Monatsh. Math. 145, 131–144 (2005) DOI 10.1007/s00605-004-0288-6 On the Mean Value of the Index of Composition of an Integer By J. M. De Koninck1; and I. Kátai2;y 2 1 Universite Laval, Quebec, Canada E€ otv€ os Loránd University, Budapest, Hungary Communicated by J. Schoissengeier Received January 15, 2004; accepted in revised form July 26, 2004 Published online March 25, 2005 # Springer-Verlag 2005 n Abstract. For each integer n 5 2, let ðnÞ ¼ loglogðnÞ be the index of composition of n, where Q we write ð1ÞP ¼ ð1Þ ¼ 1. We obtain Psharp estimates for ðnÞ ¼ pjn p. For convenience, P P pffiffi pffiffi x 4 n 4 xþ x ðnÞ and n 4 x ðnÞ, as well as for x 4 n 4 xþ x 1=ðnÞ and n 4 x 1=ðnÞ. Finally we study the sum of running over shifted primes. 2000 Mathematics Subject Classification: 11A25, 11N25, 11N37 Key words: Arithmetic function, prime factorisation 1. Introduction n be the index of composition of n, For each integer n 5 2, let ðnÞ ¼ loglogðnÞ Q where ðnÞ ¼ pjn p. For convenience, we write ð1Þ ¼ ð1Þ ¼ 1. The index of composition of an integer measures essentially the multiplicity of its prime factors. It was shown by De Koninck and Doyon [1] that the average order of ðnÞ is 1 and more precisely that X x : ð1Þ ðnÞ ¼ x þ O log x n4x P 1 A similar result was obtained for n 4 x ðnÞ . Here, we first prove a short interval version of (1) using P a result of Filaseta pffiffi and Trifonov [2]. Then, we provide estimates for x 4 n 4 xþ x ðnÞ and x P pffiffi 1=ðnÞ with an error term O , where r is any given positive x 4 n 4 xþ x logrþ1 x integer. From these, we deduce a sharpening of the estimate (1) and similarly for P 1 n 4 x ðnÞ. Finally we study the sum of running over shifted primes. Research supported in part by a grant from NSERC. y Research supported by the Applied Number Theory Research Group of the Hungarian Academy of Science and by a grant from OTKA. 132 J. M. De Koninck and I. Kátai 2. Main Results Theorem 1. Let hðxÞ ¼ x1=5 log 3 x. Then X hðxÞ ððnÞ 1Þ ¼ O log x x 4 n 4 xþhðxÞ ð2Þ and 1 hðxÞ ¼O : 1 ðnÞ log x x 4 n 4 xþhðxÞ X ð3Þ Remark. Observe that since ðnÞ 5 1, the summands on the left hand side of (2) and (3) are non negative. Theorem 2. Given any positive integer r, there exist computable constants c1 ; c2 ; . . . ; cr ; c02 ; . . . ; c0r such that X 1 1 1 1 1 pffiffiffi þ c2 þ þ cr þO ðnÞ ¼ 1 þ c1 pffiffi log x log r x x log 2 x log rþ1 x x 4 n 4 xþ x ð4Þ and X x x x þ c02 þ þ c0r þO ðnÞ ¼ x þ c1 2 log x log r x log x n4x x : log rþ1 x ð5Þ Theorem 3. Given any positive integer r, there exist computable constants d1 ; d2 ; . . . ; dr ; d20 ; . . . ; dr0 such that X 1 1 1 1 1 1 pffiffiffi ¼ 1 þ d1 þ d2 þO þ þ dr pffiffi ðnÞ log x log r x x log 2 x log rþ1 x x 4 n 4 xþ x ð6Þ and X 1 x x x x 0 0 ¼ x þ d1 þ d2 þO þ þ dr : ðnÞ log x log r x log 2 x log rþ1 x n4x ð7Þ Theorem 4. Given any positive integer r, there exist computable constants 2 ; 3 ; . . . ; r such that X 1 ðp þ 1Þ ðx þ x2=3 Þ ðxÞ x < p 4 xþx2=3 1 1 1 1 ð8Þ þO ¼ 1 þ 2 þ 3 þ þ r log r x log 2 x log 3 x log rþ1 x Mean Value of the Index of Composition of an Integer and X ðp þ 1Þ ¼ p4x x x x x þ 2 þ 3 þ þ r þO 2 3 log x log r x log x log x 133 x : log rþ1 x ð9Þ 3. Preliminary Results Let N stand for the set of positive integers. A number n 2 N is said to be squarefull (or powerful) if n ¼ 1 or if pjn ¼) p2 jn. Lemma 1. Let be an arbitrary non negative integer. As y ! 1, X ðiÞ k5y k squarefull log k log y pffiffiffi : k y Moreover, given any real number > 12, X 1 < þ1: k k squarefull ðiiÞ Proof. It is well known that NðtÞ :¼ X pffi 1 ¼ c t þ Oðt1=3 Þ; n4t n squarefull c¼ ð3=2Þ 2:1732; ð3Þ where stands for the Riemann Zeta Function (see for instance Ivic and Shiu [4]). Therefore, integration by parts yields X log k ð 1 log t ¼ dNðtÞ k t y k5y k squarefull 1 ð 1 ð1 log t log t log 1 t NðtÞ þ ¼ NðtÞ dt NðtÞ dt t t2 t2 y y y log y log y log y log y þ O ¼ c pffiffiffi þ O p ffiffi ffi pffiffiffi ; y y y y2=3 which completes the proof of (i). For a proof of (ii), see De Koninck and Doyon [1]. For each positive integer k and each real number y, let X X 2 ðnÞ and MðyÞ ¼ Mðyj1Þ ¼ 2 ðnÞ; MðyjkÞ :¼ n4y ðn;kÞ¼1 n4y ð10Þ 134 J. M. De Koninck and I. Kátai where stands for the Moebius function. For each positive integer k, let Bk be the set of all positive integers P all of whose prime factors divide k, and let 1 2 Bk . Moreover, let ðnÞ :¼ p kn for each integer n 5 2 and set ð1Þ ¼ 0. Walfisz [6] proved that there exists a positive constant A such that pffiffiffi 6 MðxÞ ¼ 2 x þ TðxÞ; TðxÞ x expfAð log xÞ3=5 ð log log xÞ1=5 g: ð11Þ We shall use this result in the proof of the next lemma. But first, for each positive integer k and real number > 0, let us set Y X ð1ÞðvÞ Y 1 1 1 1 ðkÞ ¼ ; 1þ 1 ¼ ðkÞ ¼ : ð12Þ p p v v2B pjk pjk k Lemma 2. Let be a fixed positive integer. Then for each positive integer k, P (i) MðyjkÞ ¼ v 2 Bk ð1ÞðvÞ M yv , pffiffiffi (ii) MðyjkÞ ¼ 62 ðkÞy þ Oð y expfð log yÞ3=5 ð log log yÞ1=5 gÞ uniformly for k 4 ð log yÞ as y ! 1, for some positive constant . Proof. (i) follows from the identity Q 1 1 1 X X 2 ðnÞ 2 ðnÞ Y 1 1 p 1 þ ps 1 s þ 2s ¼Q ¼ 1 ns ns pjk p p pjk 1 þ ps n¼1 n¼1 ðn;kÞ¼1 which is valid for all Rs > 1, and the uniqueness of Dirichlet series representation. In order to prove (ii), we first observe that log k ðk 5 3Þ; ðkÞ < exp 2 log log k where ðkÞ stands for the number of positive divisors of k (see for instance Nicolas and Robin [5]). It follows from this estimate that, given any > 0, 2 N, and k 4 ð log yÞ , as y becomes large, we have log k log log y 4 exp 2 : ð13Þ ðkÞ 4 ðkÞ 4 exp 2 log log k log log log y Now from (i) and (12), we have 0 1 0 1 B X 1C B X y C 6 C þ OB MðyjkÞ ¼ 2 ðkÞy þ OB y T C @ A @ v v A v4y v 2 Bk v>y v 2 Bk ¼ 6 ðkÞy þ OðE1 Þ þ OðE2 Þ; 2 say. First observe that X 1 v>y v 2 Bk v ¼ X 1 1 1 X 1 ðkÞ < 1 4 1 ; 1 v v y v y v>y v>y v 2 Bk v 2 Bk ð14Þ Mean Value of the Index of Composition of an Integer 135 so that using (13), we get E1 ðkÞy y1=4 ; ð15Þ assuming that < 1=5, say. To estimate E2 , we proceed as follows. If v 4 y1 for some fixed real number > 0, then, in view of Walfisz’s result (11), rffiffiffi T y 4 y expfA ð log yÞ3=5 ð log log yÞ1=5 g ð16Þ v v pffiffi for some positive constant A , while the left hand side of (16) is 4 D yv if v 4 y, for some constant D > 0, so that we may write ( pffiffi 3=5 y ð log log yÞ1=5 g if v 4 y1 ; ð log yÞ v expfA ffiffiy p E2 4 ð17Þ D v if v 4 y: Now, using the definition of and then (13), we have log log y pffiffiffi X 1 pffiffiffi pffiffiffi p ffiffi ffi : y 4 y 1=2 ðkÞ 4 y exp 2 log log log y v v 4 y1 ð18Þ v 2 Bk On the other hand, if v > y1 , then 2 v ¼ v1 v > yð1Þ v ; in which case, again using (13), we have pffiffiffi X y 1 pffiffiffi X 1 pffiffiffi < y 2 =2 ð1Þ =2 v v y v 2 Bk v > y1 v 2 Bk 2 1 4 y2ð1ð1Þ Þ 2 1 2ð1ð1Þ Þ 4y =2 ðkÞ exp 2 log log y : log log log y ð19Þ Choosing small and combining (18) with (19), we get from (17) that there exists a positive constant such that pffiffiffi E2 y expfð log yÞ3=5 ð log log yÞ1=5 g: ð20Þ Gathering (15) and (20), (ii) follows, and Lemma 2 is proved. For each positive integer k and each real number y, let X pþ1 ðyjkÞ :¼ 2 k p4y p 1 ðmod kÞ pþ1 k ;k ¼1 and further let ðx; D; ‘Þ be the number of primes p 4 x such that p ‘ ðmod DÞ. 136 J. M. De Koninck and I. Kátai Lemma 3. Let k be a squarefull integer. Then X X ðÞðÞðy; k2 ; 1Þ: ðyjkÞ ¼ jk ð;kÞ¼1 Proof. Since P djn ðdÞ is always 0, unless n ¼ 1 and since X 1 if n is squarefree; ðdÞ ¼ 0 otherwise; 2 d jn it follows that X ðyjkÞ ¼ X pþ1 p4y p 1 ðmod kÞ ¼ X X k ðÞ X ðÞ 2 jpþ1 k ;k X ðÞðÞ 1; p4y p 1 ðmod k2 Þ jk ð;kÞ¼1 which completes the proof of Lemma 3. Let stand for Euler’s function and let liðyÞ :¼ Ðy dt 2 log t. Lemma 4. Let " > 0 be a small number. Let and r be fixed positive integers 7 and let y12þ" 4 H 4 y. Then, as y ! 1, liðy þ HÞ liðyÞ Y 1 H 1 þO ðy þ HjkÞ ðyjkÞ ¼ 1 k qðq 1Þ k log rþ2 y q6 j k uniformly for k 4 ð log yÞ . Proof. From Lemma 3 and Huxley’s Theorem for primes in arithmetic progressions (see Huxley [3]), we have that, given any number c0 > 0, X X ðy þ HjkÞ ðyjkÞ ¼ ðÞðÞððy þ H; k2 ; 1Þ ðy; k2 ; 1ÞÞ jk ð;kÞ¼1 ¼ ðliðy þ HÞ liðyÞÞ 0 BX B þ OB @ jk 0 BX B þ OB @ jk X ð;kÞ¼1 4 ðlog yÞc0 X ð;kÞ¼1 > ðlog yÞc0 X X ðÞðÞ ðk2 Þ jk ð;kÞ¼1 1 pffiffiffiffiffiffiffiffiffiffi C HjðÞj C expð log yÞC 2 A ðk Þ 1 2H C C C: k2 A Mean Value of the Index of Composition of an Integer 137 Clearly this last error term is X1 H 1 H 1 ; c0 k ð log yÞ jk k log rþ1 y for k 4 ð log yÞ , provided c0 is chosen sufficiently large, whereas the first error term is pffiffiffiffiffiffiffiffiffiffi H expð log yÞ X jðÞj H 1 : ðkÞ ðÞ k log rþ1 y jk Gathering these estimates and observing that X X ðÞðÞ Y 1 X ðÞ X ðÞ 1 ; ¼ ¼ 1 ðk2 Þ ðkÞ jk ð;kÞ¼1 ð2 Þ q6 j k qðq 1Þ jk ð;kÞ¼1 the proof of Lemma 4 is complete. Lemma 5. Let hðxÞ ¼ x1=5 log 3 x and let EðxÞ be the number of integers n 2 ½x; þ hðxÞ which can be written as n ¼ p2 for some prime number pxffiffiffiffiffiffiffiffi ffi p 5 hðxÞ. Then EðxÞ hðxÞ : log x Proof. This estimate is an immediate consequence of Theorem A, which is an unpublished result of Michael Filaseta who kindly communicated it to the first author. Theorem A (Filaseta). Let k be an integer 5 2. Let gðxÞ be a function satisfying 1 4 gðxÞ 4 log x for x sufficiently large, and set h ¼ x1=ð2kþ1Þ gðxÞ3 : Then the number of k-free numbers in the interval ðx; x þ h is h hð log xÞ h þO : þO ðkÞ gðxÞ gðxÞ3 Proof. We modify the argument given in Section 4 of Filaseta and Trifonov [2]. Take z ¼ " log x, where " ¼ "ðkÞ > 0 is sufficiently small. A sieve-of-Eratosthenes argument gives that the number of integers in ðx; x þ h free from divisors of the form pk with p 4 z is Y Y 1 1 z 1 k þ Oð2 Þ ¼ h 1 k þ Oðh=zÞ þ Oð2z Þ h p p p4z p Y 1 h þ Oðx" log 2 Þ ¼h 1 k þO p log x p h h þO : ¼ ðkÞ gðxÞ We now obtain an upper bound for the number of these integers that are divisible by the kth power of a prime > z. If p > 2x1=k , then pk > 2k x > x þ h and, hence, pk 138 J. M. De Koninck and I. Kátai does not divide integers in the interval ðx; x þ h. Let c be a sufficiently large constant (for the purpose of having a condition in Theorem 7 of [2] hold later in the argument). We break up our consideration of primes into two parts, those primes p in I ¼ ðz; ch and those primes p in J ¼ ðch; 2x1=k . If Mu denotes the number of integers in ðx; x þ h divisible by uk, then X X h X h þ1 4 Mp 4 þ ðchÞ k p pk p5z p2I p2I 4 h þ Oðh=log xÞ ¼ Oðh=log xÞ ¼ Oðh=gðxÞÞ: z Thus, it remains to show that X hð log xÞ h : þO Mp ¼ O gðxÞ gðxÞ3 p2J P It suffices to obtain the same bound for u 2 J Mu (where u runs through the integers in J). Since such u exceed h, we deduce that Mu 2 f0; 1g and Mu ¼ 1 precisely when there is a multiple of uk in ðx; x þ h. We use disjoint intervals Ji , with 1 4 i 4 r, of the form ðN; 2N satisfying r [ J Ji ðch=2; 2x1=k : i¼1 In particular, r log x. Fix Ji ¼ ðN; 2N. Note that ch 4 N 4 x1=k : 2 As in [2], we obtain that X Mu jfu 2 ðN; 2N : k f ðuÞk < gj; u 2 Ji where f ðuÞ ¼ x=uk , ¼ hN k , and k f ðuÞk denotes the distance from f ðuÞ to the nearest integer. We appeal to Theorem 7 from [2] (with s ¼ k and X ¼ x). Observe that the condition there on holds as c is sufficiently large. We obtain that X 2 Mu x1=ð2kþ1Þ þ x1=ð6kþ3Þ N ð6k þk1Þ=ð6kþ3Þ u 2 Ji x1=ð2kþ1Þ þ hx1=ð6kþ3Þ N 1=3 : Summing over i, we deduce X Mu x1=ð2kþ1Þ log x þ hx1=ð6kþ3Þ h1=3 u2J x1=ð2kþ1Þ log x þ x1=ð2kþ1Þ gðxÞ2 : The desired upper bound now follows, thus completing the proof of Theorem A. Mean Value of the Index of Composition of an Integer 139 4. Proof of Theorem 1 Each positive integer n can be written uniquely as n ¼ km; 2 ðmÞ ¼ 1; ðm; kÞ ¼ 1; k squarefull; so that ðnÞ ¼ ðkÞm ¼ ðkÞ ðkÞ mk ¼ n k k and therefore ðnÞ ¼ log n log n þ log ðkÞ k ¼ 1 1 log ðk=ðkÞÞ log n : ð21Þ From this it follows in particular that there exists a positive constant B1 such that 1 4 ðnÞ 4 1 þ B1 log ðk=ðkÞÞ log n if k < x1=3 , say. Thus, writing kðnÞ for the squarefull part of n, we have X B1 X ððnÞ 1Þ 4 ð log ðk=ðkÞÞÞ #fn 2 ½x; x þ hðxÞ : kðnÞ ¼ kg log x k 4 hðxÞ x 4 n 4 xþhðxÞ X ððnÞ 1Þ þ x 4 n 4 xþhðxÞ kðnÞ > hðxÞ ¼ B1 S1 þ S2 ; log x ð22Þ say. Using Lemma 1, we have that X hðxÞ 4 B2 hðxÞ S1 4 2 ð log ðk=ðkÞÞÞ k k 4 hðxÞ ð23Þ k squarefull for some absolute constant B2 > 0, since the series over k converges by (ii) of Lemma 2. It remains to estimate S2 . Let U ¼ fn 2 ½x; x þ hðxÞ : kðnÞ > hðxÞg and let U1 U be the subset of those n 2 U for which there is some squarefull divisor tjkðnÞ such that log 4 x < t < hðxÞ. It is clear that, using (i) of Lemma 1 with ¼ 0 and since ðnÞ log x for n 4 2x, X X 1 log x hðxÞ : ð24Þ ððnÞ 1Þ log x hðxÞ hðxÞ ¼ 2 t log x log x n 2 U1 t squarefull t > log4 x Let U2 ¼ U nU1 . Given n 2 U2 , let t ¼ 1 1 ‘ ‘ , with 1 < < ‘ primes, be the smallest squarefull divisor of kðnÞ which is larger than hðxÞ. Since kðnÞ is such 140 J. M. De Koninck and I. Kátai a candidate, then such a divisor t must exist. Furthermore, for every j 2 ½1; ‘, either hðxÞ 4 t t t 2 2 j or 2j is squarefull, and therefore 2j 4 log x, so that j 5 log4 x. Since j jkðnÞ 2 and n 2 = U1 , it follows that j > hðxÞ, so that the conditions of Lemma 5 are satisfied. Observe furthermore that if n 2 U2 , then 2x 1 log x þ Oð log log xÞ log ðk=ðkÞÞ < log pffiffiffiffiffiffiffiffiffi < 1 10 hðxÞ and therefore, using (21), 1 ðnÞ < 1 9 10log x þ Oðlog log xÞ log x < 1 10 þO 1 log log x ; log x and so by Lemma 5, we obtain that X hðxÞ : ððnÞ 1Þ log x n 2 U2 ð25Þ Combining (22), (23), (24) and (25), we obtain (2). Since the proof of (3) is similar, we shall omit it. 5. Proofs of Theorems 2 and 3 We start with a general remark concerning the main idea used in the upcoming proofs. As we shall see, the contribution of k ¼ kðnÞ, the squarefull part of n, in the estimates of Theorems 2 and 3 (or of k ¼ kð p þ 1Þ in Theorem 4) may be restricted to k 4 log x where is a large generic positive constant. This follows by trivial estimation and (i) of Lemma 1. Therefore, in the representation (21) for ðnÞ, one can replace log n in the denominator by log x with negligible error. Hence this procedure permits, in view of the unique representation n ¼ km ¼ kðnÞmðnÞ, ðk; mÞ ¼ 1, to split all sums in the following fashion: inner sum over m is performed using (ii) of Lemma 2, noting that partial summation permits one to evaluate (in terms P of asymptotic expansion in decreasing powers of the logarithm) the quantity m 4 x;ðm;kÞ¼1 log j m for j ¼ 0; 1; 2; . . . , where as always m denotes a generic squarefree number. 5.1. Regarding Theorems 2 and 3, it is enough to prove the short interval version, that is (4) and (6). Indeed, in each case, the ‘‘long interval’’ version, namely (5) or (7), follows by integrating with respect to x, as we will show in Section 5.2. Moreover, we shall only prove (4), the proof of (6) being very similar. We start as in the proof of Theorem 1 by writing 1 ðnÞ ¼ ; log ðk=ðkÞÞ 1 log n from which it follows that ðnÞ ¼ 1 þ O ; x1=3 1 log ðk=ðkÞÞ 1 log x pffiffiffi whenever n 2 ½x; x þ x and kðnÞ < ð log xÞ , being an arbitrary positive integer. Mean Value of the Index of Composition of an Integer 141 First, we shall obtain an upper bound for the number of integers pffiffiffi n 2 M, namely 2 those integerspwhich can be written in the form n ¼ p a 2 ½x; x þ x for some ffiffiffi pffiffiffi pffiffiffi prime number p > x. Observe that if p2 a 2 ½x; x þ x , then p2 ða þ 1Þ > x þ x, so that for each prime number p, there exists at most one positive integer pffiffi a with this property. x 2 We first count those integers n ¼ p a for which p < . Their contribution pffiffi pffiffi logR x x is at most C logRþ1 x for some constant C > 0. On the other hand, if p > logRxx, then pffiffiffi ðx þ xÞð log 2R xÞ < 2 log 2R x: a< x h i pffiffix pffiffixqffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffi p1ffiffi , and since the length ; 1 þ Since au2 2 ½x; x þ x implies that u 2 a a x of this interval is bounded, no more than C log 2R x such integers exist. Gathering these estimates, we obtain that pffiffiffi C x þ C log 2R x: #M 4 log 2R x pffiffiffi Now let M1 be the set ofpffiffithose integers n ¼ p2 a 2 ½x; x þ x for which ffi p2 jkðnÞ, where ð log xÞ < p2 < x. Then clearly pffiffiffi pffiffiffi X x x : #M1 4 2 pffiffi p ð log xÞ =2 ðlog xÞ < p2 < x We now estimate SðxÞ :¼ #fn 2 ½x; x þ pffiffiffi x : kðnÞ > ð log xÞ 1 g ¼ S1 ðxÞ þ S2 ðxÞ; n for which there is a squarefull divisor tjkðnÞ where in S1 ðxÞ we count pffiffithose ffi belonging to ½ð log xÞ 1 ; x , the others being counted by S2 ðxÞ. Repeating the argument used in the proof of Theorem 1 and using Lemma 1, we obtain that pffiffiffi x SðxÞ 4 ; Rþ2 log x provided 1 is taken large enough. It remains to consider the sum pffiffiffi X 1 x þ x x S0 ðxÞ :¼ M k : k M log ðk=ðkÞÞ k k k squarefull 1 log x k < ðlog xÞ 1 By (ii) of Lemma 2, we have pffiffiffi X x 1 6 ðkÞ pffiffiffi 1 þ1 x þ O ð log xÞ : S0 ðxÞ ¼ R log ðk=ðkÞÞ 2 k x log k squarefull 1 log x k < ðlog xÞ 1 ð26Þ pffiffi x provided we choose R 5 ð 1 þ 1Þ þ r þ 1. The error term can be bounded by logrþ1 x On the other hand, the main sum in (26) can be rewritten as pffiffiffi #1 ðxÞ #r ðxÞ #rþ1 ðxÞ þ þ ; þO x #0 ðxÞ þ log x log r x log rþ1 x 142 J. M. De Koninck and I. Kátai where #j ðxÞ ¼ 6 2 X ð log ðk=ðkÞÞÞ j k squarefull k < ðlog xÞ 1 ðkÞ k ð j ¼ 0; 1; 2; . . . ; rÞ: Set #j :¼ lim #j ðxÞ; x!1 observing that indeed the limit exists and in fact that, using Lemma 1, we have #j ðxÞ #j ð log log xÞ j ð log xÞ 1 =2 : It is easy to see that #1 ¼ 1. Hence, we obtain that (4) holds with ci ¼ #i for i ¼ 2; 3; . . . ; r. The proofs of Theorems 2 and 3 are thus complete. Observe incidentally that 6 X ðkÞ log ðk=ðkÞÞ X log p ¼ 0:75536; c1 ¼ 2 k squarefull k pðp 1Þ p as in De Koninck and Doyon [1], and that one can easily show that d1 ¼ c1 . 5.2. P We now show how (5) follows from (4). For this purpose, let EðxÞ :¼ n 4 x ðnÞ, so that pffiffiffi r X X Eðx þ xÞ EðxÞ 1 ci 1 pffiffiffi ð27Þ ðnÞ ¼ þ O ¼ pffiffiffi i x x x < n 4 xþpffiffix log rþ1 x i¼0 log x with c0 ¼ 1, and therefore pffiffiffi ðX ðX r X Eðx þ xÞ EðxÞ dx X pffiffiffi : ð28Þ ci dx ¼ i þO x log rþ1 X 2 2 log x i¼0 pffiffiffi pffiffiffi pffiffiffi pffiffiffi On the other hand, since for x 4 n 4 x þ x, we have n ¼ xð1 þ Oð1= xÞÞ, so that X X 1 ðnÞ pffiffiffi pffiffiffi þ Oðx1=2 log xÞ: ðnÞ ¼ ð29Þ pffiffi x x < n 4 xþpffiffix n x 4 n 4 xþ x pffiffiffi pffiffiffi pffiffiffi Now, again since x ¼ n þ Oð1Þ for x 4 n 4 x þ x, we have ðX ð X X ðnÞ ðnÞ n pffiffiffi dx ¼ pffiffiffi dx pffiffi pffiffiffi pffiffi n n 2 x 4 n 4 xþ x 2 4 n 4 Xþ X n nþOð1Þ X ðnÞ pffiffiffi pffiffiffi ð n þ Oð1ÞÞ pffiffiffi n 2 4 n 4 Xþ X X pffiffiffiffi ðnÞ þ Oð X log XÞ: ¼ ¼ 24n4X ð30Þ Mean Value of the Index of Composition of an Integer 143 Finally, by partial integration, one easily obtains that, for each integer i 2 ½1; r, ðX dx X X X X þ iði þ 1Þ þ þ O : ð31Þ þi i ¼ log i X log iþ1 X log iþ2 X log rþ1 X e log x Gathering all estimates (27) through (31), estimate (5) follows, thus completing the proof of Theorem 2. 6. Proof of Theorem 4 2=3 Assume that p 2 ½x; x þ x p þ 1 ¼ km; and write ðm; kÞ ¼ 1; 2 ðmÞ ¼ 1; k squarefull: Then, using the same approach as in the proof of Theorem 1, we can write ðp þ 1Þ ¼ 1 1 log ðk=ðkÞÞ log ðpþ1Þ : Now let be a large constant. We shall first bound the set of those shifted primes p þ 1 2 ½x; x þ x2=3 which have a squarefull divisor t > ð log xÞ. The contribution of those primes p with a corresponding t < x2=3 can be estimated using a sieve approach. Indeed, letting PðxÞ stand for the number of these primes p, we have X PðxÞ ððx þ x2=3 ; t; 1Þ ðx; t; 1ÞÞ ffiffi p ðlog xÞ < t 4 x X x þ x2=3 x þ pffiffi t t 2=3 x<t<x x2=3 1 þ Oðx2=31=4 Þ: log x ð log xÞ=2 It remains to estimate those shifted primes p þ 1 2 ½x; x þ x2=3 for which there is a prime number q such that p þ 1 ¼ aq2 with q2 > x2=3 : ð32Þ To each prime q, there pffiffiffiffiffi can only correspond one integer a. Moreover, pffiffiffi it follows from (32) that q < 2x and therefore that there can be at most x such shifted primes p þ 1. We now consider the set F consisting of the shifted primes p þ 1 2 ½x; x þ x2=3 for which the corresponding squarefull number k satisfies k 4 ð log xÞ . Given p 2 F, we have 1 1 ðp þ 1Þ ¼ þ O 1=4 ; x 1 log ðk=ðkÞÞ log x 144 J. M. De Koninck and I. Kátai: Mean Value of the Index of Composition of an Integer say, and therefore X ðp þ 1Þ ¼ F :¼ p2F X 1 k squarefull 1 log ðk=ðkÞÞ log x ððx þ x2=3 jkÞ ðxjkÞÞ k 4 ðlog xÞ þ Oðx2=31=4 Þ: Hence, by using Lemma 4, we get that X 1Y 1 1 F ¼ ðliðx þ x2=3 Þ liðxÞÞ 1 log k qðq 1Þ 1 ðk=ðkÞÞ k squarefull q6 j k log x k 4 ðlog xÞ 2=3 log log x : þO x ð log xÞrþ2 From here on, the proof is similar to that of Theorem 2 and we shall therefore omit it. Incidentally, observe that 2 can easily be computed and in fact that X log ðk=ðkÞÞ Y 1 0:069: 2 ¼ 1 k2 pðp 1Þ k squarefull p6 j k 7. Final Remarks A key element in the proofs of Theorems 2 and 3 is the estimate (ii) of Lemma x 2. But our results used only the fact that the error term in this estimate is O log R x for any fixed R > 0. However, it should be mentioned that using the full force of the error term and at the cost of some additional computations, one can show that estimates (4) and (6) still hold when the p indicated sums run over shorter intervals, ffiffiffi such as for instance the interval ½x; x þ x logr x. Acknowledgements. The authors are indebted to Professor Michael Filaseta for allowing them to include here an important unpublished result (Theorem A). The authors are also grateful to the referees for valuable suggestions which helped to improve the final version of this paper. References [1] [2] [3] [4] [5] [6] propos de l’indice de composition des nombres. Monatsh Math De Koninck JM, Doyon N (2003) A 139: 151–167. Filaseta M, Trifonov O (1996) The distribution of fractional parts with applications to gap results in Number Theory. Proc London Math Soc 73: 241–278 Huxley M (1972) On the difference between consecutive primes. Invent Math 15: 164–170 Ivic A, Shiu P (1982) The distribution of powerful integers. Illinois J Math 26: 576–590 Nicolas JL, Robin G (1983) Majorations explicites pour le nombre de diviseurs de n. Bull Can Math 26: 485–492 Walfisz A (1963) Weylsche Exponentialsummen in der neueren Zahlentheorie. Berlin: Springer Authors’ addresses: Jean-Marie De Koninck, Departement de mathematiques, Universite Laval, Quebec G1K 7P4, Canada, e-mail: [email protected]; Imre Kátai, Computer Algebra Department, E€otv€os Loránd University, 1117 Budapest, Pázmány Peter Setány I=C, Hungary, e-mail: katai@ compalg.inf.elte.hu
© Copyright 2026 Paperzz