This project is funded by the European Union Evaluation of the ability of progressively finer MNWP models to reproduce wind regimes in complex terrain Mario Hrastinski, Kristian Horvath, Iris Odak, Stjepan Ivatek-Šahdan and Alica Bajić Workshop on advances in meso- and micro-meteorology Jezerčica thermae, Donja Stubica, Croatia 4. November 2014., 1 Contents • Introduction • Data and methods • Results • Conclusion 2 Introduction 8 Most Pag Sibenik Osijek Wind speed (ms-1) 7 6 5 4 3 2 1 J F M A M J J A S O N D Time (months) Most Pag Šibenik Osijek ms-1 3 Introduction • Objectives: 1) to evaluate the overall model performance and to quantify among different sources of errors 2) to provide the scale dependent measure of model performance 4 Data and methods ALADIN 8 km: • 37 levels • 240 x 216 grid points • 72-hourly forecast • 3 hours output • hydrostatic • initialized at 00 UTC DADA 2 km: • 15 levels • 450 x 450 grid points • 72-hourly forecast • 3 hours output • hydrostatic • initialized at 00 UTC ALADIN 2 km: • Covered period: 2010-2012. • 10 min wind speed time series • Modeled series with 1-3 hours output • 37 levels • 450 x 450 grid points • 24-hourly forecast • 1 hours output • non-hydrostatic • Initialized at 06 UTC 5 Data and methods 6 Results – Statistical verification MBIAS Most Pag Osijek 1.6 1.6 1.6 1.2 1.2 1.2 0.8 0.8 0.8 0.4 RMSE Šibenik 2 4 6 8 10 12 0.4 2 4 6 8 10 12 0.4 4.6 4.6 4.6 3.3 3.3 3.3 2 2 2 0.7 2 4 6 8 10 12 0.7 2 Time (months) 4 6 8 10 12 0.7 AL8 DA2 AL2 2 4 6 8 10 12 2 4 6 8 10 12 Time (months) Time (months) Table1. 2010-2012. period average continuous statistical scores at Most Pag, Šibenik and Osijek stations MBIAS RMSE Mpa Šib Osi Mpa Šib Osi AL8 0.78 1.21 1.22 3.16 2.12 1.22 DA2 1.08 1.12 1.26 2.92 1.84 1.31 AL2 1.24 1.10 1.28 3.36 1.90 1.26 7 Results – RMSE decomposition ALADIN 8 km ALADIN 8 km 4 RMSE comp. RMSE comp. 6 4 2 0 -2 -4 J F M A M J J A S O N 3 2 1 0 -1 -2 D J F M A M DADA 2 km RMSE comp. RMSE comp. 2 0 -2 J F M A M J J A S O N S O N D A S O N D S O N D 3 2 1 0 -1 -2 D J F M A ALADIN 2 km M J J ALADIN 2 km 6 4 RMSE comp. RMSE comp. A 4 4 4 2 0 -2 -4 J DADA 2 km 6 -4 J J F M A M J J A S O N D 3 2 1 0 -1 -2 J F M A M J J A Time (months) Time (months) Most Pag Šibenik 8 Results – Kinetic energy spectra • Qualitative tool for model evaluation • Large scale spectra ~ k-3, 'turbulent' spectra ~ k-5/3 D mesoscale EF) • Effective resolution ≈ 4-5 ∆x ∼ 400 hPa ∼ 600 hPa ∼ 1000 hPa 9 Results – Vorticity and divergence spectra • All spectra comparable for scales larger than 200 km • Vorticity is more energetic for scales > 200 km • Divergence domintes for scales < 100 km Vorticity Divergence 10 Results – Power spectral density • Spectra of components rather than of wind speed • ALADIN 2 km forecasts improve simulation of DIU and SUB motions Most Pag Šibenik Osijek 11 Results – PSD in spectral ranges Zonal and cross-mountain components • Major improvement for DIU and SUB cross-mountain motions • Along-mountain SUB motions not adequatly resolved 3 3 2.5 2.5 2 2 DIU/DIU obs SUB/SUBobs • 1.5 1 0.5 0 0.1 OBS-co OBS-ct AL8-co AL8-ct DA2-co DA2-ct AL-co AL-ct 1.5 1 0.5 0.15 0.2 0.25 0.3 0.35 SUB/total 0.4 0.45 0.5 0 0 0.1 0.2 0.3 0.4 0.5 DIU/total 12 Conclusions • ALADIN 8 km model is sufficient for wind forecast in continental part of Croatia • In coastal part forecast generally improves with increasing the model resolution • The largest portion of errors can be atributed to phase errors • KE spectra follow the k-3 at larger scales in upper troposphere and flatten towards the surface • The most significant increase of accuracy was found for diurnal periods of motions in cross-mountain direction 13 Apendix – A DADA 2 km • ME builds up faster in the upper troposphere • spin up time is shortest for ALADIN 2 km model ALADIN 8 km ALADIN 2 km 14 Appendix - A ALADIN 8 km DADA 2 km ALADIN 2 km 15 Appendix-B 16 Appendix-C 3.5 2.5 3 2 DIU/DIU obs SUB/SUBobs 2.5 1.5 1 2 1.5 1 0.5 0.5 0 0.05 0.1 0.15 0.2 0.25 SUB/total 0.3 0.35 0.4 0.45 0 0 0.05 0.1 0.15 0.2 0.25 0.3 DIU/total 17 0.35
© Copyright 2025 Paperzz