 6.03 14.42 7.40 5.91 7.25 8.19 8.41 7.96 9.18 12.68 7.38 8.16 15.30 7.04 9.25 15.76 8.48 8.15 14.00 8.27 5.18 11.99 15.17 9.21 6.90 5.38 5.40 7.28 7.27 16.03 8.15 7.73 15.15 7.24 12.13 6.24 8.65 10.38 8.40 7.64 10.53 8.02 6.23 13.70 8.72 7.26 6.54 8.86 9.11 7.7 0.0 0.0 0.0 0.0 0.0 9.6 0.0 0.0 0.0 11.1 97.8 0.0 0.0 0.0 49.4 244.4 0.0 32.0 0.0 59.9 258.3 0.0 29.1 0.0 0.0 0.0 692.0 0.0 0.0 10.2 0.0 25.9 0.0 0.0 49.3 0.0 0.0 55.4 0.0 140.5 56.3 0.0 0.0 12.7 57.7 0.0 60.0 443.2 135.0 0.0 0.0 0.0 66.2 0.0 64.8 0.0 0.0 50.5 494.6 1155.3 0.0 0.0 461.8 30.6 0.0 24.2 0.0 0.0 27.7 107.2 0.0 0.0 122.8 0.0 13.3066 12.7765 13.0577 13.0522 13.0523 13.0551 13.0551 12.7710 12.7709 13.0604 13.0604 13.2956 13.0524 13.0392 13.0603 13.2956 13.2956 13.0524 13.0603 13.0524 13.0604 12.7710 12.7710 13.2956 13.0525 13.0525 13.0524 13.2984 13.0526 13.0552 13.0552 13.0525 13.0551 13.0608 13.0526 13.2956 13.0393 13.3039 13.2957 13.3039 13.2983 13.2956 13.0605 13.2983 13.2983 13.2957 13.0393 13.2958 13.2983 13.3011 13.0609 13.0526 13.2983 13.3012 13.0527 13.2957 13.0609 13.0526 13.2983 13.2956 13.0529 13.0529 13.0609 13.2957 13.2958 13.0610 13.0610 13.0394 13.2957 13.2957 13.2956 13.3041 13.0610 13.0582 13.2956 1.8 1.9 1.7 1.9 1.7 2.9 1.6 2.0 0.9 2.9 1.8 2.6 2.0 2.8 2.7 1.9 2.2 2.3 2.5 1.8 2.6 1.9 1.7 1.4 2.5 2.8 2.5 1.7 1.6 2.2 2.2 2.0 2.4 2.5 2.2 2.6 2.5 2.1 3.2 1.8 1.8 2.7 3.3 1.8 0.9 1.9 2.4 2.1 2.1 2.1 2.3 2.0 2.8 1.3 2.0 3.2 2.8 2.0 0.4 1.9 1.5 1.8 2.2 2.6 1.7 2.3 2.1 3.0 1.3 0.0 2.9 2.1 2.4 2.2 3.0 5.5 4.8 5.4 5.2 4.8 5.5 4.2 4.7 4.6 4.4 1.9 3.5 3.6 2.9 2.7 5.3 5.6 5.4 3.0 5.1 3.3 4.9 4.8 5.6 5.4 5.5 5.4 5.3 4.1 5.2 5.3 4.9 5.4 4.7 5.2 4.1 2.5 3.2 3.8 5.4 5.0 3.9 4.6 4.8 2.9 4.6 4.3 3.1 3.4 2.1 4.3 4.7 2.0 4.5 4.8 4.0 4.8 3.4 2.3 3.9 3.1 5.0 4.8 4.0 4.8 4.8 3.8 4.6 4.7 1.4 4.9 5.3 5.0 5.1 4.7 8.1 6.3 6.7 6.7 6.1 6.7 4.6 6.5 6.7 5.6 3.2 4.7 6.2 3.3 4.5 6.1 7.3 6.8 4.7 6.6 4.3 7.1 6.6 7.9 6.8 6.8 6.8 6.4 5.7 6.7 6.7 6.4 6.9 6.2 6.6 5.7 3.9 6.9 4.5 6.6 6.4 4.4 5.8 6.5 3.5 6.3 5.9 4.9 4.8 3.8 4.2 6.5 5.5 6.4 6.4 4.8 6.2 5.5 3.5 6.0 4.9 6.5 6.1 4.8 6.4 6.2 4.6 5.6 6.5 3.8 6.2 4.4 6.1 6.5 6.2 17.0 16.0 12.8 15.4 10.6 21.0 15.2 17.0 18.1 8.6 16.6 13.1 9.0 12.9 4.6 5.2 13.6 11.4 7.3 10.4 13.8 18.0 18.2 19.8 10.0 12.3 12.9 16.3 5.2 18.8 15.1 19.1 10.1 8.6 20.8 21.4 13.8 21.2 15.5 20.7 15.0 19.6 13.6 18.6 12.3 13.0 16.5 9.8 13.0 7.9 6.8 20.5 11.9 11.6 5.6 19.1 7.1 14.2 8.1 16.1 17.5 18.2 7.4 18.0 8.2 3.1 10.0 10.0 2.9 16.6 13.2 14.3 8.7 7.9 12.3 Multiplicity survey of nearby solar-type dwarfs with Robo-AO 41 TABLE 3 — Continued HIP1 51613 51955 52097 52510 52891 53165 53791 53791 54233 54657 54692 55044 55044 55661 55982 56054 56242 56242 56289 56289 56290 56809 56809 57090 57090 58067 59176 59690 60098 60268 60353 60353 60739 60988 61072 61854 63008 63235 63317 63346 63354 63977 64057 64345 64499 64532 65725 65921 65921 65971 66514 66514 66514 66704 66704 67115 67186 67246 67953 68081 68193 68367 68785 68799 69160 69226 69281 69322 69653 70497 70557 70618 71726 71843 72221 Comp. B A A A A A C B A A B A B A A A A B A B A A B A B B B B B A A B A D A D A A B A A A B B A A A A B B C E A A B A A B E A A B B B A A A B A B B A B B A RA (2000) Dec (2000) h m s ◦ 0 00 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 32 36 38 44 49 52 59 00 05 11 11 16 16 24 28 29 31 31 32 32 32 38 38 42 42 54 08 14 19 21 22 22 26 30 31 40 54 57 58 58 58 06 07 11 13 13 28 30 30 31 37 38 38 40 40 45 46 47 54 56 57 59 04 04 09 10 10 11 15 25 26 26 40 41 46 35.91 47.84 43.16 12.18 01.69 34.18 53.71 22.32 46.16 19.38 37.65 04.03 03.65 15.67 25.03 18.83 44.94 44.43 20.33 20.07 20.74 44.90 44.00 13.74 14.52 35.08 09.67 25.87 00.84 28.13 32.04 31.53 53.76 00.63 00.74 36.29 40.02 26.23 35.00 49.27 55.11 35.72 40.74 22.46 13.56 37.01 26.68 52.21 53.57 12.50 57.20 01.26 01.95 23.23 24.53 20.86 06.76 28.80 25.85 20.48 40.31 33.94 49.74 55.82 26.53 23.93 55.77 11.80 19.39 11.54 57.57 43.16 28.40 47.99 15.58 +51 +47 +05 +39 +20 +05 +43 +42 +50 +66 +42 +52 +52 +13 +02 +30 +14 +14 +56 +56 +61 +45 +45 +39 +39 +19 +55 +08 +28 +61 +05 +05 +69 +51 +31 +40 +22 +01 +38 +68 +05 +11 +24 +09 −05 +56 +15 +24 +24 +58 +39 +39 +39 +50 +50 +09 +05 +06 −08 +05 +51 +23 +25 +01 +10 +25 +15 +54 +03 +51 +13 +78 +30 +24 +09 50 43 44 55 53 00 10 54 10 00 49 46 46 54 46 25 21 22 05 05 04 06 06 39 39 25 27 47 02 44 18 18 43 22 25 17 06 25 16 47 06 02 01 36 01 42 42 14 14 57 10 10 10 31 30 03 06 18 10 17 59 00 50 57 14 05 12 34 07 49 17 29 31 28 38 32.6 12.5 02.4 09.5 14.2 09.4 03.5 09.6 20.9 48.5 03.3 23.4 35.3 06.9 58.7 28.3 52.2 05.6 43.3 54.6 57.1 30.3 26.4 34.7 27.6 40.2 53.5 06.6 52.8 50.1 19.6 38.9 46.2 20.8 25.8 58.5 28.6 40.6 48.5 06.9 23.3 40.3 11.7 13.2 25.2 29.8 29.9 15.4 20.1 19.1 30.4 34.3 41.1 09.9 57.5 27.8 56.2 56.4 45.5 22.9 36.9 14.6 26.0 22.8 36.8 30.0 55.8 36.7 53.0 53.2 28.0 56.1 13.8 44.2 48.3 V (mag) Sep. (00 ) Epoch +2000 0.00 15 (mag) 0.00 8 (mag) 2.00 1 (mag) ρmax (00 ) 16.00 8.09 7.13 8.31 8.71 8.17 10.64 11.70 7.04 8.25 8.26 6.51 7.90 8.34 7.24 7.18 6.27 9.14 7.50 10.30 5.46 6.29 8.23 9.00 10.45 8.43 8.45 9.84 8.97 8.23 6.46 10.47 8.47 15.80 7.33 13.96 6.99 6.91 9.28 8.07 8.13 8.48 8.55 12.33 8.28 6.82 7.37 7.61 13.00 14.82 9.21 15.00 7.77 6.31 10.51 7.44 7.21 10.02 12.43 7.98 8.27 13.86 8.90 13.51 7.95 4.82 8.28 13.92 7.03 13.23 15.33 7.22 8.02 14.88 7.26 10.6 0.0 0.0 0.0 0.0 0.0 967.3 37.3 0.0 0.0 134.8 0.0 12.8 0.0 0.0 0.0 0.0 15.3 0.0 11.5 0.0 0.0 10.3 0.0 11.9 73.4 21.7 23.2 545.9 0.0 0.0 20.7 0.0 587.6 0.0 43.5 0.0 0.0 36.0 0.0 0.0 0.0 39.0 81.8 0.0 0.0 0.0 0.0 19.2 164.6 56.2 10.6 0.0 0.0 17.5 0.0 0.0 488.5 647.1 0.0 0.0 276.4 97.0 49.2 0.0 0.0 0.0 605.7 0.0 69.6 1005.3 0.0 304.8 215.8 0.0 13.2956 13.0583 13.0610 13.3015 13.3068 13.0610 13.2957 13.2957 13.0582 13.0556 13.2957 13.0556 13.0556 13.3042 13.0527 13.3041 13.2960 13.2960 13.0556 13.0556 13.0555 13.2957 13.2957 13.2957 13.2957 13.2958 13.0583 13.2962 13.2958 13.0557 13.0612 13.0612 13.0583 13.2957 13.3015 13.2957 13.3042 13.0530 13.2957 13.0585 13.0612 13.0612 13.2958 13.0613 13.0477 13.3016 13.3043 13.2959 13.2959 13.2957 13.2958 13.2958 13.3043 13.2958 13.2958 13.0613 13.0613 13.0613 13.2963 13.0613 13.3043 13.2959 13.2959 13.2962 13.0613 13.3044 13.3070 13.2958 13.2962 13.2958 13.2986 12.7752 13.2959 13.2959 13.3071 1.6 1.8 2.4 2.8 2.1 2.7 1.9 1.8 2.4 1.5 1.5 2.4 1.9 2.2 2.1 2.4 2.4 1.9 2.3 2.4 3.0 1.0 1.5 2.4 2.0 2.3 2.6 3.3 2.8 2.8 2.6 2.9 2.5 3.0 2.1 3.0 2.0 2.9 2.1 2.3 2.6 2.0 2.5 2.5 2.7 2.8 2.2 2.0 0.5 1.7 2.3 0.8 1.7 3.0 2.1 2.4 2.7 3.0 2.4 2.4 2.3 2.2 2.0 1.9 1.7 1.4 2.2 2.3 1.9 1.0 1.8 2.4 2.0 1.6 2.9 3.0 4.7 4.2 4.9 5.6 4.9 5.6 5.5 4.9 5.5 5.6 5.5 5.2 3.0 3.4 4.6 5.5 3.2 5.1 5.2 2.2 5.3 5.2 3.7 2.0 5.0 4.8 4.8 4.9 5.4 4.5 4.4 4.9 3.9 5.0 3.5 5.4 4.6 3.9 4.3 4.9 4.9 4.4 3.8 2.7 5.3 5.2 4.7 1.9 5.0 4.4 1.1 5.4 4.4 3.8 3.4 2.7 4.1 2.8 3.0 4.2 5.2 4.3 5.0 3.9 5.3 4.5 3.8 1.7 5.1 3.8 5.4 4.8 4.7 4.8 3.9 6.5 4.2 6.4 7.3 5.5 7.7 6.9 6.6 8.1 8.3 6.8 6.7 6.7 5.1 6.9 7.1 4.9 6.8 6.8 6.4 7.7 7.6 5.0 3.5 6.7 6.5 6.0 6.3 6.9 5.9 5.2 6.4 4.6 5.5 4.5 6.9 6.0 4.7 5.6 6.0 6.0 5.8 5.1 2.8 6.3 2.3 6.4 2.3 6.0 5.4 1.2 5.6 6.0 5.1 4.2 3.2 5.2 4.2 5.4 4.8 5.7 5.8 6.8 4.9 7.7 6.7 6.4 4.2 7.5 4.2 6.4 6.2 5.4 4.4 18.6 17.9 9.8 17.7 18.9 11.6 16.6 17.1 15.2 15.8 16.1 5.2 13.0 16.2 11.9 17.9 6.4 10.5 6.4 15.2 4.9 12.3 6.3 14.1 18.9 16.3 10.4 19.6 18.0 11.2 4.5 15.3 6.2 17.9 14.4 14.6 12.6 11.7 16.3 16.1 16.4 15.1 18.3 15.9 5.9 18.9 8.6 3.6 14.0 20.2 16.5 7.3 17.5 5.1 12.4 14.6 14.6 20.3 11.7 15.2 16.4 6.2 11.7 3.6 16.8 14.5 15.8 15.4 19.8 13.3 19.5 21.5 17.6 10.2 13.0 42 Riddle et al. TABLE 3 — Continued HIP1 72447 72486 72486 72666 72764 72764 72846 73695 74432 74893 74930 74930 74975 74975 75059 75676 75783 75809 76603 76603 76837 76888 76888 77459 78161 78738 78738 79607 79629 79730 81608 81662 81662 82268 82510 84866 84866 85042 85414 85620 85667 85846 86036 86173 86302 86540 86642 87204 87895 87958 88136 88136 88194 88637 88913 89455 90355 90593 90813 90954 91115 91115 91120 91394 91773 91940 92325 92822 93108 93137 93645 93995 94076 94076 94370 Comp. A C A A A C A A B A A B A B B B D B A B A A B A B A B E B B B A B B C A C B B B A A C A A B A A A A A B B C B A B B A A A B B A A B A A A A A A A B A RA (2000) Dec (2000) h m s ◦ 0 00 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 48 49 49 51 52 52 53 03 12 18 18 18 19 19 19 27 29 29 38 38 41 41 42 48 57 04 04 13 14 16 40 40 40 48 51 20 20 22 27 29 30 32 35 36 38 41 42 48 57 58 00 00 00 05 09 15 26 29 31 33 35 35 36 38 42 44 49 54 58 58 04 08 09 09 12 53.25 14.78 18.10 27.53 30.04 30.19 23.35 47.30 43.77 20.26 41.93 42.12 18.80 19.23 55.90 37.92 09.24 23.59 40.07 39.96 16.41 59.98 01.22 53.09 24.44 25.92 26.72 56.27 53.05 18.61 09.51 56.44 56.37 35.60 45.23 43.08 43.73 53.07 03.10 16.58 23.80 34.10 34.48 34.01 03.76 15.98 13.25 58.32 14.33 05.00 09.21 03.53 45.41 49.89 01.95 21.75 21.94 13.69 30.05 14.59 09.38 10.56 04.36 23.80 49.45 31.19 01.02 47.12 03.46 23.14 09.76 16.49 04.39 03.10 27.41 +05 +49 +49 +44 +18 +18 +15 +47 +19 +26 +10 +10 +01 +01 +32 +42 +57 +80 −08 −08 +59 −11 −11 +23 +32 −11 −11 +33 +60 −01 −06 +21 +21 +55 +28 −07 −07 −02 +42 +63 −01 +34 +61 +48 +45 +72 +38 +37 +23 +32 +80 +80 +29 +21 +24 +57 +08 +11 +45 +40 +63 +63 +41 −03 +57 +34 +34 +48 +47 +47 +17 +25 +34 +34 −05 57 49 50 55 44 44 42 39 17 50 25 25 45 46 05 53 24 27 47 47 59 08 08 14 21 26 26 46 38 39 02 56 56 08 40 06 06 23 14 52 03 44 40 27 33 26 04 03 59 38 00 00 33 26 09 20 36 41 00 09 41 42 30 11 51 00 32 51 11 50 33 22 36 35 24 15.9 39.0 16.0 42.3 21.2 13.2 18.6 14.6 32.8 25.3 39.8 26.9 55.5 04.8 55.6 23.3 41.1 01.0 29.4 41.0 17.2 27.6 13.4 29.6 12.5 57.8 59.6 24.3 27.9 06.3 35.4 53.3 41.8 12.0 50.9 24.2 27.2 58.5 07.8 08.9 46.5 47.6 53.6 27.8 26.7 32.4 14.3 42.2 45.2 53.0 14.8 02.9 56.1 17.5 04.9 07.7 56.7 27.2 35.2 34.7 47.0 05.4 23.8 37.1 54.8 51.0 29.4 33.8 30.6 12.3 21.9 29.1 01.6 59.5 52.4 V (mag) Sep. (00 ) Epoch +2000 0.00 15 (mag) 0.00 8 (mag) 2.00 1 (mag) ρmax (00 ) 6.83 13.90 8.11 7.70 8.28 12.50 6.41 4.83 7.71 6.59 7.11 8.04 5.04 10.11 16.09 9.74 12.19 7.30 6.45 6.56 8.50 9.27 9.41 7.82 14.33 7.44 8.02 12.23 14.23 8.74 14.93 7.67 12.40 11.24 11.60 8.77 10.14 12.18 10.81 8.42 5.31 7.97 9.98 7.44 7.50 15.11 7.29 7.18 6.32 6.66 5.74 6.11 13.10 9.84 12.33 8.30 8.32 14.53 7.98 7.25 8.10 10.91 11.14 6.49 7.94 8.66 7.71 5.84 7.82 7.68 6.93 7.47 6.70 7.97 8.06 0.0 48.9 0.0 0.0 0.0 8.3 0.0 0.0 23.2 0.0 0.0 13.3 0.0 11.4 342.9 40.2 185.0 31.5 0.0 11.7 0.0 0.0 23.2 0.0 256.3 0.0 11.8 634.9 107.2 19.8 179.1 0.0 11.6 26.6 82.4 0.0 10.1 49.0 135.9 193.5 0.0 0.0 737.3 0.0 0.0 89.8 0.0 0.0 0.0 0.0 0.0 18.6 88.0 27.8 51.5 0.0 608.4 43.2 0.0 0.0 0.0 20.0 621.1 0.0 0.0 65.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.7 0.0 13.3071 13.2958 13.3043 13.3043 13.3071 13.3071 13.3071 13.2958 13.2960 13.3072 13.2962 13.2962 13.2962 13.2962 13.5694 13.2959 13.2958 12.7725 13.2963 13.2963 13.3072 13.2963 13.2963 13.3073 13.2991 13.2963 13.2963 12.7041 13.5722 13.2963 13.6352 12.7041 12.7041 12.7041 12.7041 13.2992 13.2992 13.2992 12.6767 12.6767 13.2992 12.7013 12.6767 12.7014 12.7014 13.3019 12.7014 12.7014 13.5533 13.5533 12.7725 12.7725 13.2992 12.7014 13.2992 13.5532 12.7014 13.5722 13.5532 13.5532 13.5532 13.5532 13.5642 12.7588 13.5532 13.2992 13.5533 13.6330 13.6302 13.5532 12.7615 13.5533 13.2993 13.2993 12.7671 2.8 1.0 3.0 2.5 3.2 1.6 2.5 2.0 2.3 2.6 3.0 2.2 2.2 3.0 1.6 1.4 2.5 2.1 2.2 2.7 1.9 3.0 2.0 1.7 2.5 3.2 3.3 2.2 0.8 2.0 1.6 1.4 1.8 2.4 2.5 1.1 0.7 1.9 1.3 1.7 2.9 2.0 2.0 1.6 1.8 0.9 1.7 1.1 2.4 1.9 1.3 1.5 1.8 2.4 2.4 1.7 2.0 2.5 2.8 2.0 2.1 1.8 1.6 1.6 2.4 1.5 1.9 2.4 2.1 2.3 1.3 2.6 2.3 2.0 2.2 2.1 5.2 3.9 2.2 5.3 5.2 3.2 4.7 4.0 4.8 4.3 4.7 4.7 3.4 4.3 3.8 5.0 5.1 3.9 4.3 2.5 3.0 2.0 4.2 5.0 5.0 4.8 5.1 4.8 5.1 4.7 5.1 4.8 5.1 5.2 3.5 1.1 1.9 4.5 4.6 1.6 5.1 4.7 4.8 4.9 5.0 5.0 5.2 5.5 5.4 5.3 5.2 4.4 5.1 5.3 3.8 4.7 4.4 4.2 4.9 2.6 5.2 4.7 4.7 5.2 5.0 5.3 4.6 3.6 4.3 3.9 5.1 5.4 5.3 4.4 5.2 6.6 6.3 6.0 2.8 7.2 5.2 5.7 4.5 4.7 5.8 5.6 6.2 4.0 4.8 5.3 6.6 6.7 5.3 5.3 5.4 3.7 2.8 6.7 5.7 5.8 5.6 6.7 6.1 6.8 5.7 7.3 6.7 6.8 6.8 4.8 1.4 4.5 6.8 7.0 5.9 6.8 6.9 5.8 6.8 5.9 6.3 6.7 7.0 7.5 7.5 7.2 5.6 6.8 6.7 4.2 6.8 4.8 4.7 6.7 3.8 6.7 6.8 5.8 6.5 6.3 6.8 6.6 4.6 5.3 5.7 6.7 6.8 6.8 5.5 11.2 16.7 17.7 15.8 10.2 17.2 9.9 4.9 17.0 16.7 8.8 16.8 16.3 13.4 15.4 11.2 19.9 8.0 14.7 17.9 17.1 4.8 13.8 12.4 5.4 2.6 13.9 12.5 18.0 6.9 12.4 15.8 17.3 12.2 17.0 10.6 15.3 19.3 11.1 17.6 16.8 14.1 6.4 2.8 7.9 18.4 13.1 13.6 4.2 12.1 2.6 9.9 20.4 20.4 15.6 12.4 10.7 17.0 15.4 15.0 15.7 18.0 9.9 15.5 14.3 15.9 12.4 14.1 15.5 16.7 20.1 16.4 6.1 15.0 13.7 Multiplicity survey of nearby solar-type dwarfs with Robo-AO 43 TABLE 3 — Continued HIP1 94540 94540 94666 94751 94802 94905 94922 95293 95309 95492 95589 95696 95769 96037 96185 96395 96395 96434 96620 96895 96979 97148 97255 97255 97295 97295 97295 97312 97321 97477 97527 97675 97675 97837 98020 98829 98874 98921 98946 99210 99232 99376 99500 99530 99572 99729 99737 99965 99965 100259 100896 101234 101430 101430 101852 101966 102040 102523 102655 102815 102945 103232 103247 103455 103569 103569 103641 103641 103749 103833 103983 103987 104075 104514 104660 Comp. B A A A A A C A A A A A A A A A B A A B B A A B F G B A A A B A C A A A A A A A A A B A C B A F A A B A A B A A C A B A A A A A A C D A A A A A A A A RA (2000) Dec (2000) h m s ◦ 0 00 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 14 14 15 16 17 18 18 23 23 25 26 27 28 31 33 35 35 36 38 41 42 44 45 45 45 46 46 46 46 48 49 51 51 52 55 04 04 05 05 08 08 10 11 11 12 14 14 16 16 20 27 31 33 33 38 39 40 46 47 49 51 54 55 57 59 59 58 59 01 02 04 04 05 10 11 27.21 29.20 48.79 48.59 22.31 45.16 41.21 12.55 24.69 25.76 33.77 51.77 41.80 37.81 27.08 55.61 54.46 23.01 41.18 51.97 44.14 44.82 57.35 57.33 33.53 25.60 27.53 36.10 41.31 43.80 23.62 01.64 00.67 52.57 09.68 10.62 46.07 09.78 21.50 26.96 35.94 13.33 22.47 59.07 09.46 09.18 13.93 43.97 54.54 03.65 26.93 12.36 19.99 18.74 21.11 51.88 44.52 35.48 44.84 46.46 25.75 49.88 02.41 39.68 04.48 05.11 11.47 55.28 26.13 25.91 05.69 07.39 07.95 14.25 59.52 +34 +34 +38 +18 +71 +16 +49 +19 +20 +24 +27 +08 +34 +17 +33 +56 +56 +15 +54 +50 +08 +18 +04 +04 +33 +33 +33 +07 +44 +35 +41 +10 +10 +41 +10 +42 +72 +38 +56 +15 +85 +43 +62 +59 −12 +06 +35 +50 +50 +23 −02 +56 +33 +33 −04 +11 +19 +59 −06 +25 −05 +32 +28 +26 +04 +04 +40 +40 +40 +27 +03 +02 +07 +20 +24 33 33 22 58 20 29 54 22 34 54 19 58 36 46 12 59 58 53 58 31 22 43 14 14 36 43 43 03 20 18 35 24 24 04 44 30 59 28 20 40 07 56 04 41 53 34 21 17 16 38 07 53 23 23 30 14 54 51 02 46 37 42 05 24 17 17 11 15 37 48 58 59 56 44 10 28.7 51.6 49.1 34.8 49.3 18.1 11.8 31.5 07.6 46.0 21.6 10.8 40.2 58.6 06.7 02.0 58.7 32.4 25.6 03.1 49.3 42.6 54.6 44.5 07.2 41.4 49.1 20.4 54.7 41.3 23.0 56.6 40.0 49.8 27.4 41.7 48.0 42.4 29.1 29.9 27.2 44.1 10.9 29.6 35.4 38.0 42.0 14.4 43.5 17.2 10.3 24.2 23.6 16.6 42.7 58.7 03.1 09.5 21.8 15.3 35.9 23.2 25.8 18.3 36.5 40.6 29.0 31.8 04.6 26.4 50.4 40.1 43.6 37.0 05.4 V (mag) Sep. (00 ) Epoch +2000 0.00 15 (mag) 0.00 8 (mag) 2.00 1 (mag) ρmax (00 ) 10.26 7.26 7.75 7.02 7.07 7.01 15.48 7.81 7.91 6.19 7.46 8.06 8.19 8.27 6.62 6.73 0.00 7.12 5.89 6.25 8.70 7.72 7.02 11.30 7.68 8.54 9.25 8.20 7.07 6.66 10.47 5.12 13.70 7.72 8.83 9.68 8.51 6.17 6.19 7.90 7.13 7.41 15.50 7.09 11.30 8.01 7.56 13.50 8.15 8.27 7.49 7.95 8.22 11.90 7.78 6.39 12.27 8.54 9.74 7.67 5.99 7.46 7.80 6.93 5.30 7.35 10.90 6.58 7.14 7.33 8.39 7.31 7.97 8.14 8.06 33.6 0.0 0.0 0.0 0.0 0.0 215.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 35.2 27.3 0.0 0.0 10.1 792.2 2.1 26.0 0.0 0.0 0.0 66.9 0.0 22.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 93.0 0.0 1021.0 43.3 0.0 106.0 0.0 0.0 59.9 0.0 0.0 17.2 0.0 0.0 124.9 0.0 391.3 0.0 0.0 0.0 0.0 0.0 0.0 10.5 1132.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.2994 13.6302 13.5532 12.7617 12.7754 12.7617 13.5532 12.7618 12.7618 13.5533 13.6302 12.7589 13.5532 12.7615 12.7590 13.6217 13.6217 12.7589 13.5532 13.6219 12.7589 12.7615 12.7617 12.7617 13.2992 13.2992 13.2992 12.7589 12.7616 12.7616 12.7590 13.2992 13.2992 12.7590 12.7589 12.7616 12.7672 13.5729 13.5532 12.7564 12.7705 12.7616 13.5533 13.5533 13.6352 12.7589 12.7590 12.7648 12.7757 12.7565 13.5728 12.7592 12.7566 12.7566 12.7588 12.7589 13.2993 12.7649 12.7671 12.7565 13.6326 13.6192 12.7565 12.7565 12.7617 12.7617 12.7567 12.7616 12.7590 12.7018 12.7018 12.7018 12.7018 13.5729 12.7758 2.2 2.2 1.6 1.1 1.9 0.8 1.4 1.1 1.5 2.5 3.1 1.5 2.5 2.2 1.8 2.0 1.5 1.5 3.4 2.3 1.5 2.1 2.2 2.7 2.3 1.1 2.2 1.6 1.7 1.4 1.9 2.2 1.0 1.8 1.4 0.9 2.2 1.7 2.1 2.5 2.5 1.0 2.0 2.1 1.4 1.3 1.9 0.9 2.5 2.1 1.8 1.6 1.7 2.4 1.4 1.7 2.4 1.4 2.5 1.9 2.8 2.4 1.4 1.2 2.6 2.1 1.0 1.6 1.4 2.1 2.2 2.0 1.9 1.8 1.8 2.2 4.2 5.4 4.2 5.1 3.6 4.5 3.6 2.1 4.9 4.4 5.0 5.0 4.5 2.6 5.2 3.0 4.2 4.7 5.2 4.7 2.4 4.9 4.4 4.5 4.8 4.9 4.5 4.3 3.8 5.7 2.9 1.1 4.7 4.7 2.8 4.7 4.8 4.9 5.1 4.8 1.9 5.2 4.8 4.8 4.8 2.6 4.4 5.1 5.2 4.3 4.6 5.6 5.2 3.6 4.9 2.4 4.6 4.6 5.2 2.1 2.7 4.2 5.4 4.1 4.8 3.8 4.8 4.0 4.8 4.5 4.9 4.9 4.9 5.2 3.0 6.1 6.9 6.2 6.8 6.0 4.9 5.2 4.2 6.7 2.0 6.7 6.4 5.5 4.9 7.0 3.0 5.9 6.3 6.8 6.0 5.0 6.7 5.1 6.1 4.0 6.0 6.4 5.8 5.8 7.8 5.0 2.8 5.9 5.8 5.4 6.7 6.4 6.8 6.7 6.7 5.0 6.7 6.2 6.9 6.6 4.3 6.3 6.7 6.7 5.3 5.9 7.6 6.9 4.6 6.7 3.9 6.3 6.4 6.8 6.1 5.6 6.5 7.6 6.5 5.8 6.8 4.7 5.8 5.5 6.4 6.4 6.8 6.7 6.4 14.2 14.1 13.5 10.3 7.2 7.1 15.8 7.3 11.7 13.7 12.0 3.5 16.3 14.9 7.1 19.6 12.8 8.1 12.2 11.3 5.4 16.1 18.2 14.3 20.0 21.0 9.9 8.3 18.2 20.1 8.2 2.5 8.3 2.9 7.2 12.9 11.2 3.2 7.7 16.1 4.3 11.4 8.9 8.0 16.3 12.3 14.9 19.9 7.9 16.3 4.1 10.0 13.9 13.3 12.8 9.7 6.9 5.6 7.4 14.1 16.8 17.7 15.7 12.6 10.1 9.2 18.2 4.4 19.1 4.0 18.1 17.3 12.0 11.7 18.6 44 Riddle et al. TABLE 3 — Continued HIP1 104788 104858 105200 105406 105431 105557 105676 106040 106601 106632 106632 107228 107868 107868 107958 108144 108228 108456 108456 108468 108473 108473 108602 108649 109067 109110 109176 109361 109587 109587 109951 109961 109961 110291 110447 110447 110548 110574 110623 110626 111148 111170 111805 111823 111910 111965 112042 112222 112229 112240 112447 112506 112595 112935 113092 113355 113445 113514 113699 113884 113896 114313 114378 114378 114385 114385 114432 114456 114616 114702 114702 114962 114962 115012 115655 Comp. A A A A A A A A A A B A A B A B A A B A A B A A A A A A A B A A B A A B A A A A B A A A A A A A A A B A A B B A A A A A A A A B A B B B A A B A E A B RA (2000) Dec (2000) h m s ◦ 0 00 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 13 14 18 21 21 22 24 28 35 35 35 43 51 51 52 54 55 58 58 58 58 58 00 00 05 06 07 09 11 11 16 16 16 20 22 22 23 24 24 24 31 31 38 38 40 40 41 43 43 44 46 47 48 52 54 57 58 59 01 03 03 09 09 09 09 09 10 10 13 14 14 17 17 17 25 42.48 28.82 34.88 01.42 21.58 41.67 16.24 43.45 23.16 55.48 55.82 03.78 18.34 18.26 19.66 45.30 31.37 12.88 19.74 24.33 28.42 29.24 02.26 38.90 40.70 05.34 00.67 22.49 58.62 59.55 06.56 17.41 17.71 23.85 17.81 16.98 39.56 01.32 37.40 37.86 06.54 18.31 47.47 57.93 07.98 47.96 38.12 42.70 50.72 05.00 42.34 21.70 13.95 29.86 12.24 25.92 35.08 19.45 39.40 50.58 57.27 04.05 57.10 54.90 58.88 57.37 31.16 54.84 11.04 07.47 07.62 05.04 06.01 37.62 57.77 +64 +10 +11 +40 +10 +76 +37 +26 +00 +00 +00 +55 +08 +08 +39 −03 +10 +82 +82 −12 +03 +03 +54 −14 +12 −05 +25 +35 +37 +37 −07 +33 +33 +46 +11 +11 +20 +06 +16 +39 +45 −06 +44 +17 −09 −03 +44 +10 +03 +06 +12 +17 +41 +09 +28 −03 +09 +12 +04 +21 −04 −02 +14 +14 +47 +47 +41 +45 +26 −08 −08 −13 −13 −01 +45 24 00 34 20 19 33 39 34 58 40 40 12 20 21 48 18 52 52 52 39 46 46 06 09 22 21 20 07 39 39 05 43 43 25 04 04 50 12 53 25 09 33 18 06 21 33 27 56 53 44 10 48 31 54 00 09 21 11 27 35 47 33 25 25 57 57 18 30 53 55 55 51 50 31 23 14.2 25.1 07.8 42.2 56.2 18.2 44.3 11.2 31.9 52.0 41.7 33.5 49.8 04.3 06.2 34.4 48.4 10.2 15.6 52.8 36.9 36.8 27.2 51.6 36.0 28.9 42.4 45.5 04.1 08.8 26.6 55.9 43.6 05.7 48.6 51.3 53.6 10.2 49.1 50.7 43.9 18.5 50.0 10.0 33.2 15.3 02.5 21.7 12.6 10.8 21.4 46.0 57.0 03.5 46.6 26.7 24.7 32.4 40.1 53.7 41.5 01.7 35.6 35.6 33.9 30.1 02.1 44.2 32.7 27.6 52.8 03.6 53.1 18.3 05.5 V (mag) Sep. (00 ) Epoch +2000 0.00 15 (mag) 0.00 8 (mag) 2.00 1 (mag) ρmax (00 ) 6.38 4.47 7.01 6.39 6.72 6.85 7.80 7.80 7.27 8.75 10.00 8.35 8.51 11.52 8.24 15.16 7.72 6.92 7.45 7.16 6.95 13.70 7.54 7.72 9.55 7.57 3.77 7.45 8.00 9.78 8.72 7.38 10.99 8.50 9.13 10.16 6.20 8.11 8.28 8.03 13.74 6.15 6.82 7.76 6.89 6.32 7.93 6.51 7.41 7.66 12.36 7.99 8.04 13.23 10.47 7.73 6.43 8.35 7.06 7.22 6.68 9.26 6.54 10.28 7.11 7.91 10.27 15.32 8.84 7.55 8.20 8.16 16.80 7.88 8.57 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.4 0.0 0.0 14.5 0.0 143.7 0.0 0.0 13.8 0.0 0.0 12.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 0.0 0.0 12.9 0.0 0.0 12.8 0.0 0.0 0.0 0.0 62.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 0.0 0.0 250.4 17.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.0 0.0 15.7 79.6 50.0 0.0 0.0 24.9 0.0 18.6 0.0 185.5 12.7650 13.5729 12.7018 12.7567 12.7018 12.7705 12.7566 12.7018 12.7018 12.6770 12.6770 12.7568 12.6770 12.6770 12.7566 13.5535 12.7617 12.7705 12.7705 13.6303 12.7018 12.7018 12.7048 13.6330 12.7047 13.5537 13.5703 12.7047 12.7019 12.7019 13.5537 12.7019 12.7019 12.7048 12.7019 12.7019 13.5703 12.7047 12.7047 12.7047 12.7019 13.5537 12.7047 12.7047 13.5730 12.7048 12.7047 12.7047 12.7617 12.7047 13.6166 12.7047 12.7047 12.7018 12.7019 12.7048 12.7047 12.7047 12.6772 12.6772 12.6774 12.6774 13.6166 13.6166 12.6746 12.6746 12.6746 13.6165 12.7618 13.6221 13.5702 13.6221 13.6221 12.7676 12.6746 1.1 0.3 2.3 2.1 1.3 1.4 1.6 1.7 2.6 2.4 2.2 1.7 1.5 2.7 1.8 1.9 2.5 1.6 1.5 1.5 2.3 1.7 1.7 1.8 2.2 2.2 1.2 1.7 2.3 1.5 1.8 1.5 1.0 1.5 1.7 2.2 2.1 2.2 1.7 1.8 3.3 3.1 1.5 1.3 2.0 1.8 1.6 2.8 2.0 2.4 2.5 1.8 1.9 1.5 2.5 2.3 1.0 2.4 2.7 2.5 2.4 2.2 2.5 1.7 2.6 2.6 1.6 2.9 2.5 1.7 2.5 2.1 0.9 1.0 1.9 2.7 3.6 2.6 5.1 4.6 4.8 5.1 4.5 5.0 5.0 4.8 4.9 5.2 5.3 5.3 4.6 3.4 5.0 4.9 4.2 5.0 2.0 4.8 4.3 4.9 5.3 5.0 5.1 5.4 4.7 4.1 4.6 4.1 4.9 5.1 5.1 3.4 5.0 5.0 5.0 5.7 5.2 4.4 4.4 4.8 5.3 5.1 5.3 4.3 4.8 3.4 4.6 5.3 4.7 4.9 4.2 4.2 5.1 5.2 5.3 5.3 5.2 5.2 4.8 5.2 5.1 4.6 4.4 5.3 4.8 5.2 2.1 1.5 3.7 5.1 6.4 6.3 6.5 6.8 6.0 6.9 6.7 5.4 6.6 6.9 6.9 6.9 7.7 7.0 7.8 4.9 5.8 7.4 6.9 6.0 6.7 2.0 5.7 6.5 6.3 6.5 7.3 6.5 6.9 5.4 4.8 6.7 5.0 6.8 6.7 6.0 7.0 6.3 6.8 6.8 6.4 6.7 5.2 5.6 6.3 6.9 7.1 6.6 5.7 6.5 3.9 5.7 6.8 6.0 6.0 4.6 6.1 6.7 6.9 7.0 6.8 7.1 6.7 6.8 6.9 6.8 6.9 4.9 7.0 6.8 6.9 6.2 1.5 4.9 7.0 15.4 8.4 11.7 14.4 11.3 7.7 12.1 7.1 11.9 3.8 12.5 11.8 12.9 5.9 15.4 8.0 17.9 8.2 17.3 13.4 8.9 20.0 9.8 19.3 18.3 8.4 5.6 15.3 12.9 16.5 10.7 5.4 15.5 12.0 16.6 10.6 2.6 15.3 15.2 13.2 20.2 8.8 10.6 15.4 3.5 17.4 5.4 13.8 12.4 13.6 18.7 11.3 18.9 10.5 9.4 18.1 14.4 18.8 7.9 5.0 14.9 9.2 2.8 12.3 6.2 16.4 20.2 18.2 8.6 2.7 16.5 14.3 11.0 17.0 20.5 Multiplicity survey of nearby solar-type dwarfs with Robo-AO 45 TABLE 3 — Continued HIP1 115715 115715 115779 116255 116259 116478 116537 116740 116849 116906 117029 117475 117573 117573 117666 118213 118213 118225 118254 118281 118281 Comp. A C A A A A A A A B A A A B A A B A C A B RA (2000) Dec (2000) h m s ◦ 0 00 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 26 26 27 33 33 36 37 39 41 41 43 49 50 50 51 58 58 58 59 59 59 40.36 39.65 20.93 22.83 24.06 06.00 03.58 30.97 05.44 45.18 27.04 14.47 37.98 38.93 46.83 45.84 46.21 50.20 06.86 29.29 29.15 +45 +45 +04 +76 +42 +18 −13 +28 +46 −05 +58 +04 +54 +54 −06 +31 +31 +33 +41 +33 +33 20 21 27 36 50 26 33 14 13 58 04 58 11 12 36 56 56 44 10 43 43 17.3 10.4 00.1 53.3 47.9 33.8 45.9 47.4 05.7 14.0 49.1 56.6 53.6 05.6 47.1 22.2 22.4 32.7 14.0 25.9 29.1 V (mag) Sep. (00 ) Epoch +2000 0.00 15 (mag) 0.00 8 (mag) 2.00 1 (mag) ρmax (00 ) 7.36 12.39 8.71 8.89 7.14 7.64 8.11 7.04 6.97 14.50 7.14 8.42 7.15 10.96 8.75 8.28 16.53 7.83 8.29 5.81 6.72 0.0 53.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 109.5 0.0 0.0 0.0 14.6 0.0 0.0 4.8 0.0 114.9 0.0 3.7 12.6773 12.6746 12.7049 12.7705 12.6773 12.6772 13.5730 12.6773 12.6773 13.6195 12.6772 12.6772 12.6746 12.6746 12.6774 12.6773 12.6773 12.6773 12.6746 13.6165 13.6165 1.6 2.8 3.1 1.6 1.2 1.8 2.3 2.6 1.6 3.2 2.1 2.4 2.5 1.9 1.4 2.2 1.5 2.2 2.2 1.7 1.7 3.6 4.9 4.8 5.0 4.6 4.9 4.3 5.2 5.0 3.2 4.8 5.0 4.8 4.9 5.1 5.3 2.4 5.2 5.1 5.3 5.6 6.8 6.7 5.9 7.8 6.3 6.9 4.9 7.0 6.8 4.8 7.0 6.9 6.7 6.4 7.1 6.9 2.1 7.1 6.9 3.6 2.6 16.0 10.2 17.5 10.8 9.9 9.1 10.0 11.7 19.2 15.2 9.7 11.3 7.4 18.6 2.6 10.1 16.5 8.4 19.7 17.5 15.9 46 Riddle et al. TABLE 4 Measurements of binary stars with Robo-AO WDS (2000) Discoverer Designation HIP1 Epoch +2000 N θ (deg) σθ (deg) 12.7049 12.7723 13.0478 13.0478 12.7050 12.6748 12.7050 12.7020 13.5730 13.5730 12.6748 12.7621 12.7621 13.6208 12.7050 12.7020 12.6748 12.6748 13.5730 12.6747 13.6167 13.6357 12.6747 12.6747 12.6748 12.6748 12.6775 12.6775 12.6776 13.5703 12.6776 12.7021 13.6195 13.5730 12.7050 12.7050 12.7050 12.6775 12.7621 12.7621 12.6749 12.7458 13.0573 13.0546 13.6222 12.7050 12.7513 13.0477 12.7479 13.0572 12.6749 13.5731 12.7050 12.7050 12.6750 12.6777 12.7050 12.6776 12.6777 12.6777 12.6777 12.7700 13.0572 12.6750 12.6750 12.6776 12.7021 12.7021 12.6750 13.6167 13.6250 12.7050 12.6750 12.7021 12.7022 1 3 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 2 1 1 1 5 2 4 1 1 1 1 1 1 1 1 1 2 2 1 7 2 1 1 1 1 1 1 1 1 1 1 1 1 160.8 186.9 186.4 325.5 6.7 48.6 140.1 279.3 176.8 157.6 166.4 167.3 170.0 166.7 276.5 150.5 67.2 302.5 295.2 277.7 275.6 275.6 223.1 322.4 270.4 82.5 36.2 147.0 335.4 334.2 244.7 163.6 302.7 76.7 111.7 234.9 159.8 204.4 204.3 204.5 83.0 185.2 182.2 352.1 331.3 226.4 230.6 230.6 175.3 174.5 31.2 260.3 67.9 343.0 233.7 47.3 222.4 313.3 265.7 179.4 202.7 301.2 304.5 265.6 207.0 333.8 207.8 169.0 285.9 285.2 36.2 340.7 342.2 211.1 270.7 0.0 0.2 0.1 0.3 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.0 0.1 0.2 0.1 0.0 1.8 2.5 0.0 0.0 0.1 0.3 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.0 0.1 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 00028+0208 00057+4549 BU STT 281 AB 547 AB 223 473 00057+4549 00073+2058 00109+4807 00144+6020 00251+4803 00261−1123 00271−0753 00293−0555 POP 217 AP HDS 12 LEP 2 A 902 HDS 56 AB YR 4 A 431 AB RAO 1 BC 473 601 889 1148 1987 2066 2143 2350 00308+4732 00335+4006 00346+6235 00346+6235 00352−0336 00409+3107 BU 394 AB HO 3 RAO 2 BC RAO 2 BD HO 212 AB RAO 3 Ba,Bb 2414 2643 2717B 2717B 2762 3214B 00452+0015 00487+1841 00515+5630 00515+5630 01027+0908 01027+0908 01075+4116 RAO RAO RAO RAO RAO RAO RAO 4 BC 5 Ca,Cb 38 BC 38 CD 39 AB 39 AC 40 3540B 3795C 4016B 4016B 4878 4878 5276 01080+3915 01108+6747 01125−0913 01144−0755 01158+0947 01166+1831 01234+5809 01253+0128 RAO HDS RST WSI A HDS STF RAO 41 155 4167 70 Aa,Ab 2102 169 115 AB 6 5313 5531 5644 5799 5898 5952 6486 6653 01290+7412 01297+2250 HJ A 2045 1910 AB 6914 6966 01297+2250 01337−1213 01377+4825 01409+6410 A 1910 AC HWE 4 HDS 215 HDS 221 AB 6966 7274 7589 7845 01409+6410 RAO 32 AC 7845 01413+2545 01417−1119 01559+0151 02037+2556 02128−0224 02157+2503 02174+6121 02179+1941 02249+3039 02249+3039 02262+3428 02278+0426 STF STF STF STF STF COU STF TOK HDS UC HDS A 145 AB 147 186 208 AB 231 AB 79 234 AB 72 314 Aa,Ab 733 AB 318 2329 7874 7916 8998 9621 10305 10535 10677 10710 11253 11253 11352 11452 02308+5533 02308+5533 02329+1502 02355+5948 02356+6106 02370+2439 STF 270 BD RAO 42 BE TOK 12 RAO 43 RAO 7 RAO 8 BC 11696B 11696B 11843 12062 12067 12184 02371−1112 02407+2637 02424+3837 02430+5812 02440−0601 HU 1216 AB STT 43 AG 49 RAO 44 TOK 75 12204 12491 12638 12685 12764 ρ (00 ) σρ (mas) ∆m (mag) 1.567 6.026 5.758 13.140 1.864 22.880 0.244 0.324 0.376 0.166 0.528 0.539 0.566 0.526 0.693 0.320 3.550 3.180 0.244 1.614 1.629 1.622 1.521 0.674 16.999 1.720 2.927 32.155 6.167 6.044 26.235 0.121 2.578 0.197 0.238 0.633 0.369 1.779 1.835 1.827 26.888 0.186 0.182 18.796 0.869 0.653 0.741 0.748 24.846 24.188 10.314 0.176 0.798 1.384 17.226 0.191 0.641 14.357 0.366 20.177 0.124 0.346 0.317 32.417 15.677 1.352 14.472 5.709 0.528 0.536 0.638 0.673 14.136 21.670 5.723 0.5 42.8 68.7 49.4 2.0 0.0 0.4 0.5 0.0 0.3 0.0 0.0 0.0 18.5 0.1 0.1 0.0 0.0 0.1 0.0 1.8 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 1.1 0.7 0.1 2.0 5.7 2.8 0.0 8.4 1.1 0.0 0.1 0.7 10.9 6.2 352.1 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.2 0.0 0.9 144.1 0.0 0.5 1.2 0.0 0.0 4.4 0.0 0.0 0.0 2.1 0.0 0.3 0.0 0.0 0.0 1.66 0.09 0.16 5.03 2.38 1.97 2.03 2.19 3.12 0.00 3.38 3.06 3.87 3.19 0.17 1.43 4.35 6.85 1.18 0.00 0.00 0.00 3.54 1.31 3.97 1.28 6.57 6.33 6.39 6.32 4.40 0.99 4.47 2.68 2.46 3.02 0.13 4.20 4.93 3.72 4.37 0.66 0.58 5.37 0.29 3.02 3.65 3.46 6.54 6.70 3.86 1.06 0.21 2.08 2.24 0.20 0.63 3.99 2.10 3.34 0.20 0.15 0.14 4.81 5.11 5.37 6.15 5.08 4.32 4.31 1.35 1.02 1.26 4.08 6.01 [O−C]θ (deg) [O−C]ρ (00 ) Ref. −0.3 −0.9 0.001 −0.266 1 1 −0.8 −0.016 2 −5.0 −0.019 3 0.1 9.4 −0.019 −0.021 4 5 −0.3 0.001 6 −2.3 −0.009 7 9.2 −0.9 0.8 0.076 0.013 0.004 8 9 10 4.1 1.7 −0.008 −0.014 11 11 −0.3 −0.060 12 −0.6 −2.5 0.002 −0.077 13 14 0.1 −3.0 0.006 −0.066 15 16 0.3 0.017 17 −4.1 0.5 0.7 0.001 −0.008 −0.006 18 19 19 −9.1 −0.0 0.091 0.038 20 21 : : z r w : : r z : Multiplicity survey of nearby solar-type dwarfs with Robo-AO 47 TABLE 4 — Continued WDS (2000) 02442+4914 02462+0536 02493−1033 02517+4559 02517+4559 02572+0153 03023+4124 03030−0205 03035−1059 03035+2304 Discoverer Designation HIP1 Epoch +2000 N θ (deg) σθ (deg) STF 296 AB RAO 9 12777 12925 13.6168 12.6776 12.7621 12.7621 13.6251 12.7050 12.7050 12.7050 12.6751 12.7023 13.6251 12.7022 12.7622 12.7022 12.7022 12.7622 12.6997 12.6751 12.7650 12.7624 12.7378 13.0572 13.6196 12.7622 12.6764 12.7622 12.7650 12.6778 12.7492 13.0600 12.6998 12.6875 12.7625 12.7625 12.6900 12.7622 12.7023 12.7622 12.7023 12.7023 13.5731 12.7622 12.7051 12.7023 12.7023 12.6751 12.7593 13.0478 12.7569 13.6307 13.5703 13.6361 12.6779 12.7571 12.7625 12.7626 12.7555 13.0573 13.5731 12.7626 12.7626 12.7681 12.6779 12.7651 12.7651 12.7651 12.7625 12.7627 12.7571 12.7189 12.7691 13.0478 12.7681 12.7652 12.7652 12.7680 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 2 1 1 1 5 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 10 2 1 1 1 1 1 1 1 1 7 3 1 1 1 1 1 2 2 1 1 1 1 2 9 2 1 1 1 1 304.7 252.8 252.6 253.0 164.9 141.4 81.8 161.7 163.4 220.8 228.7 359.1 3.4 208.8 100.9 100.4 355.7 178.3 149.0 131.4 121.2 120.6 120.4 237.3 223.4 223.0 80.7 256.3 211.9 215.8 145.2 75.9 71.7 77.5 136.9 343.8 142.9 60.4 88.1 269.0 269.7 19.8 312.4 37.4 241.6 263.4 177.0 176.3 308.4 276.6 294.3 294.6 165.7 103.5 358.1 333.1 271.2 271.3 236.7 234.7 133.3 84.9 35.9 310.3 177.4 14.4 337.5 275.9 224.0 277.3 293.6 293.3 159.9 324.2 242.8 20.8 0.0 0.1 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.1 0.0 0.4 0.0 0.0 0.0 0.5 0.1 0.0 2.4 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.7 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.2 0.1 0.1 0.0 0.3 0.0 0.0 1.7 0.0 0.0 0.1 0.0 0.2 0.1 0.1 0.0 0.0 0.0 0.0 STF A RAO A STF STF BU HDS 315 1281 AB 45 AC 2413 337 AB 341 1174 389 AB 13168 13336 13336 13773 14134 14194 14235 14230 03035+2304 03035+2304 MET MET 20 AC 20 CD 14230 14230C 03096+0512 03112+2225 03127+7133 03140+0044 03167−0332 A H 5 STT STF TOK 2030 117 BC 50 AB 367 189 Aa,Ab 14676 14809B 14944 15058 15247 03177+3838 03177+3838 STT RAO 53 AB 10 Ca,Cb 15329 15329C 03196+6714 03263−0102 03272+0944 HU 1056 STF 393 HDS 433 15482 16021 16083 03305+2006 03305+2006 STF 399 AB RAO 11 Ba,Bb 16329 16329B 03321+4340 03362+4220 03390+4232 03401+3407 03413+4554 03413+4554 03426+1718 03439+6025 03496−0220 03537+5316 03537+5316 03544+0116 03556+5238 LDS A RAO STF BU RAO RAO HDS YR A RAO TOK HDS 9155 AC 1535 47 425 1181 AB 48 AC 78 AB 474 23 1293 AB 49 AC 81 494 16467 16793 17022 17129 17217 17217 17336 17418 17895 18218 18218 18261 18370 04007+2023 04070−1000 04092+4010 RAO 50 HDS 521 AB RAO 79 CD 18719 19206 19389C 04096+3139 04163+0710 04199+1631 04227+1503 04233+1123 HO WSI STT STT STF 327 AC 97 79 82 AB 535 19428 19911 20215 20440 20472 04242+1445 04245+1653 04245+5051 04257−0214 04289+3022 04313+2008 04313+2008 04363+5502 04422+3731 04476+1816 04512+1104 04559+0440 04582+4003 HDS PAT COU BU STF RAO RAO RAO STF PAT BU LDS COU 564 6 2459 AB 403 548 AB 51 AB 51 BC 35 577 17 883 AB 9181 AB 1525 04584−0344 05017+2050 05017+2050 05017+2640 HDS 644 HU 445 AB RAO 52 AC A 1844 AB 20553 20577 20586 20673 20904 21099 21099B 21443 21878 22265 22550 22919 23100 23116 23396 23396 23395 ρ (00 ) σρ (mas) 20.692 1.906 1.910 1.901 1.300 0.657 15.195 0.582 17.853 9.032 0.600 0.134 0.131 4.516 0.371 0.366 0.285 15.337 1.057 1.224 0.866 0.875 0.863 0.629 1.560 1.634 1.086 15.678 0.281 0.313 19.641 0.159 0.139 0.167 14.667 0.753 1.741 1.943 0.119 4.835 10.388 0.783 0.340 0.122 25.912 15.501 0.744 0.725 5.905 0.180 9.584 9.588 14.121 0.119 0.509 1.268 1.129 1.129 0.447 1.245 0.965 0.910 14.475 18.800 0.917 5.737 0.739 0.108 0.258 21.745 1.832 1.836 0.591 0.288 38.414 0.319 0.0 3.0 5.3 11.9 0.1 0.2 0.0 0.1 0.0 0.0 0.8 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.5 3.7 2.2 0.1 15.4 0.0 0.0 0.0 14.1 0.5 0.0 2.6 0.0 0.0 63.7 0.1 0.0 0.1 0.0 0.0 0.0 0.4 0.9 0.1 0.0 0.0 3.9 19.4 0.0 0.2 0.0 0.0 0.0 0.2 0.2 0.2 0.8 1.0 1.0 3.1 0.5 4.6 0.0 11.0 1.3 0.0 0.1 0.2 0.1 2.7 1.9 7.1 0.0 0.0 0.0 0.0 ∆m (mag) 3.27 4.39 3.56 4.96 0.85 1.45 6.30 0.31 1.83 1.83 3.35 1.52 1.17 6.63 1.26 1.37 0.47 4.14 0.27 0.72 3.72 3.65 3.83 0.58 4.03 2.83 0.20 2.55 2.85 3.23 2.04 0.87 0.97 0.52 2.56 0.67 6.24 0.25 0.36 6.44 6.44 1.51 0.44 0.60 6.65 4.61 2.84 2.89 6.35 1.38 3.04 3.01 4.90 0.91 1.16 1.13 0.97 1.04 2.33 4.07 2.58 2.37 1.90 6.32 0.26 4.65 0.11 1.83 0.09 3.44 3.36 3.33 2.74 0.52 3.85 1.63 [O−C]θ (deg) [O−C]ρ (00 ) −0.0 0.396 22 1.4 0.038 23 0.4 0.019 24 0.3 4.1 0.009 0.003 18 18 −1.7 −0.007 25 1.6 2.8 0.121 0.077 26 27 −0.9 0.027 28 3.3 2.2 0.004 0.021 29 29 1.3 0.029 30 −80.4 0.053 31 −1.5 0.008 32 −1.9 −0.7 1.5 1.9 2.5 −0.021 0.040 0.076 0.078 −0.004 10 33 34 34 35 7.8 0.173 33 1.0 −0.005 10 : : 182.2 −0.087 24 : −2.1 −0.015 6 : Ref. z r r : :z : z r z : w : : : 48 Riddle et al. TABLE 4 — Continued WDS (2000) Discoverer Designation HIP1 Epoch +2000 N θ (deg) σθ (deg) 12.7626 12.7025 12.7573 12.7706 12.7707 12.7707 12.7025 12.7025 12.7682 12.7025 12.7025 12.7708 12.7628 13.2956 13.6252 12.7764 12.7026 12.7764 13.6279 13.3011 13.0578 12.7764 12.7764 13.0521 12.7737 13.2956 13.3038 13.3038 13.0551 12.7710 12.7709 13.0604 13.0524 13.0523 13.0523 13.0523 13.0604 13.3038 13.0524 13.0524 12.7710 13.3025 13.0579 13.0608 13.2956 13.0393 13.3039 13.3039 13.2997 13.3011 13.0609 13.0526 13.0610 13.2983 13.0526 13.0529 13.0609 13.0610 13.0394 13.2957 13.2957 13.3041 13.2956 13.0610 13.3015 13.0610 13.0556 13.2958 13.0612 13.2961 13.3042 13.3041 13.2960 13.0556 13.0555 13.3019 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 3 2 1 1 2 2 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 121.7 106.2 351.5 167.1 117.6 227.1 34.9 157.2 253.1 69.6 151.9 68.5 300.9 215.7 215.7 50.5 158.8 330.9 221.9 255.9 156.6 111.2 10.6 346.9 139.4 126.6 46.3 77.3 145.8 118.8 36.9 186.2 17.4 28.6 63.3 199.5 37.8 37.6 95.7 170.6 245.6 310.0 25.3 238.6 357.6 89.5 158.9 0.2 260.0 206.9 353.0 333.5 106.6 106.9 345.1 83.8 254.1 21.1 71.4 169.7 173.9 232.0 166.9 332.5 199.1 346.3 342.7 187.7 98.4 97.8 36.7 279.8 331.1 347.3 32.1 246.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 05067+1405 05096+2947 05134+0341 05140+5126 05247+6323 05247+6323 05376+0607 05376+0607 05429−0648 05444+4024 05444+4024 05465+7437 05540+1225 06156+3609 HEI RAO TOK HU STF RAO RAO RAO A STF RAO RAO TOK STF 105 53 BC 211 821 677 AB 36 AC 54 BC 54 BD 494 AB 775 AB 55 AC 37 AC 192 Aa,Ab 872 AB 23789 24016B 24336 24397 25300 25300 26444B 26444B 26926 27067 27067 27246 27878 29725 06173+0506 06173+0506 06314+0749 06335+4822 06375+0909 06562+4032 07043−0303 07043−0303 07092+1903 07151+5717 07172+3306 07304+1352 07304+1352 07435+0329 07475+7012 07480+6018 07485+4746 07573+0108 08122+1739 08122+1739 08122+1739 08138+6306 CAT PRV A RAO HO RAO A RAO CHR LDS RAO STF STF STF RAO HU ES STT STF STF HUT RAO 1 Aa,Ab 3 Ea,Eb 2817 80 AC 515 AB 56 519 AB 57 AC 216 2529 58 BC 1102 AB 1102 AC 1134 AB 59 AC 1247 589 185 1196 AB 1196 AC 1 Ca,Cb 60 BC 29860 29860E 31089 31267 31655 33355 34110 34110 34524 35069 35265B 36485 36497 37645 38018 38052 38104 38870 40167 40167 40167 40298B 08151−0655 08159+0227 08211+6527 08258+1703 08358+0637 08494+0341 08508+3504 08531+5457 08561+3626 09035+3750 09076+0004 09207−0742 09273+0614 09278−0604 09285+0903 MET 52 RAO 61 RAO 13 BC RAO 62 BC STF 1245 AB A 2899 RAO 63 CD A 1584 HDS 1291 MUG 1 TOK 126 A 1082 AB STF 1355 B 2530 STF 1356 40419 40479 40882 41319B 42172 43304 43426C 43630 43861 44458 44777 45838B 46367 46404 46454 09383+0150 09505+0421 09522+0807 10002+0615 10079+6650 10083+3136 10083+3136 10227+1521 10326+5151 10387+0544 10442+3955 10526+0500 11161+5246 11182+3132 11239+1032 TOK LEP A STF RAO KUI HJ STT LDS STF YR A STF STF STF 358 9001 Ba,Bb 2762 1401 15 48 AB 475 AC 216 2868 1457 26 2773 1520 1523 AB 1536 AB 47292 48273B 48412 49030 49638 49658 49658 50829 51613 52097 52510 53165 55044 55203 55642 11243+1354 11293+3025 11317+1422 11323+5606 11323+6105 11387+4507 HDS L STF STF STT STF 1622 11 1547 AB 1546 235 AB 1561 AB 55661 56054 56242 56289 56290 56809 ρ (00 ) σρ (mas) ∆m (mag) 0.951 26.153 1.212 0.755 1.120 6.840 4.526 4.398 0.163 21.784 11.103 10.851 1.378 11.811 11.818 0.952 0.641 0.123 4.967 10.759 5.510 0.095 15.713 0.139 27.787 17.637 7.486 21.766 9.447 15.476 0.172 11.035 0.388 1.112 6.601 0.349 13.190 13.074 1.474 31.245 2.788 16.798 9.827 0.681 18.943 0.678 0.772 1.716 13.177 0.475 1.777 0.283 0.792 0.793 0.447 0.160 0.444 21.925 0.510 0.206 28.689 2.291 10.687 1.794 0.533 1.658 12.056 1.636 2.055 2.098 0.827 1.027 15.409 10.934 0.823 9.089 0.7 0.0 1.1 0.3 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 9.2 0.0 0.0 1.3 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 5.8 56.8 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 208.6 0.7 0.0 0.0 21.9 179.7 1.3 0.0 0.9 0.3 1.3 86.8 0.9 0.5 0.1 0.1 0.1 0.0 0.0 0.8 0.0 1.8 0.1 0.0 0.0 0.0 0.7 1.0 0.4 0.0 0.0 0.0 0.0 0.3 0.4 0.0 0.0 0.1 34.6 2.57 6.58 2.63 2.09 0.66 5.48 5.79 6.12 0.92 1.64 5.55 3.50 5.22 0.58 0.76 4.11 2.43 0.53 5.35 3.66 6.35 0.65 6.64 1.92 4.49 5.45 1.80 6.08 3.06 5.87 0.46 4.05 0.15 0.99 0.52 2.70 3.51 3.48 5.58 6.42 3.22 4.19 1.13 3.48 3.20 0.00 2.31 3.92 5.13 0.67 0.91 1.44 0.95 0.78 2.34 0.00 2.50 2.40 3.02 0.77 5.84 2.18 3.91 0.87 3.20 1.54 1.45 0.83 2.43 3.00 2.45 2.76 2.43 2.46 1.46 1.60 : : [O−C]θ (deg) [O−C]ρ (00 ) Ref. −1.9 1.8 −0.073 −0.010 36 30 1.3 −0.001 37 −1.2 0.062 38 24.9 −0.010 39 −27.5 −0.000 40 −4.5 −0.003 11 0.7 1.7 −3.8 0.016 0.012 0.678 37 41 42 −0.3 0.009 43 −0.3 −1.1 −13.4 −0.4 −0.3 −0.000 −0.054 0.157 0.006 0.003 44 46 10 45 45 1.8 0.009 11 −0.2 0.086 47 −0.1 0.8 0.5 −0.044 0.001 0.039 48 10 10 2.2 −0.3 −0.030 0.175 10 49 : : : : Multiplicity survey of nearby solar-type dwarfs with Robo-AO 49 TABLE 4 — Continued WDS (2000) Discoverer Designation HIP1 Epoch +2000 N θ (deg) σθ (deg) 11422+3940 12225+0518 12310+3125 12417−0127 HJ 508 STF 1636 MET 60 STF 1670 AB 57090 60353 61072 61941 12547+2206 13198+4747 13284+1543 13309+2414 13309+2414 13381+3910 13381+3910 13404+5031 13453+0903 13461+0507 13491+2659 13563+0517 13577+5200 14094+1015 14109+1513 MET HU STT STT GAT STF TOK STF BU STF STF STT A RAO HDS 63008 65026 65725 65921 65921 66514 66514C 66704 67115 67186 67422 68081 68193 69160 69281 14113+5425 14153+0308 14267+7830 14418+2432 RAO 17 BC STF 1819 MLR 335 RAO 64 BC 69322B 69653 70618 71843B 14463+0939 14489+0557 14493+4950 14515+4456 14525+1844 14525+1844 14534+1542 15038+4739 STF STF HDS STT BU BU STT STF 1879 AB 1883 2091 287 31 AB 31 AC 288 1909 72221 72447 72486 72666 72764 72764 72846 73695 15183+2650 15187+1026 15193+0146 15277+4253 15387−0847 15413+5959 15420−1108 15489+2314 16044−1127 16147+3352 STF STF STF RAO STF STF STF HDS STF YSC 1932 AB 1931 AB 1930 AB 18 BC 1962 1969 1966 2227 1999 AB 152 Ea,Eb 74893 74930 74975 75676B 76603 76837 76888 77459 78738 79551 16147+3352 16150+6040 16289+1825 RAO 65 EF RAO 81 Ba,Bb STF 2052 AB 79607E 79629B 80725 16400−0605 16409+2157 RAO 82 BC HO 553 81608B 81662 17207−0706 17207−0706 17229−0223 17260−0139 17304−0104 A TOK RAO TOK STF 2593 AB 178 AC 19 BC 180 2173 84866 84866 85042B 85307 85667 17326+3445 17366+4827 17422+3804 17490+3704 18002+8000 18002+8000 18055+0230 18099−0755 18123+0154 18123+0154 18154+5720 18332+4010 18352+4135 18352+6342 18384−0312 18443+3940 HU COU RAO COU BAG STF STF HDS A RAO HDS STT RAO STF A STF 1181 1922 20 1145 6 Aa,Ab 2308 AB 2272 AB 2561 2260 AB 66 AC 2577 356 AB 83 Ba,Bb 2365 88 AB 2383 CD 85846 86173 86642 87204 88136 88136 88601 88996 89207 89207 89455 90954 91120B 91115 91394 91919 13.2957 13.0612 13.3015 13.0530 13.2985 13.3042 13.2958 13.3043 13.2959 13.2959 13.3043 13.2958 13.2958 13.0613 13.0613 13.2959 13.0613 13.3043 13.0613 13.2960 13.5721 13.3057 13.2962 12.7752 13.2959 13.6352 13.3071 13.3071 13.3043 13.3043 13.3071 13.3071 13.3071 13.2958 13.6023 13.3072 13.2962 13.2990 13.2959 13.2963 13.3072 13.2963 13.3073 13.2963 12.7041 13.5694 12.7041 13.5722 13.2962 13.6010 13.6352 12.7041 13.2990 13.5695 13.2992 13.2992 13.2992 12.6740 13.2992 13.6325 12.7013 12.7014 12.7014 12.7014 12.7725 12.7725 13.6023 12.6741 12.6727 12.6727 13.5532 13.5532 13.6215 13.5532 12.7588 12.6686 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 1 1 1 1 1 1 128.0 336.5 342.4 11.0 9.9 51.0 89.0 358.4 80.4 34.5 44.8 231.3 135.9 256.6 192.8 183.2 111.8 120.4 261.2 348.2 349.5 145.9 171.7 85.9 63.8 61.9 82.0 277.5 343.3 0.0 220.3 169.0 160.8 63.5 63.2 264.0 167.1 35.5 100.2 189.7 29.0 52.6 286.3 97.9 183.9 187.5 238.2 42.1 119.3 118.9 148.9 183.7 183.3 183.6 347.5 108.0 86.3 300.4 148.7 148.2 323.0 91.8 302.2 122.4 315.8 230.0 125.5 18.3 107.1 71.9 306.5 302.1 336.1 23.0 289.4 78.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.9 0.6 0.1 0.2 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.1 0.0 0.7 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.4 0.4 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 9 644 AB 266 268 AB 2 Ba,Bb 1769 AB 29 CE 1774 115 AB 1781 1785 273 AB 1614 16 1989 Aa,Ab ρ (00 ) σρ (mas) ∆m (mag) 11.617 20.502 2.081 1.950 1.938 1.686 1.165 2.051 18.233 1.585 1.607 10.294 17.419 1.630 0.970 2.956 1.014 1.432 0.119 0.478 0.400 0.577 0.904 1.806 16.552 17.271 1.762 1.000 1.070 0.653 2.062 8.796 1.067 1.244 1.212 1.634 13.596 11.511 0.408 11.865 1.014 23.028 0.640 11.919 0.381 0.407 32.267 0.139 2.351 2.347 27.160 11.804 11.433 11.625 0.273 10.290 0.752 6.034 0.817 0.806 0.113 0.332 2.205 0.160 0.102 19.460 6.158 0.891 1.999 17.237 0.249 28.649 0.136 19.468 0.112 2.376 0.0 0.0 0.0 0.0 0.1 0.7 0.8 0.0 0.0 5.1 0.2 0.0 0.0 4.7 1.1 0.2 0.2 0.1 1.9 5.1 0.5 1.3 0.7 3.1 0.0 0.0 0.1 0.0 0.7 0.0 0.0 0.0 0.1 0.1 20.8 0.0 0.0 89.9 0.8 0.0 0.1 0.0 1.0 0.0 4.5 0.6 0.0 0.3 0.0 15.8 0.0 0.0 0.0 0.0 0.4 0.0 1.0 0.0 0.1 0.0 0.0 0.5 0.0 0.1 0.7 281.1 11.9 0.4 1.4 24.6 0.0 0.0 0.1 0.0 0.2 0.0 1.29 2.45 5.00 0.46 0.93 3.40 0.91 0.42 4.64 0.00 1.76 5.25 3.21 2.53 0.39 1.03 0.43 0.25 0.72 1.60 1.93 1.71 0.23 4.03 2.20 2.02 0.59 0.09 2.89 0.22 1.46 3.68 0.70 1.17 0.60 0.14 0.83 4.24 1.48 0.21 0.42 0.14 3.09 0.44 2.48 2.65 3.74 0.00 0.15 0.14 3.89 4.40 4.54 4.47 0.00 5.07 0.00 6.34 0.26 0.45 0.09 1.50 5.00 0.21 0.46 0.47 1.45 2.75 2.23 6.81 0.97 1.99 0.83 2.34 0.26 0.12 [O−C]θ (deg) [O−C]ρ (00 ) Ref. 0.1 −0.3 −0.010 −0.063 50 50 0.3 1.1 0.067 0.049 51 9 −0.2 −0.9 0.016 −0.031 52 53 −1.5 −0.045 54 0.4 0.013 26 −1.3 0.1 0.043 0.025 55 56 0.4 −0.086 57 1.2 −0.6 −1.3 0.032 0.023 0.027 20 58 58 0.0 0.074 59 −0.1 −0.4 0.068 0.058 10 10 2.6 0.014 60 −0.8 −0.7 2.0 0.2 −0.003 −0.005 0.006 0.001 61 61 10 62 −2.5 −0.001 11 −2.1 0.029 63 −5.5 0.002 64 : : w w : 50 Riddle et al. TABLE 4 — Continued WDS (2000) Discoverer Designation HIP1 Epoch +2000 N θ (deg) σθ (deg) 18581+4711 19091+3436 AG 366 STF 2474 AB 93108 94076 19145+3434 19145+3434 19145+3434 19158+3823 19188+1629 19234+2034 19266+2719 19287+3437 19316+1747 19359+5659 19394+2215 19460+0415 19464+3344 BU HO RAO RAO RAO RAO STF RAO STF RAO STF BU STF 94540B 94540 94540 94666 94905 95309 95589 95769 96037 96395 96691 97255 97222 19464+3344 19464+3344 19464+3344 STF 2576 FI RAO 69 FK STF 2576 GJ 97222 97222 97222 19487+3519 19510+1025 20048+7300 20086+8507 STT 387 J 124 AC A 867 RAO 21 AC 97477 97675 98874 99232 20102+4357 20124−1237 20142+3522 20169+5017 20312+5653 20333+3323 20333+3323 20375+1436 20408+1956 20408+1956 20408+1956 20466+5951 20514−0538 STT RAO ES RAO RAO HJ RAO BU RAO RAO RAO MLR STF 20548+3242 20550+2805 20577+2624 STT 418 BU 367 AB RAO 24 103232 103247 103455 20591+0418 20591+0418 20599+4016 20599+4016 20599+4016 21041+0300 21102+2045 STF STF COU HDS RAO WSI RAO 2737 AB 2737 AC 2431 Aa,Ab 2989 Da,Db 72 DE 6 AB 25 103569 103569 103641 103502 103641D 103987 104514 21120+2410 21137+6424 21145+1000 21148+3803 21186+1134 21214+1020 21243+3740 21359+0041 21441+2845 21513+0821 21555+1053 STT H 1 STT AGC BU A WSI HJ STF STF BU 430 48 535 AB 13 AB 163 AB 617 7 3039 2822 AB 2831 75 AB 104660 104788 104858 104887 105200 105431 105676 106632 107310 107868 108228 21555+1053 21582+8252 21585+0347 22051+6217 22094+3508 22120+3739 22161−0705 22163+3344 22204+4625 22204+4625 22223+1105 22237+2051 BU STF RAO BU RAO STF HDS STT RAO RAO STF STF 75 AC 2873 AB 73 697 AB 26 2876 3158 468 74 AB 74 AC 2898 2900 AB 108228 108456 108473 109017 109361 109587 109951 109961 110291 110291 110447 110548 13.6302 13.2993 13.5533 13.2994 13.6302 13.6302 13.5532 12.7617 12.7618 13.6302 13.5532 12.7615 13.6217 12.6713 12.7617 13.2992 13.5987 13.2992 13.2992 13.5701 13.6274 12.7616 13.2992 12.7713 12.7705 13.6276 12.7616 13.6352 12.7590 12.7648 12.7592 12.7566 12.7566 12.7169 13.2993 13.2993 13.2993 12.7649 12.7671 13.6326 13.6192 12.7565 12.7565 13.6220 12.7617 12.7617 12.7673 12.7567 12.7567 12.7018 12.7018 13.5729 12.7758 12.7650 13.5729 13.6192 12.7018 12.7018 12.7566 12.6770 12.7618 12.6770 12.7617 13.6194 12.7617 12.7705 12.7018 12.7311 12.7047 12.7019 13.5537 12.7019 12.7048 12.7048 12.7019 12.7141 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 187.9 262.3 261.7 262.3 91.3 72.2 331.1 190.9 350.9 288.8 348.2 117.2 250.7 348.5 180.1 155.7 157.4 334.9 318.3 247.9 248.9 117.2 220.3 149.5 67.3 65.3 332.2 271.1 280.2 264.2 195.8 245.1 224.7 73.5 59.4 303.0 327.2 40.0 27.6 28.6 283.7 160.4 102.8 99.8 283.7 65.8 207.6 145.4 117.6 276.1 209.0 209.1 193.5 242.5 18.4 213.4 257.3 94.7 43.5 154.9 316.2 355.7 23.8 24.1 211.3 66.2 89.3 93.5 351.0 66.8 121.2 163.1 122.9 232.1 282.0 2.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.3 0.3 0.0 0.0 0.0 0.0 0.3 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.2 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 975 BC 648 AD 84 AE 85 AB 67 68 2525 AB 86 AB 2536 87 AB 2556 468 2576 FG 400 88 CD 204 70 FL 22 1535 AB 71 AE 151 AB 23 Ca,Cb 23 CD 23 CE 236 2729 AB 99376 99572C 99737 99965F 101234 101430 101430 101769 102040C 102040C 102040C 102523 102945 ρ (00 ) σρ (mas) 1.456 16.015 16.106 0.981 15.876 2.900 3.565 6.945 5.126 2.151 9.916 1.792 10.083 0.370 9.984 2.908 3.003 38.606 16.402 20.939 20.542 0.513 21.580 1.087 1.276 1.319 0.655 17.823 14.928 15.597 0.175 17.514 12.279 0.187 0.266 20.326 29.350 1.532 0.843 0.820 0.985 0.232 0.610 0.639 0.429 10.574 2.169 0.163 19.752 0.192 3.304 3.390 1.405 0.547 0.285 0.861 0.866 0.176 0.116 11.692 1.709 14.847 1.051 1.023 35.300 13.708 12.388 19.952 0.367 11.772 0.407 13.125 14.980 30.572 12.635 0.700 0.1 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.2 0.0 7.9 41.9 0.0 0.0 0.0 0.0 0.2 0.0 4.2 6.7 6.2 0.5 0.0 0.0 0.0 0.9 0.0 0.0 2.9 0.0 0.0 0.0 0.5 0.2 0.1 0.0 0.1 2.2 3.3 0.0 38.4 30.8 0.0 0.0 0.3 0.0 0.0 0.2 0.1 0.0 0.2 0.2 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 40.7 0.6 0.0 0.8 0.0 0.0 0.0 0.0 0.9 ∆m (mag) 0.77 1.17 1.34 0.39 5.05 4.50 5.71 4.85 4.73 0.26 5.75 2.24 5.29 0.58 3.53 0.16 0.11 4.78 6.21 3.51 3.55 0.54 6.33 2.47 5.43 5.45 0.37 5.14 4.15 4.66 0.00 3.35 6.18 0.97 0.00 3.84 4.37 2.60 0.96 1.10 0.28 0.71 4.46 4.88 0.44 1.72 3.30 1.10 5.73 1.75 4.52 4.59 1.98 0.27 0.11 2.61 1.47 0.24 1.13 1.27 1.49 2.50 0.54 0.71 4.92 0.33 5.58 6.33 2.53 1.68 1.14 3.48 4.52 3.82 1.14 2.66 [O−C]θ (deg) [O−C]ρ (00 ) Ref. −0.8 0.008 36 −5.9 0.064 21 0.9 0.005 65 −1.9 −0.071 10 0.2 −0.000 41 0.3 0.023 57 1.9 0.003 15 −1.3 −1.1 0.105 0.093 20 20 −19.0 0.064 66 0.5 0.059 67 −0.1 180.1 0.4 179.1 1.4 −0.107 0.004 −0.015 0.019 0.002 68 69 15 70 10 −2.7 0.109 71 0.1 −0.0 0.035 −0.003 14 14 Multiplicity survey of nearby solar-type dwarfs with Robo-AO 51 TABLE 4 — Continued WDS (2000) 22240+0612 22246+3926 22280+5742 22311+4509 22311+4509 22330+6955 22388+4419 22408−0333 22409+1433 22438+0353 22524+0950 22568+6244 22586+0921 23100+1426 23100+4758 23108+4531 23108+4531 23141−0855 23171−1349 23171−1349 23176−0131 23176−0131 23258+4521 23258+4521 23266+4520 23266+4520 23273+0427 23411+4613 23419−0559 Discoverer Designation RAO RAO KR RAO RAO STF HO KUI HO WSI RAO MLR STT STF STF RAO RAO STF BU LDS BU BU RAO RAO YR HJ A MLR RAO 27 Aa,Ab 28 60 AB 29 BC 29 BD 2924 AB 295 AB 114 296 AB 92 30 Da,Db 266 AB 536 AB 2986 2985 AB 89 CD 89 CE 2993 AB 182 AB 6393 AE 79 AB 79 AC 75 BC 75 CD 17 Aa,Ab 1867 BC 2400 4 31 Ba,Bb HIP1 110574 110626 110893 111148B 111148B 111314 111805 111965 111974 112229 112935B 113306 113445 114378 114385 114456B 114456B 114702 114962 114962 115012 115012 115655B 115655C 115715 115715B 115779 116849 116906B 23506+5412 23518−0637 23526+1057 23587−0333 23588+3156 ES 700 AB A 2700 YSC 17 BU 730 RAO 76 117573 117666 117730 118209 118213 23588+3345 RAO 118225 23595+3343 STF 3050 AB 77 118281 Epoch +2000 N θ (deg) σθ (deg) 13.5703 12.7047 12.7047 13.5907 12.7019 12.7019 13.5947 12.7047 12.7048 12.7141 12.7647 12.7018 12.7621 13.5701 13.6354 12.7389 12.7047 13.6166 12.6746 13.6192 13.6192 13.6221 13.6221 13.6221 12.7676 12.7676 12.6746 12.6746 12.6773 12.6746 12.7049 12.6773 12.6747 13.6195 13.6357 12.6746 12.6774 12.7141 12.6720 12.6773 13.5704 12.6773 13.5704 12.7451 13.0573 13.6165 1 1 1 2 1 1 2 1 1 2 2 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 4 1 1 1.4 327.0 315.8 328.7 215.7 264.4 221.7 332.9 123.5 59.8 298.6 328.3 326.5 319.1 319.3 355.8 167.2 267.8 255.7 22.3 290.6 176.7 227.5 51.7 10.0 155.3 65.4 279.8 217.9 68.1 332.7 110.5 71.3 69.6 68.3 35.1 161.4 353.0 324.6 87.2 87.8 172.9 172.3 338.0 337.9 339.0 0.0 0.1 0.0 1.3 0.3 0.0 0.3 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.7 0.1 0.0 0.0 0.7 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 ρ (00 ) σρ (mas) 0.744 0.092 4.367 1.467 3.911 12.276 0.212 0.217 0.174 0.492 1.005 0.273 0.283 0.265 0.242 2.897 0.265 31.826 15.784 20.587 15.330 25.942 0.770 18.374 1.615 15.056 13.195 0.612 0.445 24.679 0.561 0.129 0.491 0.518 0.503 13.934 0.186 0.586 0.753 4.848 4.822 5.042 4.915 2.334 2.332 2.363 0.4 0.2 0.0 10.0 18.1 0.0 2.1 0.3 0.1 4.1 6.9 0.0 0.0 0.2 0.3 29.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 9.8 0.0 0.0 5.9 0.7 0.0 0.1 12.7 1.2 0.0 0.0 0.0 0.0 5.1 0.0 0.0 ∆m (mag) 2.70 0.00 6.02 1.40 6.00 3.59 0.45 0.12 1.04 1.07 3.46 0.18 0.21 0.60 0.19 3.53 0.04 2.79 0.59 2.63 3.03 0.68 0.33 6.57 1.33 5.42 5.79 1.01 2.90 1.39 3.03 0.00 0.14 0.00 0.00 3.49 0.27 3.06 4.31 6.55 6.35 6.77 7.04 0.18 0.16 0.18 [O−C]θ (deg) [O−C]ρ (00 ) Ref. −2.2 0.014 72 3.3 0.1 −1.2 −1.0 −0.015 −0.008 −0.011 0.012 73 11 74 45 −0.3 0.005 10 1.7 0.280 43 −0.0 0.017 75 −2.1 0.004 11 2.5 0.013 40 −1.1 −0.122 76 −0.0 −0.4 0.4 0.018 0.007 0.025 77 77 77 z w : : w References. — 1 - Kiyaeva et al. (2001), 2 - Cvetkovic (2011), 3 - Scardia (1981), 4 - Zulevic (1997), 5 - Cvetkovic & Novakovic (2006), 6 - Mason & Hartkopf (2005), 7 - Balega et al. (2006), 8 - Docobo & Ling (2010), 9 - Hartkopf & Mason (2011b), 10 - Söderhjelm (1999), 11 - Hartkopf, Mason, & McAlister (1996), 12 - Valbousquet (1981), 13 Brendley, & Mason (2007), 14 - Heintz (1996a) , 15 - Muterspaugh et al. (2010b), 16 - Starikova (1983), 17 - Ling (2012), 18 - Balega, Leushin, & Weigelt (2005), 19 - Andrade (2007), 20 - Heintz (1998), 21 - Scardia (2001), 22 Hopmann (1958), 23 - Hartkopf & Mason (2009), 24 - Hartkopf & Mason (2010), 25 - Starikova (1978), 26 - Scardia et al. (2012), 27 - Heintz (1963), 28 - Alzner (1998), 29 - Cvetkovic (2010), 30 - Hartkopf, Mason, & Rafferty (2008), 31 - Ling (1992), 32 - Mason & Hartkopf (2011), 33 - Mason et al. (2004a), 34 - Hartkopf & Mason (2000), 35 - Zirm (2008), 36 - Heintz (1984), 37 - Mason et al. (2009), 38 - Hartkopf, Tokovinin, & Mason (2000), 39 - Popovic (1969), 40 - Docobo & Ling (2009), 41 - Mason et al. (2006), 42 - Heintz (1996b), 43 - Heintz (1991), 44 - Docobo & Ling (2011), 45 - Muterspaugh et al. (2010a), 46 - Ling (2011), 47 - Scardia et al. (2009), 48 - Mason et al. (1995), 49 - Hale (1994), 50 - Scardia et al. (2007), 51 - Mason & Hartkopf (2012), 52 - Alzner (2007), 53 - Heintz (1988), 54 - Heintz (2001), 55 - Mason, Douglass, & Hartkopf (1999), 56 - Seymour & Mason (2000), 57 - Heintz (1997), 58 - Zirm (2011), 59 - Heintz (1975), 60 - Heintz (1986a), 61 - Heintz (1994), 62 - Docobo & Ling (2008), 63 - Eggenberger (2008), 64 - Hartkopf, McAlister, & Franz (1989), 65 - Aristidi et al. (1999), 66 - Scardia et al. (2003), 67 - Zeller (1965), 68 Scardia et al. (2008), 69 - Muterspaugh et al. (2008), 70 - Fekel et al. (1997), 71 - Heintz (1995), 72 - Heintz (1986b), 73 - Prieur (2010), 74 - Griffin & Heintz (1987), 75 - Mason et al. (2004b), 76 - Seymour et al. (2002), 77 - Hartkopf & Mason (2011a)
© Copyright 2026 Paperzz