Altitudinal distribution of lotic chironomid \(Diptera\) communities in

Annls
LimnoL
29 (2) 1993 : 175-187
Altitudinal distribution of lotie chironomid (Diptera) communities
in the Sierra Nevada mountains (Southern Spain)
J J . Casas*
A . Vilchez-Quero
1
Keywords : Diptera, Chironomidae, altitudinal distribution, streams, Sierra Nevada, Spain.
Pupae and pupal exuviae were collected by drift and hand netting from 27 sites on 10 streams in the Sierra Nevada
mountains in 1986 and 1987. The sites represented an altitudinal range from 340 m to 2100 m. The pupal exuviae collections revealed a composite fauna of 143 species. Eukiefferiella (12 spp.) and Tvetenia (3 spp.) were dominant both taxonomically and numerically along most of the altitudinal profile, followed by Cricotopus (11 spp.), Orthocladius (9 spp.)
and Diamesa (7 spp.).
The altitudinal distribution of the 99 most common species is shown and compared with those obtained in other European streams or rivers, especially in the Pyrenees. The general pattern of altitudinal zonation shows an increase in species richness from the headwaters ( < 2000 m : 58 spp.) toward the middle reaches (1000-1600 m : 121 spp.). The theoretically expected highest species richness in the foothill reaches ( > 1000 m : 113 spp.) was not obtained. The periods
of reduced or intermittent flow, the domestic organic inputs and the narrowness of the channels in the foothill reaches
appear responsible for the decrease of the species richness of the chironomid communities.
Répartition altitudinale des communautés lotiques de Chironomidés (Diptera) de la Sierra Nevada (Sud de l'Espagne)
Mots clés : Diptera, Chironomidés, répartition altitudinale, rivières, Sierra Nevada, Espagne.
Des exuvies nymphales et des nymphes de Chironomidés ont été récoltées par dérive ou dans des zones d'accumulation, dans 27 stations de 10 rivières de la Sierra Nevada, en 1986 et 1987. Les stations sont échelonnées entre 340 m
et 2100 m d'altitude. 143 espèces ont été identifiées. Les Eukiefferiella (12 spp.) et les Tvetenia (3 spp.) sont les deux
genres dominants, spécifiquement et numériquement, tout au long de la zone altitudinale prospectée, suivis par les Cricotopus (11 spp.), les Orthocladius (9 spp.) et les Diamesa (7 spp.).
La répartition altitudinale des 99 espèces les plus fréquentes est comparée avec celle d'autres rivières d'Europe, et
plus spécialement des Pyrénées. Le modèle général de zonation altitudinale présente une augmentation de la richesse
spécifique depuis les sources ( > 2000 m : 58 spp.) jusqu'aux zones de moyenne altitude (1000-1600 m : 121 spp.). La
théoriquement attendue plus forte diversité spécifique dans les zones de piémont ( > 1000 m : 113 spp.) ne s'est pas
vérifiée. Les périodes de réduction ou d'intermittence des débits, la pollution organique et l'étroitesse du lit des rivières
du piémont semblent les causes de cette diminution de la richesse spécifique des communautés de Chironomidés.
1. Introduction
T h e gradient of environmental conditions t h a t
occurs as a function of altitude offers excellent
opportunities t o investigate factors which influence
the diversity, composition and a b u n d a n c e of stream
organisms ( W a r d 1986). F a c t o r s such as t h e r m a l
regime, flow a n d characteristics of the s u b s t r a t u m ,
which have p r i m a r y i m p o r t a n c e in the distribution
of most lotie chironomid species, are directly or indi1. Departamento de Biologia Animal y Ecologia, Facultad de
Ciencias, Universidad de Granada, 18071, Granada, Spain.
Article available at http://www.limnology-journal.org or http://dx.doi.org/10.1051/limn/1993016
rectly dependent on altitude. Altitudinal gradient is
considered by C o f f m a n (1989) as one of the m a j o r
factors t h a t influences the richness of a lotie c h i r o nomid c o m m u n i t y .
Altitudinal zonation patterns of lotie chironomids
have been studied in E u r o p e since T h i e n e m a n n
(1954) proposed a classification system for European
rivers based on their chironomid fauna. However,
some of t h e studies are limited in taxonomic scope,
or present difficulties in t h e interpretation of t h e
n a t u r a l longitudinal or altitudinal distribution patterns due to disturbances (review in Laville &
176
J J . CASAS, A. VILCHEZ-QUERO
V i n ç o n 1991). Preliminary i n f o r m a t i o n o n t h e altit u d i n a l distribution of c h i r o n o m i d s in the streams
of t h e Sierra N e v a d a is available in Casas & Vilchez
(1989). T h e aim of t h e present work is t o offer some
general d a t a on t h e composition of the lotie chiron o m i d communities in this massif. F u r t h e r m o r e , we
shall e x a m i n e t h e altitudinal distribution p a t t e r n of
t h e m o s t frequent species, c o m p a r i n g o u r d a t a with
o t h e r E u r o p e a n m o u n t a i n s , a n d discussing the
influence of s o m e special features of t h e study area
o n t h e altitudinal p a t t e r n of species richness. I n the
(2)
context of the present paper the term « c o m m u nity » follows the definition of « species assemblage » as stated by Giller (1984).
2. Study area
The study was carried out in 10 streams in the western part of the Sierra Nevada, Andalucia (Southern
Spain). This is the most Southern E u r o p e a n highm o u n t a i n massif, representing heights u p t o 3300 m
(Fig. 1). T h e streams studied form the headwaters
Fig. 1. Map of the Western part of the Sierra Nevada, showing the sampling sites on the streams studies.
Fig. 1. Carte de la Sierra Nevada occidentale : localisation des 27 stations dans les 10 rivières étudiées.
(3)
177
CHIRONOMIDS DISTRIBUTION IN THE SIERRA N E V A D A
detailed information concerning the physiographic
and chemical characteristics of the sampling stations
is provided in Table 1.
of t h e rivers Guadalfeao, o n t h e southern face, andGenil o n the n o r t h e r n face. T h e streams have torrential flow, primarily in spring during t h e snow
melt, b u t reduced flow in s u m m e r (Table 1).
Twenty-seven sampling sites were studied (Fig. 1),
ranging from 340 to 2100 m a.s.l.. T h e s u b s t r a t u m
was chiefly composed of b o u l d e r s , angular rubble
a n d gravel. In the upper reaches there is a great development of the algae Hydrurus foetidus during winter a n d spring. In the lower reaches some domestic
effluents enter the streams. I m p o u n d m e n t of water
t o provide for small hydroelectric power stations and
irrigation takes place mainly below 1000 m . M o r e
3. Material and methods
The material, pupal exuviae a n d pupae of C h i r o n o m i d a e , was collected by drift netting (875 c m
m o u t h , 1 . 1 m long. 250
mesh size). T h e nets,
1 or 2 depending o n stream width, were placed in
the centre of the channel. Collections were m a d e for
an hour and a half at every sampling site during four
periods : M a y - J u n e 1986, A u g u s t 1986, N o v e m b e r
1986, M a r c h 1987. Generally, for each stream the
2
Table 1. Physiographical and chemical characteristics of the sampling stations : mean values ; maximum and minimum values for flow
and water temperature.
Tableau 1 . Caractéristiques physico-chimiques des stations étudiées : valeurs moyennes ; valeurs maximum et minimum pour le débit
et la température de l'eau.
CD te
O
M "H
ï
-p
0)
s
o
•H
P
-P
C
0)
e
0)
S)
J0
o P
u
u
P
CD
a
•P
œ
(0
ai
•H
•H
•p
C
g
•H u uit
C
Q
•p
G* •H en
X
«
2 p
«C «H
U %
%
1
TA
1700
8.5
16.9
43.1
4.4
0.59
16
TI
T2
PI
1460
1000
1300
960
900
13.0
21.5
3.5
4.4
75.5
1 15.1
9.2
12.5
8.7
9.5
10.0
32.0
60.5
78.9
7.1
4.0
4.5
4.0
0.20-3.09
0.37-2.23
0.04-0.30
1 1-19
9-19
9-17
12-19
9.5
22.5
5.0
13.0
P2
ChA
Chl
Ch2
LA
Ll
L2
DA
D1
D2
Di 1
Di2
Ml
M2
M3
M4
M5
GA
61
G2
Mal
ABl
AB2
740
340
1500
720
600
860
780
15.0
10.5
14.7
16.2
135
15.3
19.7
680
980
800
2100
17.0
24.0
2.5
1960
1400
3.0
7.5
940
780
1220
1060
780
1020
1080
760
18.3
15.2
8.0
5.5
32.6
18.4
26.4
27.9
45.1
52.7
68.4
2.2
2.3
1.6
2.9
2.4
2.5
2.5
2.8
4.1
0.08
0.01-0.55
0.00-0.69
0.02
0.04-0.99
16
9-14
19-27
14
10-16
13-20
19
8-18
2.6
3.0
2.4
0.18-1.32
0.02-0.82
0.03-0.66
0.03-0.44
1 1-18
9-19
60.2
43.1
66.6
5.5
6.4
1.9
0.10-0.45
4-11
1 1.6
27.2
4.3
0.26-1.96
14.5
6.9
17.5
12.2
5.0
3.2
5.5
4.5
8.5
51.1
78.0
64.7
3.3
3.9
4.3
0.06-1.58
0.27-1.36
0.75
87.7
1 19.7
3.2
7.0
14.5
23.2
16.5
5.7
16.5
3.0
5.0
2.5
20.4
22.1
25.9
0.17-1.23
0.02
0.00-0.59
0.00-0.20
3.0
1.0
56.7
3.2
0.06-0.72
0.02-2.58
0.04-1.08
45.2
135.8
3.2
4.1
0.14-0.32
0.21-0.70
10-16
4-1 1
12.2
16.9
22.3
44.7
61.3
109.8
82.0
152.5
18.9
94.1
SS
46
45
25
45
50
68
32
59
83
34
162
295
37
437
39
277
186.5 2 0 4 7
186
140.7
132.9 1000
268
21.3
744
37
184.0
139.1
1 17.1
&
0
p
23
41
0
14
13
1
.1.21
1
7
0.86
1.09
0
-
3
165
0
2
527
1.25
7.72
1.80
6.63
0.78
40
18
12
36
0.99
1.78
1.43
2.67
7-18
6-20
130.9
15
143.3
39.0
338
473
33
25
8-21
16
63
25
56
34
7-22
1 1-20
8-18
55.2
75.4
8
301
173
42
44
44
9-15
12-21
399
712
40
83
227.5
-
0
0
6
25
56
74.6
-
1.06
1.59
0.98
52
0
450
342
271.0
oCQ o
(y
25.9
58.1
148
e «
u
o
1 16
139
174
280
146
124
775
313
O "
JZ
58
8
7
87
2.03
0.45
1.68
1.13
0.85
0.69
2.05
178
J.J. CASAS, A. VILCHEZ-QUERO
highest station was sampled in t h e m o r n i n g a n d the
lowest station in t h e a f t e r n o o n . Sampling stations
m a r k e d with « A » in fig. 1 were sampled only
during August 1986. Samples from Monachil stream
were o b t a i n e d for a n h o u r each m o n t h d u r i n g the
period February-December 1987. In addition, handnet collections were t a k e n from t h e stream banks
w h e r e t h e p u p a l exuviae usually a c c u m u l a t e , espe­
cially in low-flow c o n d i t i o n s . Drift-net a n d handnet collections were p u t together in a single sample.
4. Results and discussion
(4)
mesinae (12 species, 8.6 % ) showed similar diversi­
ties. P r o d i a m e s i n a e were represented by 2 species
(1.4 % ) .
T h e altitudinal changes in the relative a b u n d a n c e
of the main chironomid taxa from Monachil stream
is represented in fig. 2. Along the reach sampled,
Orthocladiinae dominate numerically. Diamesinae,
constituting approximately 35 % in the headwaters,
fell t o less than 2 % at M 5 . O n the other h a n d , Chi­
r o n o m i n i , almost absent at M l and M 2 , increased
d o w n s t r e a m t o 8.5 % at M 5 , this increase coinci­
ding with sewage input at this site (see B O D , Table
1).
5
4 . 1 . General characteristics of lotie chironomid
fauna of the Sierra Nevada
A t o t a l of 81483 p u p a l exuviae a n d p u p a e was
s a m p l e d a n d s o r t e d , a n d 143 c h i r o n o m i d species
were identified. Orthocladiinae (78 species, 54.2 %)
t e n d e d t o d o m i n a t e , this situation being characte­
ristic of h e a d w a t e r s ( T h i e n e m a n n 1954). Tanytarsini (22 species, 15.5 % ) a n d C h i r o n o m i n i (16 spe­
cies, 11.3 % ) were represented b y intermediate fre­
quencies, T a n y p o d i n a e (13 species, 9.1 % ) a n d Dia-
100
The m o s t a b u n d a n t genera a n d species from all
t h e 10 streams studied are listed in Table 2. Eukiefferiella a n d Tvetenia were the dominant genera b o t h
specifically a n d numerically. Most species of these
genera live in fast-flowing a n d well-oxygenated
waters ( L e h m a n n 1972). Orthocladius and Cricotopus were also well represented. Rheocricotopus
was
represented by 7 species, although it was numeri­
cally a scarce genus. Species of this genus are usually
% of pupal exuviae
40 1
20
0
Ml M2
—,—
M3
M5
M4
sampling sites-geographic distance
ORTHOCLADIINAE
CHIRONOMINI
TANYPODINAE
TANYTARSINI
km
DIAME.* PRODIAME.
Fig 2. Altitudinal changes of the frequency of the chironomid subfamilies or tribes along the Monachil stream.
Fig. 2. Evolution altitudinale de la fréquence des sous-familles ou tribus de Chironomidés.
(5)
CHIRONOMIDS DISTRIBUTION IN THE SIERRA N E V A D A
Table 2. Number of species for the main chironomid genera and
percentages of the main genera and species present in the
streams from the Sierra Nevada.
Tableau 2. Nombres d'espèces des principaux genres et pourcentages des principaux genres et espèces de Chironomidés des
rivières de la Sierra Nevada.
GENERA
N species
%
15
30.1
11
9
7
6
5
4
9.4
14.2
1.2
1.6
2.3
4.2
SPECIES
Eukiefferiella
+
Tvetenia
Cricotopus
Orthocladius
Rheocricotopus
Diamesa
Polypedilum
Micropsectra
0. ashei
E. cyanea
Cricotopus ssp.
P. ruflventris
E. devonica
E. claripennis
P, stylatus
9.5
9.1
7.1
6.9
6.5
6.3
5.1
recorded from reaches with a b u n d a n t submerged
m a c r o p h y t e s (Lindegaard-Petersen 1972, C r a n s t o n
et al. 1983, Bass 1986), these being u n u s u a l in fastflowing streams.
T h e most a b u n d a n t species ( > 5%, Table 2) were
7 Orthocladiinae species o r t a x a (Cricotopus
spp.)
which together constituted 50.4 % of t h e total. Most
of these, widely distributed in the Palaearctic region,
are rheophilic and prefer t h e headwaters ( L e h m a n n
1971, Laville & L a v a n d i e r 1977, Verneaux & Verg o n 1974, Ringe 1974, W i l s o n 1977, Laville 1981).
4.2. Altitudinal distribution of the species
I n T a b l e 3 we have represented t h e relative a b u n dance, according t o altitude, of the 99 most frequent
c h i r o n o m i d species. T h e lines represent t h e altitudinal distribution of each species, even if absent at
intermediate sampling s t a t i o n s . W e used lines instead of d o t s for graphic clarity. I n n o case we did
j o i n t w o very distant points o f distribution in the
altitudinal gradient w i t h o u t a n o t h e r point between
them.
M o s t T a n y p o d i n a e species were p o o r l y represented at all sampling stations. Macropelopia
nebulosa,
considered by Wilson (1980) as a p o t a m a l species,
was nevertheless recorded f r o m 940 m to 2100 m ,
in accord with its e u r y t h e r m a l a n d eurytopic character p r o p o s e d by Caspers & Reiss (1987). T h e distribution of this species seems mostly determined by
t h e presence of a soft organic s u b s t r a t u m (Buisson
1986).
179
Diamesinae species were arranged by Serra-Tosio
(1973) into 3 g r o u p s according to their altitudinal
distribution a n d water-temperature margins in t h e
French Alps a n d the Massif Central. Only Pseudodiamesa nivosa, which occurs in some high-altitude
lagoons ( > 2600 m) in t h e Sierra Nevada (Laville
& Vilchez 1986), was recorded from Serra-Tosio's
first g r o u p (high-altitude and cold-stenotherm species). F o r t h e second g r o u p , low-altitude species
inhabiting less cold waters, we recorded 3 species
in the Sierra N e v a d a : Sympotthastia
zavreli, Potthastia montium a n d Potthastia gaedii. These species occurred at higher altitudes t h a n in the Alps a n d
the Massif Central, although over a medium-low
altitudinal range (740-1700 m) with respect t o t h e
rest of Diamesinae in the Sierra N e v a d a . The remaining species are included in a g r o u p of intermediate
species which live mainly in the mid-altitude r a n g e .
In general, the distribution range of the Diamesinae was noticeably higher in the Sierra Nevada t h a n
in the French Alps a n d the Massif Central. This m a y
be d u e t o t h e latitudinal difference-the lower latit u d e of t h e Sierra N e v a d a may raise the altitude of
the thermal threshold for species which require temperatures lower t h a n 15° C (Serra-Tosio 1973).
M o r e o v e r , t h e presence of Hydrurus foetidus algae
might influence t h e distribution of the Diamesinae,
as s o m e species such as Diamesa zernyi prefer t o
inhabit this algae (Serra-Tosio 1973, K o w n a c k i
1971), which grows only with ample light a n d low
t e m p e r a t u r e s , between 2 a n d 12° C according t o
Bursa (1934). In a d d i t i o n , t h e i m p o u n d m e n t of
water mainly below 1000 m might indirectly affect
this distribution p a t t e r n , b y modifying the t h e r m a l
regime a n d current speed conditions.
A m o n g O r t h o c l a d i i n a e , 15 species or taxa were
distributed all along t h e altitudinal profile, a n d 16
other species were distributed from 600 m / 7 0 0 m
t o the highest sampling station at 2100 m. Some t a x a
are indicated in Table 3 as a group of species because
of the difficulty of distinguishing in their p u p a l
stage. However, some species identifications of imagines
were possible. F o r example, most of t h e
recorded imagines O* of Corynoneura belonged t o
C. lobata E d w a r d s , at medium-high altitudes
(940-2100 m ) ; t w o Thienemanniella
species were
identified as T. cf. morosa (Edwards) a n d T. cf. vittata ( E d w a r d s ) . Parorthocladius
nudipennis
and
Paratrichocladius
skirwithensis,
despite their wide
distribution, are more abundant in the upper reaches,
J.J. CASAS, A. VILCHEZ-QUERO
180
e 9
in
©
a
ae
IN
E
"S
A
rt
"5b
«Kl
ï
2
f
u
00
a.
'3
3
3
-3
g
a
.g
o
«3
(2
1
s
S
S
u
ëU
ë
•s
o
I
•o
S 15
O
5
*5
5
S
g.
T3 "5
•S
T;
"S'
1
c
2
S
î
8
S
o
u
g
2
ï
S
i
8
,3
v
I
.3
•8
I
-
1
a
1
1
V
1
o
1
.g
o
a:
ta
5
E
2
v
9*
e o
e
v
CM
£
V
o
3 e
e
e
ee
kl
i
•S
*
«2
«a
1
3
2 ô
•3
C
a.
5
•S
I
E
.o
o
Q
?
ê
2
_o
S»
g
5
3
U
12
.3
î
.S. •§
a
Q
1
I
8
o
î
S3
3•s
g
1
•1
1
CHIRONOMIDS DISTRIBUTION IN THE SIERRA NEVADA
te
o
^
•S?
c
a
8. g
t
î
E
•c
3
•a
.3
=5
•c
gS
•aa -S
~
08
S
g
8
•o
c
5
4
g
O
1
Ia
v
1
g
B
c
§
o
s
3
f
00 I
S
o
oc
J
5 a
es
1I
g
.g
C
Ic
ca
Ic
1
3
I
•s
"S
E
"C
BQ
I
o
Ui
o
3
E
e
i
H
H
E
e
e
RSI
Os
-S
?
*»
1
I
c
.«E
uc
u
le
Hs
è
2P
3
3
5
Sa
*
:g
-S
S s
?
'C S.
u
S.
S
t
S
v
8
15
S.
<3
«
^
>
C
.§
-g
<
5
5
5
_
3
•s • "•!
3
-S
«M
C
s
5
3
._
I
3
1.
»
S
E
.3
t
'«9
•s
c
I
o
C
<s
E
ë
s
ôô .S
|
J
§
5
3
.o.
•s
• c
>3.
13
f
es
s
182
J.J. CASAS, A. VILCHEZ-QUERO
2000 m
A L T I T U D E
1500 m
1000 m
• I' •
Polypedilum
Cricotopus
• I
1
1
1
1
'•
sp3
——-
•
rubicundus (Meigen)
" .
:
vierriensis Goetghebuer
__;
•
Orthocladius
Rheopehpia
arduennensis
maculipennis
Phaenopsectra
flavipes
—;
(Meigen)
sylvestris
Cricotopus
beckeri Hirvenoja
Sympotthastia
(Goetghebuer)
(Zettersledt)
Cricotopus
(Fabricius)
zavreli Pagasi
Eukiefferiella fuldensis
Lehmann
Rheosminia
(Brundin)
spinicomis
—
Cricotopus
•
—m*—mm
trifascia Edwards
.
(Kieffer)
'
bicinctus (Meigen)
Parakiefferiella
'
-
Chironomus riparius Meigen
Odontomesa fulva
"
—
Paramerina. Pel Langton 1984
Cricotopus
500 m
I i—i—i—i I i
similis Goetghebuer
Virgatanylarsus
'
1
convicium (Walker)
Polypedilum
Cricotopus
(8)
•
sp d Wiilker
%<2.
2<%<10,
——
10<%<20.
• • • • % > 20.
Table 3. Altitudinal distribution of the 99 most common chironomid species in the Sierra Nevada. Relative abundance of the species
in respect to the other chironomid species at the stream reach considered.
Tableau 3. Répartition altitudinale des 99 espèces de Chironomidés les plus fréquents dans la Sierra Nevada. Abondance relative de
chaque espèce par rapport aux autres Chironomidés dans la station considérée.
a n d are considered t o be cold-stenothermal (Caspers
& Reiss 1987). T h e first species was recorded mainly
f r o m t h e u p p e r reaches in some southern E u r o p e a n
rivers ( P r a t et al. 1984, Rossaro 1991) : the second
species is a typical Krenal species, extending t o the
Rhitral during low-flow periods (Rossaro 1982), and
w a s also signalized as the most a b u n d a n t species in
a low-gradient alpine-tundra stream (Aagaard et al.
1987). These results are consistent with o u r observ a t i o n : we recorded P. skirwithensis
with higher
frequency from adjacent sources with low flow at
t h e station M 2 .
Most of the Cricotopus species were distributed
at lower altitudes. C. sylvestris and C. bicinctus are
usually considered as eurythermal and euryecious
species (Caspers 1983). T h e presence of C. bicinctus is probably related t o the organic input at some
low sampling stations (D2, M5). These two specie;
tend to replace other species under conditions ol
environmental stress (Simpson & Bode 1980). C
annulator and C. nevadensis were distributed at th<
highest altitudes, the latter species at present knowi
only from the Sierra Nevada.
(9)
CHIRONOMIDS DISTRIBUTION IN THE SIERRA NEVADA
Most of the Eukiefferiella species were widely dis­
tributed all along t h e altitudinal gradient, although
with notable differences in a b u n d a n c e according t o
the altitude. Eukiefferiella
minor/fittkaui
is more
frequent from 1400 t o 2100 m . W e recorded a sin­
gle imago O* of E. fittkaui at 2100 m , a n d the
remaining imagines belonging t o E. minor were col­
lected from 750 m t o 2100 m . This distribution
agrees with the altitudinal division of b o t h species
observed in other rivers o r streams ( L e h m a n n 1971,
Laville & Lavandier 1977). E. cyanea, E. clypeata,
E. devonica a n d E. claripennis are recorded at
widely different altitudes in some E u r o p e a n rivers
( L e h m a n n 1971, Ringe 1974, Laville & Lavandier
1977, Laville 1981). T h e same is true of four Ortho­
cladius species : O. fuscimanus,
O. ashei, O. frigidus a n d O. saxosus.
Only t w o species of C h i r o n o m i n i ,
Paracladopelma mikiana a n d Polypedilum
acutum,
were
recorded along t h e entire profile ; nevertheless in the
headwaters a n d u p p e r reaches only o n e specimen
was recorded from the summer sampling. The autoecology of these species is almost u n k n o w n . The
remaining C h i r o n o m i n i species are distributed
mainly in t h e lower p a r t s of t h e streams where they
often occur in low abundance. Chironomus
riparius
is m o r e a b u n d a n t at low sites with sewage input, as
is usually recorded (Me Gill et al. 1979, Hawkes
1978).
A m o n g Tanytarsini, Micropsectra
atrofasciata
and Micropsectra bidentata h a d t h e widest distribu­
tion ; both are widely distributed in European rivers.
Stempellinella reissi, Micropsectra seguyi and Zavrelia s p l , at present are recorded only from the Sierra
N e v a d a , a n d although r a r e , these species seem t o
prefer t h e headwaters a n d u p p e r reaches. T h e taxa
noted in Table 3 as Cladotanytarsus
s p p . , represent
at least t w o species identified using imago O* as C.
atridorsum Kief fer a n d C. vanderwulpi
(Edwards).
4.3. Comparison with the;chironomid zonation of
the Pyrenean streams
T h e comparison of t h e atitudinal zonation of the
chironomid communities of t h e Sierra N e v a d a with
those of other E u r o p e a n m o u n t a i n ranges, seems
useful only in the case of t h e Pyrenees (Laville &
Vinçon 1991). O t h e r studies o n altitudinal distribu­
t i o n a r e limited in several aspects, as mentioned
183
above, a n d present altitudinal gradients hardly com­
parable with that considered in t h e present w o r k .
In t h e Pyrenees, t h e altitudinal zonation was
based mainly o n the chironomid communities of t w o
natural lotie basins, little altered by human activity.
This study covered an altitudinal range of 2000 m
(400-2400 m), similar t o that considered in t h e Sierra
N e v a d a . Table 4 lists t h e characteristic or m o s t fre­
quent species in t h e altitudinal reaches differentia­
ted in t h e Pyrenees (for detailed information con­
cerning zonation see Laville & Vinçon (1991). F o r
c o m p a r i n g we have included in Table 4 t h e m o s t
c o m m o n chironomid species collected in t h e Sierra
N e v a d a a t these reaches (recorded in Table 3). T h e
headwaters a r e considered by Laville & Vinçon
(1991).to be u p s t r e a m of 2100 m ; however, this is
the highest sampling altitude in the Sierra N e v a d a .
Nevertheless, species such as Diamesa aberrata, D.
permacra, Heterotrissocladius
marcidus a n d Stem­
pellinella reissi are probably m o r e frequent, o r at
least characteristic, u p t o 2100 m .
F r o m T a b l e 4 we can draw four generalities :
— T h e relative low n u m b e r of c o m m o n species
living in t h e same reach ;
— T h e relative high number of species with a dif­
ferent altitudinal distribution pattern, mainly in t h e
middle a n d foothill reaches ;
— T h e absence from the Sierra Nevada of a great
n u m b e r of cold-stenothermal Pyrenean species, fre­
quent in t h e headwaters a n d upper reaches. A t t h e
present time, four characteristic o r c o m m o n ele­
ments in t h e Sierra N e v a d a , a r e n o t recorded in t h e
Pyrenees.
— T h e relative high n u m b e r of species with alti­
tudinal distribution patterns which shift toward t h e
upper reaches in t h e Sierra N e v a d a with respect t o
the Pyrenees.
T h e last two aspects are possibly related to t h e dif­
ferent latitudinal situations of the t w o m o u n t a i n
massifs. Additional differences in historical, geogra­
phical a n d physiographical characteristics of t h e
basins (climate, flow regime, gradient, pattern of
branching) m a y also contribute t o the differences
in altitudinal distribution patterns of species. F u r ­
thermore, we should bear in mind that the study car­
ried o u t in the Pyrenees t o o k place in two basins
scarcely altered b y h u m a n activity, a point well con­
trasting with o u r study area.
184
(10)
J.J. CASAS, A . VILCHEZ-QUERO
Table 4. Characteristic or common chironomid species at different altitudinal reaches in the Pyrenees and in the Sierra Nevada.
Tableau 4. Espèces caractéristiques ou communes dans les différentes sections altitudinales des Pyrénées et de la Sierra Nevada.
PYRENEES
SIERRA NEVADA
Laville & Vinçon (1991)
Diameta
i
aberraia
REACHES
Pteudodiamesa
Diamesa
nivosa
>20OO m
permacra
Hetero.
Diamesa
marcidus
rteinbotcki
Diamesa
laticauaa
Diamesa
wuelkeri
Stempellinelia
Parakiefferiella
parva
Diamesa bertrami. Pteudodiamesa
UPPER
reissi
braniddi, Euk. fittkaui
REACHES
1600-2000 m
Eukiefferiella
tirolensis
Micropsectra
bidemata
Diamesa
Diamesa
tonsa
Paror.
Diamesa
laviilei
Orthocladius
Diamesa
ihomasi
Parai,
Krenosminia
boreoalpina
Krenopsectra
fallax
Nilo. dubius. Hel. omaiicollis.
NODDLE
1000-1600 m
Eukiefferiella
Diamesa
veletensis
Orth. rivuiorum
semivirens
Pseud.
mikiana
albicome
Micropsectra
lindrothi
Diamesa
latitarsis
Diamesa
lemyi
saxosus
Parât,
skirwithensis
Paror.
nudipennis
^
^
Rheotanytarsus
reissi
Eukiefferiella
ctypeata
Nanocladius
rectinervis
Paracricotopus
Euk, cyànea. Eut lobifera, Orth. ashei, Rheo.
Conchapelapia
paltidula
Macropelopia
nebulosa
Potlhastia
Brillia
gaedii
flavifrons
Cardiocladius
devonica
berthelemyi
Cricotopus
nigricauda
FOOTHILL
< 1000 m
zemyi
Eukiefferiella
Polypedilum
Rheocricolopus
skirwithensis
Tvetenia verraUi
lobata
Orthocladius
saxosus
Diamesa
Syn.
bavarica
Paracladopetma
latitarsis
nudipennis
Kren. camplophleps.
fuldensis
Corynoneura
Tvetenia
REACHES
annulator
incallida.
Diamesa
REACHES
Cricotopus
niger
nevadensis
spinicomis
Orthocladius
obumbratus
Orthocladius
mbicundus
Cricotopus
vierriensis'
Tanytarsus
brundini
capucinus
Cricotopus
curtus
Cricotopus
similis
Orthocladius
Juscimanus
Polypedilum
convictum
Eukiefferiella
clypeata
Nanocladius
rectinervis
Paracricotopus
T
niger
Cr. tremulus. Nano. parvulus
Poly.laetum.
Rheotanytarsus
Neozjuldensis
Euk. brehmi
pentapoda
Species out of the boxes, not in common; Q species In common; • species with divergence or rare.
^d
species in common in the next upper or lower reach respectively
(11)
CHIRONOMIDS DISTRIBUTION IN THE SIERRA NEVADA
T h e most useful c o m p a r i s o n of altitudinal profiles between these t w o distantly separate m o u n t a i n
areas, would be o n the basis of patterns of c o m m u nity diversity. I n t h e Pyrenees, t h e species richness
increases from t h e headwaters toward the foothill
reaches, where t h e m a x i m u m average richness
occurs. According t o Laville & Vinçon (1991), the
decrease in slope a n d t h e increase in flow favour the
colonization of a c o m m u n i t y richer in p o t a m o p h i lic T a n y p o d i n a e a n d C h i r o n o m i n a e species. In t h e
Sierra Nevada, a n increase in t h e species richness
t o o k place d o w n - s t r e a m as well, from the headwaters (58 species), t h r o u g h t h e u p p e r reaches (72 species), t o the m a x i m u m in t h e middle reaches (121
species). But a s o m e w h a t lower species richness
appeared in the foothill reaches (113 species). Thien e m a n n (1954) observed the m o s t diversified chiron o m i d communities in t h e foothill reaches, where
the greatest b i o t o p e diversity occurs. W a r d (1986)
found a similar p a t t e r n in t h e species richness of
macroinvertebrates of a R o c k y Mountain river : t h e
higher species richness at t h e foothill sites was related to a faunistic discontinuity produced by the tran-
N of species
185
sition from t h e Rhithral t o t h e P o t a m a l c o n d i t i o n s .
Such foothill reaches coincide mostly w i t h 3rd
a n d / o r 4th order streams, that in t h e northern temperate regions have the greatest chironomid richness,
according t o Coffman (1989) ; m a n y factors o p e rate in this increase, mainly related to t h e greater
ecological heterogeneity of the streams with intermediate width a n d altitude.
T h e general tendency t h r o u g h o u t t h e Sierra
N e v a d a , can be observed as well in the particular
case of the Monachil stream (Fig. 3), where t h e collecting effort was greatest, a n d therefore t h e p r o bability of bias lesser. This decreasing diversity
seems t o be caused by t w o kinds of factors, n a t u r a l
a n d h u m a n , which coincide mainly in the foothill
reaches of t h e Sierra Nevada streams. T h e n a t u r a l
factors refer t o the geologic composition a n d structure of this m o u n t a i n massif. It has a core of cristalline materials and a border of limestone which
is mainly exposed in t h e foothil sites. The c h a n n e l s
are relatively wide in the cristalline region, a b o v e
the foothill, but begin to become n a r r o w , a n d in
N of pupai exuviae ( x 1000 ) H I
60 -
40 -
M1 M2
M3
sampling
stations
Fig. 3. Altitudinal changes in chironomid species richness and total number of pupal exuviae collected at each sampling station in the
Monachil stream.
Fig. 3. Evolution altitudinale de la richesse spécifique et du nombre total d'exuvies nymphales récoltées dans chaque station de la rivière
Monachil.
186
(12)
- J.J. CASAS, A . VILCHEZ-QUERO
m a n y cases strongly shaded because of t h e very close
riparian canopy. Both narrowness and shade may
b e responsible, at least in p a r t , for t h e decrease in
c h i r o n o m i d species richness ( H a w k i n s et al. 1982,
L e n a t 1983, C o f f m a n 1989). O n the other h a n d , t w o
h u m a n activities a r e particularly intense below
1000 m : sewage i n p u t a n d water i m p o u n d m e n t .
Sewage i n p u t , condiserable in certain sampling stat i o n s (see B O D , T a b l e 1), limits h a b i t a t heterogeneity excluding a large n u m b e r of species in f a v o u r
of a few, such as Eukiefferiella
claripennis,
Chironomus riparius, Micropsectra atrofasciata a n d Paratrichocladius rufiventris (Table 3). F u r t h e r m o r e , t h e
i m p o u n d m e n t of w a t e r m a y cause i m p o r t a n t c h a n ges in lotie communities : flow reduction, according
t o W a r d (1976), brings a b o u t certain physical changes t h a t decrease the number of species. W a t e r diversion for agriculture a n d small power stations results
in l o n g periods of reduced a n d intermittent flow in
certain stations of t h e lower reaches (Table 1).
5
Conclusions
T h e altitudinal distribution of s o m e c h i r o n o m i d
species in the Sierra N e v a d a streams, coincides with
t h a t of other E u r o p e a n water courses. Nevertheless,
in m a n y cases, as in the D i a m e s i n a e species, t h e
r a n g e of distribution in the Sierra N e v a d a was noticeably higher in altitude t h a n in the F r e n c h Alps a n d
t h e Massif Central. T h e same tendency can b e found
in c o m p a r i s o n with t h e P y r e n e a n z o n a t i o n . I n addit i o n , t h e r e was a n absence in t h e Sierra N e v a d a of
a great n u m b e r of cold-stenothermal P y r e n e a n species. B o t h tendencies m a y be connected with t h e different latitudinal situation of these t w o m o u n t a i n
massifs. F u r t h e r m o r e , there was a relatively high
n u m b e r of species with a different altitudinal dist r i b u t i o n pattern, which can be attributable t o m a n y
historical, geographical a n d physiographical differences between t h e t w o massifs.
T h e theoretically expected highest species richness
in t h e foothill sites was n o t o b t a i n e d . P e r i o d s of
r e d u c e d o r i n t e r m i t t e n t flow, t h e sewage i n p u t a n d
t h e n a r r o w n e s s of t h e channels in t h e foothill sites
a p p e a r t o decrease t h e species richness of t h e chiron o m i d c o m m u n i t i e s . It r e m a i n s t o b e seen t o w h a t
extent h u m a n activity and n a t u r a l f a c t o r s , separately, influence c h i r o n o m i d species
Acknowledgements
We are grateful to Dr. W . P . Coffman for helpful comments,
correcting an early English version of the manuscript and the facilities provided in his laboratory. Were are also indebted to Dr.
H. Laville, Dr. F. Reiss and Dr. B. Serra-Tosio, for their taxonomic help.
References
Aagaard K., Olsen A. & Solem J.O. 1987. — Chironomids of
Blesbekken, an alpine tundra stream at Dovrefjell national
park, Norway. Ent. scand. Suppl., 29 : 349-360.
Bass D . 1986. — Larval Chironomidae (Diptera) of the Big Thicket streams. Hydrobiologia,
135 : 271-285.
Brouquet-Laglaire Y. 1985. — Etude des Chironomidés (Diptera) de quelques rivières polluées du bassin de la Garonne :
Touyre, Agout, Dadou, Thoré, Bas Lot. Thèse 3 cycle, Univ.
Paul Sabatier, Toulouse, 237 p.
Buisson J. 1986. — Hydrobiologie du massif du Vercors (Préalpes calcaires) et d'une rivière type : le Furon. Ecologie des
Diptères Chironomidae du Furon et de quelques cours d'eau
pollués. Thèse de 3 cycle, Univ. de Grenoble.
Bursa M.A. 1934. — Hydrurus foetidus Kirch, w Polskich
Tatrach. 1. Hydrurus foetidus Kirch in der Polnischen Tatra.
Oecologie, Morphologie.
1. Mémoire aus dan Institut fur
pharmazautischen Botanik an der Jagellonischen Universitat, Krakow.
Casas J.J. & Vilchez-Quero A. 1989. — A faunistic study of
the lotie chironomids (Diptera) of the Sierra Nevada (S.E.
of Spain) : Changes in the structure and composition of the
populations between spring and summer. Acta Biol. Debr.
Oecol. Hung., 3 : 83-93.
Caspers N . 1983. — Chironomiden Emergenz zweier Lunzer
Bâche, 1972. Arch. Hydrobiol. Suppl., 65 : 484-549.
Caspers N . & Reiss F. 1987. — Chironomidae des Lunzer Seengebietes in Niederosterreich (Insecta, Diptera, Nematocera).
Spixiana, 10 : 13-35.
Coffman W . P . 1973. — Energy flow in a woodland stream
ecosystem. II. The taxonomic composition and phenology of
the Chironomidae as determined by collection .of pupal exuviae. Arch. Hydrobiol., 71 : 281-322.
Coffman W.P. 1989. — Factors that determine the species richness of lotie communities of Chironomidae. Acta Biol. Debr.
Oecol. Hung., 3 : 95-100.
Cranston P.S., Oliver D.R. & Saether O.A. 1983. — The larvae of Orthocladiinae (Diptera : Chironomidae) of the
Holarctic region.-keys and diagnosis. Ent. scand. Suppl., 19 :
149-291.
Giller P.S. 1984. — Community Structure and the Niche. London, Chapman and Hall. 176 p.
Hawkes H.A. 1978. — Invertebrates as indicators of rivers water
quality, pp. 21-245. In : A. James and L. Evinson (eds.). Biological indicators of water quality. John Wiley and Sons, Inc.
New York, N4. 597 p:
Hawkins C P . , Murphy M.L.& Anderson N.H. 1982. —- Effects
of canopy, substrata composition and gradient on the structure of macroinvertebrate communities in Cascade Range
streams of Oregon. Ecology, 63 : 1840-1856.
Hayes B.P. & Murray D . A . 1988. — Diel variation in chironomid emergence and implications for the use of pupal exuviae
in river clasification. Verh. Int. Ver. LimnoL, 23 :1261-1266.
e
e
(13)
187
CHIRONOMIDS DISTRIBUTION IN THE SIERRA NEVADA
Kownacki A . 1971. — Taxocens of Chironomidae in streams
Polish High Tatra Mts. Acta Hydrobiol.
Krakow, 13 :
439-464.
Laville H. 1979. — Etude de la dérive de exuvies nymphales des
Chironomidés au niveau de confluent Lot-Truyère. Annls.
LimnoL, 15 (2) : 155-180.
Laville H. 1981. — Récolte d'exuvies de Chironomidés dans le
Haut-Lot, de la source (1295 m) au confluent de la Truyère
(223 m). Annls. LimnoL, 17 (3) : 255-289.
Laville H. & Lavandier P. 1977. — Les Chironomidés (Diptera)
d'un torrent pyrénéen de haute montagne : L'Estaragne.
Annls. LimnoL, 13 (1) : 57-81.
Laville H. & Vilchez-Quero A. 1986. — Les Chironomidés (Diptera) de quelques « Lagunas » de haute altitude de la Sierra
Nevada (Granada, Espagne). Annls. LimnoL, 22 (1) : 53-63.
Laville H. & Vinçon G. 1991. — A typological study of Pyrenean streams : Comparative analysis of the Chironomidae
(Diptera) communities in the Ossau and Aure Valleys. Verh.
Int. Ver. LimnoL, 24 : 1775-1784.
Lehmann J. 1971. — Die Chironomiden der Fulda (systematische, okologische und faunistiche Untersuchungen). Arch.
Hydrobiol. Suppl., 37 : 466-555.
Lehmann J. 1972. — Revision europaischen Arten von Eukiefferiella Thienemann. Beitrag. Ent. Bd., 22 (7-8) : 348-405.
LenatD.R. 1983. — Chironomid taxa richness : natural variation and use in pollution assessment. Freshwat. Invertbr. biol.,
2 (4) : 192-198.
Lindegaard-Petersen C. 1972. — An ecological investigation of
the Chironomidae (Diptera) from a Danish lowland stream
(Linding A). Arch. Hydrobiol.,
69 (4) : 465-507.
Mc Gill J.D., Wilson R.S. & Brake A . M . 1979. — The use of
chironomid pupal exuviae in the surveillance of sewage pollution within a drainage system. Water Research, 13 : 889-894.
Prat N., Puig M.A., Gonzalez G. & Millet X. 1984. —
Chironomid longitudinal distribution and macroinvertebrate
diversity along the Llobregat river (NE Spain). Mem. Am.
Entomol. Soc, 34 : 267-278.
RingeF. 1974. — Chironomiden-Emergenz 1970 in Breitenbach
und Rohrwiesenbach. Schlitzer Produktions-biologische Studien, 10 : Arch. Hydrobiol. Suppl., 45 : 212-304.
Rossaro B. 1982. — Guide per il riconoscimento delle especie
animali delle aque interne italiana, n 16. Chironomidi, 2
(Diptera, Chironomidae : Orthocladiinae). Consiglio Nationale delle Ricerche, aq. 171 p.
Rossaro B. 1991. — Chironomids of stony bottom streams : a
detrended correspondence analysis. Arch. Hydrobiol.,
122
(1) : 79-93.
Serra-Tosio B. 1973. — Ecologie et biogeographie des Diamesini d'Europe (Diptera, Chironomidae). Trav. Lab. Hydrobiol. Grenoble, 63 : 5-175.
Simpson K.W. & Bode R.W. 1980. — Common larvae of Chironomidae (Diptera) from New York State streams and rivers,
with particular reference to the fauna of artificial substrates. Bull. N.Y. State Mus., 439 : 1-105.
Thienemann A. 1954. — Chironomus. Leben, Verbreitung und
wirtschafliche Bedeutung der Chironomiden. Binnengewasser, 20 ; 834 p.
Verneaux J. & Vergon J.P. 1974. — Faune dulçacuicole de
France-Comté. Sixième partie : Les Diptères Chironomidés.
Ann. Scient. Univ. Besançon ZooL, 11 : 179-198.
Ward J.V. 1976. — Effects of flow patterns below large dams
an stream benthos : A review ; 235-253. In : J.F. Orsborn
& C.H. Alman (eds.). Instream Flow Needs Symposium. Vol.
II Amer. Fish. S o c , Bethesda, Md.
Ward J.V. 1986. — Altitudinal zonation in a Rocky Mountain
stream. Arch. Hydrobiol. Suppl., 74 : 133-199.
Wilson R.S. 1977. — Chironomid pupal exuviae in the River
Chew. Freshwater Biol., 7 : 9-17.
Wilson R.S. 1980. — Classifying rivers using Chironomid pupal
exuviae, 209-216. In : Chironomidae, Ecology, Genetic and
Physiology. IX International Symposium on Chironomidae.
Murray D.A. (ed.). Pergamon Press. Dublin.
Wilson R.S. & Bright P.L. 1973. — The use of Chironomid
pupal exuviae for characterizing streams. Freshwater Biol.
3 : 283-302.
0