Lecture 14 Review Object Equatorial Radius (km) Mass (kg) Rotation Period (d) Orbital Period (d) Primary Distance (103 km) Orbital Inclination (degrees) Sun 695,700 1.99(30) 256.4 Mercury 2439 3.30(23) 58.6 89 .387 AU 7.0 Venus 6052 4.87(24) 243R 225 .723 AU Earth 6378 5.98(24) 1.0 365 1738 7.35(22) S 3394 6.44(23) Phobos 14 x 10 Deimos 8x6 Moon Mars Orbital Eccentri city Escape Velocity (km/s) Known or Probable Surface 617 ionized gas 0.206 4.2 basaltic dust/rock 3.4 0.007 10.4 basalt/granite 1.00 AU 0.0 0.017 11.2 water/granite/soil 27 384 18-29 0.055 2.4 basaltic dust/rock 1.02 687 1.52 AU 1.8 0.093 5.0 basaltic dust/rock 9.6(15) S 0.32 9.4 1.0 0.015 .011 carbonaceous soil 1.0(15) S 1.26 23 2.8 0.001 .006 carbonaceous soil 3-6 y 2-3 AU Asteroid Belt Ceres 510 1.2(21)? 0.38 4.6 y 2.77 AU 10.6 0.08 0.6 carbonaceous soil Vesta 275 2.4(20)? 0.22 3.6 y 2.36 AU 7.1 0.09 0.3 basaltic soil Pallas 269 ? 0.33 4.6 y 2.77 AU 34.8 0.24 0.3 meteoritic soil countless other asteroids of smaller size Jupiter 71,400 1.90(27) 0.41 11.9 y 5.20 AU 1.3 0.048 60 liquid hydrogen? Io 1815 8.94(22) S 1.77 422 0.0 0.000 2.6 sulfur compounds Europa 1569 2.80(22) S 3.55 671 0.5 0.000 2.0 H2O ice Ganymede 2631 1.48(23) S 7.16 1070 0.2 0.001 3.6 H20 ice, dust Callisto 2400 1.08(23) S 16.69 1883 0.2 0.008 2.4 dust, H20 ice 24 small moons made up of dust, rock, and ice inside and outside the 4 Galilean satellites plus a faint ring Saturn 60,330 5.69(26) 0.43 29.5 y 9.54 AU 2.49 0.056 36 liquid hydrogen? Titan 2575 1.3(23) ? 15.04 1222 0.3 0.03 2.7 ice, liq NH3 CH3 Mimas 196 3.8(19) S 0.94 186 1.5 0.02 0.2 mostly H20 ice Enceladus 251 8.4(19) S 1.37 234 0.0 0.00 0.2 mostly H20 ice Tethys 524 7.5(20) S 1.89 295 1.1 0.00 0.4 mostly H20 ice Dione 559 1.0(21) S 2.74 377 0.0 0.00 0.5 mostly H20 ice Rhea 764 2.5(21) S 4.52 527 0.4 0.00 0.7 mostly H20 ice Iapetus 718 1.9(21) S 79.23 3560 14.7 0.03 0.6 ice and soil 28 small moons plus a major ring system; Titan is comparable in size to the terrestrial planets Chiron 100? ? 0.25 50.7 y 13.7 AU 7.0 0.33 0.17 soil and ice Uranus 25,400 8.76(25) 0.72 h 84.0 y 19.13 AU 0.8 0.05 21 rock, liq H2, He Miranda 242 ?(19) S 1.41 130 3.4 0.02 0.4 H20, soil Ariel 550 1.4(21) S 2.52 192 0 0.00 0.7 H20, soil Umbriel 595 1.2(21) S 4.14 267 0 0.00 0.6 H20, soil Titania 800 3.4(21)? S 8.71 436 0 0.00 1.1 H20, soil Oberon 775 2.9(21) S 13.45 586 0 0.00 1.0 H20, soil 10 small moons plus faint rings Neptune Triton 24,300 1.03(26) 0.67 184.8 y 30.07 AU 1.8 0.01 24 rock, liq H2, He 1353 2.1(22) S 5.88 354 159R 0.00 2.6 CH3, ice 7 small moons plus faint dark rings Pluto 1150 1.5(22) 6.4 247.7 y 39.4 AU 17.2 0.25 0.9 CH3, ice Charon 600 2.0(21)? S 6.39 19.6 0? 0? ? CH3, ice Kuiper Belt 50-500 AU in ecliptic plane; Öort Cloud 500-50,000 Au in spherical shell Solar System Characteristics to be Explained by a Theory of Origin 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. All the planets’ orbits lie roughly in a single plane. The Sun’s rotational equator lies nearly in this plane. Planetary orbits are nearly circular. The planets and the Sun all revolve in the same west-to-east direction, called prograde (or direct) revolution. Planets differ in composition. The composition of planets varies roughly with distance from the Sun: Dense, metal-rich planets lie in the inner system. Meteorites differ in chemical and geological properties from all known planetary and lunar rocks. The Sun and all the planets except Venus and Uranus rotate on their axis in the same direction (prograde rotation). Obliquity (tilt between equatorial and orbital planes is generally small. Planets and asteroids rotate with rather similar periods, about 5 to 10 hours, unless obvious tidal forces allow them (as in Earth’s case). Distances between planets usually obey the simple Bode’s rule. Planet-satellite systems resemble the solar system. As a group, most comet’s orbits define a large, almost spherical swarm around the solar system (the Ort cloud). Other comets reside in the Kuiper belt, near Pluto and just beyond it. The planets have much more angular momentum (a measure relating orbital speed, size, and mass) than the Sun. (Failure ot explain this was the great flaw of the early evolutionary theories.) Masses Sun Jupiter Saturn Uranus Neptune Earth Venus Mars Mercury Pluto 2(30) 2(27) 6(26) 9(25) 1(26) 6(24) 5(24) 6(23) 3(23) 1.5(22)
© Copyright 2026 Paperzz