Annls LimnoL 29 (2) 1993 : 175-187 Altitudinal distribution of lotie chironomid (Diptera) communities in the Sierra Nevada mountains (Southern Spain) J J . Casas* A . Vilchez-Quero 1 Keywords : Diptera, Chironomidae, altitudinal distribution, streams, Sierra Nevada, Spain. Pupae and pupal exuviae were collected by drift and hand netting from 27 sites on 10 streams in the Sierra Nevada mountains in 1986 and 1987. The sites represented an altitudinal range from 340 m to 2100 m. The pupal exuviae collections revealed a composite fauna of 143 species. Eukiefferiella (12 spp.) and Tvetenia (3 spp.) were dominant both taxonomically and numerically along most of the altitudinal profile, followed by Cricotopus (11 spp.), Orthocladius (9 spp.) and Diamesa (7 spp.). The altitudinal distribution of the 99 most common species is shown and compared with those obtained in other European streams or rivers, especially in the Pyrenees. The general pattern of altitudinal zonation shows an increase in species richness from the headwaters ( < 2000 m : 58 spp.) toward the middle reaches (1000-1600 m : 121 spp.). The theoretically expected highest species richness in the foothill reaches ( > 1000 m : 113 spp.) was not obtained. The periods of reduced or intermittent flow, the domestic organic inputs and the narrowness of the channels in the foothill reaches appear responsible for the decrease of the species richness of the chironomid communities. Répartition altitudinale des communautés lotiques de Chironomidés (Diptera) de la Sierra Nevada (Sud de l'Espagne) Mots clés : Diptera, Chironomidés, répartition altitudinale, rivières, Sierra Nevada, Espagne. Des exuvies nymphales et des nymphes de Chironomidés ont été récoltées par dérive ou dans des zones d'accumulation, dans 27 stations de 10 rivières de la Sierra Nevada, en 1986 et 1987. Les stations sont échelonnées entre 340 m et 2100 m d'altitude. 143 espèces ont été identifiées. Les Eukiefferiella (12 spp.) et les Tvetenia (3 spp.) sont les deux genres dominants, spécifiquement et numériquement, tout au long de la zone altitudinale prospectée, suivis par les Cricotopus (11 spp.), les Orthocladius (9 spp.) et les Diamesa (7 spp.). La répartition altitudinale des 99 espèces les plus fréquentes est comparée avec celle d'autres rivières d'Europe, et plus spécialement des Pyrénées. Le modèle général de zonation altitudinale présente une augmentation de la richesse spécifique depuis les sources ( > 2000 m : 58 spp.) jusqu'aux zones de moyenne altitude (1000-1600 m : 121 spp.). La théoriquement attendue plus forte diversité spécifique dans les zones de piémont ( > 1000 m : 113 spp.) ne s'est pas vérifiée. Les périodes de réduction ou d'intermittence des débits, la pollution organique et l'étroitesse du lit des rivières du piémont semblent les causes de cette diminution de la richesse spécifique des communautés de Chironomidés. 1. Introduction T h e gradient of environmental conditions t h a t occurs as a function of altitude offers excellent opportunities t o investigate factors which influence the diversity, composition and a b u n d a n c e of stream organisms ( W a r d 1986). F a c t o r s such as t h e r m a l regime, flow a n d characteristics of the s u b s t r a t u m , which have p r i m a r y i m p o r t a n c e in the distribution of most lotie chironomid species, are directly or indi1. Departamento de Biologia Animal y Ecologia, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain. Article available at http://www.limnology-journal.org or http://dx.doi.org/10.1051/limn/1993016 rectly dependent on altitude. Altitudinal gradient is considered by C o f f m a n (1989) as one of the m a j o r factors t h a t influences the richness of a lotie c h i r o nomid c o m m u n i t y . Altitudinal zonation patterns of lotie chironomids have been studied in E u r o p e since T h i e n e m a n n (1954) proposed a classification system for European rivers based on their chironomid fauna. However, some of t h e studies are limited in taxonomic scope, or present difficulties in t h e interpretation of t h e n a t u r a l longitudinal or altitudinal distribution patterns due to disturbances (review in Laville & 176 J J . CASAS, A. VILCHEZ-QUERO V i n ç o n 1991). Preliminary i n f o r m a t i o n o n t h e altit u d i n a l distribution of c h i r o n o m i d s in the streams of t h e Sierra N e v a d a is available in Casas & Vilchez (1989). T h e aim of t h e present work is t o offer some general d a t a on t h e composition of the lotie chiron o m i d communities in this massif. F u r t h e r m o r e , we shall e x a m i n e t h e altitudinal distribution p a t t e r n of t h e m o s t frequent species, c o m p a r i n g o u r d a t a with o t h e r E u r o p e a n m o u n t a i n s , a n d discussing the influence of s o m e special features of t h e study area o n t h e altitudinal p a t t e r n of species richness. I n the (2) context of the present paper the term « c o m m u nity » follows the definition of « species assemblage » as stated by Giller (1984). 2. Study area The study was carried out in 10 streams in the western part of the Sierra Nevada, Andalucia (Southern Spain). This is the most Southern E u r o p e a n highm o u n t a i n massif, representing heights u p t o 3300 m (Fig. 1). T h e streams studied form the headwaters Fig. 1. Map of the Western part of the Sierra Nevada, showing the sampling sites on the streams studies. Fig. 1. Carte de la Sierra Nevada occidentale : localisation des 27 stations dans les 10 rivières étudiées. (3) 177 CHIRONOMIDS DISTRIBUTION IN THE SIERRA N E V A D A detailed information concerning the physiographic and chemical characteristics of the sampling stations is provided in Table 1. of t h e rivers Guadalfeao, o n t h e southern face, andGenil o n the n o r t h e r n face. T h e streams have torrential flow, primarily in spring during t h e snow melt, b u t reduced flow in s u m m e r (Table 1). Twenty-seven sampling sites were studied (Fig. 1), ranging from 340 to 2100 m a.s.l.. T h e s u b s t r a t u m was chiefly composed of b o u l d e r s , angular rubble a n d gravel. In the upper reaches there is a great development of the algae Hydrurus foetidus during winter a n d spring. In the lower reaches some domestic effluents enter the streams. I m p o u n d m e n t of water t o provide for small hydroelectric power stations and irrigation takes place mainly below 1000 m . M o r e 3. Material and methods The material, pupal exuviae a n d pupae of C h i r o n o m i d a e , was collected by drift netting (875 c m m o u t h , 1 . 1 m long. 250 mesh size). T h e nets, 1 or 2 depending o n stream width, were placed in the centre of the channel. Collections were m a d e for an hour and a half at every sampling site during four periods : M a y - J u n e 1986, A u g u s t 1986, N o v e m b e r 1986, M a r c h 1987. Generally, for each stream the 2 Table 1. Physiographical and chemical characteristics of the sampling stations : mean values ; maximum and minimum values for flow and water temperature. Tableau 1 . Caractéristiques physico-chimiques des stations étudiées : valeurs moyennes ; valeurs maximum et minimum pour le débit et la température de l'eau. CD te O M "H ï -p 0) s o •H P -P C 0) e 0) S) J0 o P u u P CD a •P œ (0 ai •H •H •p C g •H u uit C Q •p G* •H en X « 2 p «C «H U % % 1 TA 1700 8.5 16.9 43.1 4.4 0.59 16 TI T2 PI 1460 1000 1300 960 900 13.0 21.5 3.5 4.4 75.5 1 15.1 9.2 12.5 8.7 9.5 10.0 32.0 60.5 78.9 7.1 4.0 4.5 4.0 0.20-3.09 0.37-2.23 0.04-0.30 1 1-19 9-19 9-17 12-19 9.5 22.5 5.0 13.0 P2 ChA Chl Ch2 LA Ll L2 DA D1 D2 Di 1 Di2 Ml M2 M3 M4 M5 GA 61 G2 Mal ABl AB2 740 340 1500 720 600 860 780 15.0 10.5 14.7 16.2 135 15.3 19.7 680 980 800 2100 17.0 24.0 2.5 1960 1400 3.0 7.5 940 780 1220 1060 780 1020 1080 760 18.3 15.2 8.0 5.5 32.6 18.4 26.4 27.9 45.1 52.7 68.4 2.2 2.3 1.6 2.9 2.4 2.5 2.5 2.8 4.1 0.08 0.01-0.55 0.00-0.69 0.02 0.04-0.99 16 9-14 19-27 14 10-16 13-20 19 8-18 2.6 3.0 2.4 0.18-1.32 0.02-0.82 0.03-0.66 0.03-0.44 1 1-18 9-19 60.2 43.1 66.6 5.5 6.4 1.9 0.10-0.45 4-11 1 1.6 27.2 4.3 0.26-1.96 14.5 6.9 17.5 12.2 5.0 3.2 5.5 4.5 8.5 51.1 78.0 64.7 3.3 3.9 4.3 0.06-1.58 0.27-1.36 0.75 87.7 1 19.7 3.2 7.0 14.5 23.2 16.5 5.7 16.5 3.0 5.0 2.5 20.4 22.1 25.9 0.17-1.23 0.02 0.00-0.59 0.00-0.20 3.0 1.0 56.7 3.2 0.06-0.72 0.02-2.58 0.04-1.08 45.2 135.8 3.2 4.1 0.14-0.32 0.21-0.70 10-16 4-1 1 12.2 16.9 22.3 44.7 61.3 109.8 82.0 152.5 18.9 94.1 SS 46 45 25 45 50 68 32 59 83 34 162 295 37 437 39 277 186.5 2 0 4 7 186 140.7 132.9 1000 268 21.3 744 37 184.0 139.1 1 17.1 & 0 p 23 41 0 14 13 1 .1.21 1 7 0.86 1.09 0 - 3 165 0 2 527 1.25 7.72 1.80 6.63 0.78 40 18 12 36 0.99 1.78 1.43 2.67 7-18 6-20 130.9 15 143.3 39.0 338 473 33 25 8-21 16 63 25 56 34 7-22 1 1-20 8-18 55.2 75.4 8 301 173 42 44 44 9-15 12-21 399 712 40 83 227.5 - 0 0 6 25 56 74.6 - 1.06 1.59 0.98 52 0 450 342 271.0 oCQ o (y 25.9 58.1 148 e « u o 1 16 139 174 280 146 124 775 313 O " JZ 58 8 7 87 2.03 0.45 1.68 1.13 0.85 0.69 2.05 178 J.J. CASAS, A. VILCHEZ-QUERO highest station was sampled in t h e m o r n i n g a n d the lowest station in t h e a f t e r n o o n . Sampling stations m a r k e d with « A » in fig. 1 were sampled only during August 1986. Samples from Monachil stream were o b t a i n e d for a n h o u r each m o n t h d u r i n g the period February-December 1987. In addition, handnet collections were t a k e n from t h e stream banks w h e r e t h e p u p a l exuviae usually a c c u m u l a t e , espe cially in low-flow c o n d i t i o n s . Drift-net a n d handnet collections were p u t together in a single sample. 4. Results and discussion (4) mesinae (12 species, 8.6 % ) showed similar diversi ties. P r o d i a m e s i n a e were represented by 2 species (1.4 % ) . T h e altitudinal changes in the relative a b u n d a n c e of the main chironomid taxa from Monachil stream is represented in fig. 2. Along the reach sampled, Orthocladiinae dominate numerically. Diamesinae, constituting approximately 35 % in the headwaters, fell t o less than 2 % at M 5 . O n the other h a n d , Chi r o n o m i n i , almost absent at M l and M 2 , increased d o w n s t r e a m t o 8.5 % at M 5 , this increase coinci ding with sewage input at this site (see B O D , Table 1). 5 4 . 1 . General characteristics of lotie chironomid fauna of the Sierra Nevada A t o t a l of 81483 p u p a l exuviae a n d p u p a e was s a m p l e d a n d s o r t e d , a n d 143 c h i r o n o m i d species were identified. Orthocladiinae (78 species, 54.2 %) t e n d e d t o d o m i n a t e , this situation being characte ristic of h e a d w a t e r s ( T h i e n e m a n n 1954). Tanytarsini (22 species, 15.5 % ) a n d C h i r o n o m i n i (16 spe cies, 11.3 % ) were represented b y intermediate fre quencies, T a n y p o d i n a e (13 species, 9.1 % ) a n d Dia- 100 The m o s t a b u n d a n t genera a n d species from all t h e 10 streams studied are listed in Table 2. Eukiefferiella a n d Tvetenia were the dominant genera b o t h specifically a n d numerically. Most species of these genera live in fast-flowing a n d well-oxygenated waters ( L e h m a n n 1972). Orthocladius and Cricotopus were also well represented. Rheocricotopus was represented by 7 species, although it was numeri cally a scarce genus. Species of this genus are usually % of pupal exuviae 40 1 20 0 Ml M2 —,— M3 M5 M4 sampling sites-geographic distance ORTHOCLADIINAE CHIRONOMINI TANYPODINAE TANYTARSINI km DIAME.* PRODIAME. Fig 2. Altitudinal changes of the frequency of the chironomid subfamilies or tribes along the Monachil stream. Fig. 2. Evolution altitudinale de la fréquence des sous-familles ou tribus de Chironomidés. (5) CHIRONOMIDS DISTRIBUTION IN THE SIERRA N E V A D A Table 2. Number of species for the main chironomid genera and percentages of the main genera and species present in the streams from the Sierra Nevada. Tableau 2. Nombres d'espèces des principaux genres et pourcentages des principaux genres et espèces de Chironomidés des rivières de la Sierra Nevada. GENERA N species % 15 30.1 11 9 7 6 5 4 9.4 14.2 1.2 1.6 2.3 4.2 SPECIES Eukiefferiella + Tvetenia Cricotopus Orthocladius Rheocricotopus Diamesa Polypedilum Micropsectra 0. ashei E. cyanea Cricotopus ssp. P. ruflventris E. devonica E. claripennis P, stylatus 9.5 9.1 7.1 6.9 6.5 6.3 5.1 recorded from reaches with a b u n d a n t submerged m a c r o p h y t e s (Lindegaard-Petersen 1972, C r a n s t o n et al. 1983, Bass 1986), these being u n u s u a l in fastflowing streams. T h e most a b u n d a n t species ( > 5%, Table 2) were 7 Orthocladiinae species o r t a x a (Cricotopus spp.) which together constituted 50.4 % of t h e total. Most of these, widely distributed in the Palaearctic region, are rheophilic and prefer t h e headwaters ( L e h m a n n 1971, Laville & L a v a n d i e r 1977, Verneaux & Verg o n 1974, Ringe 1974, W i l s o n 1977, Laville 1981). 4.2. Altitudinal distribution of the species I n T a b l e 3 we have represented t h e relative a b u n dance, according t o altitude, of the 99 most frequent c h i r o n o m i d species. T h e lines represent t h e altitudinal distribution of each species, even if absent at intermediate sampling s t a t i o n s . W e used lines instead of d o t s for graphic clarity. I n n o case we did j o i n t w o very distant points o f distribution in the altitudinal gradient w i t h o u t a n o t h e r point between them. M o s t T a n y p o d i n a e species were p o o r l y represented at all sampling stations. Macropelopia nebulosa, considered by Wilson (1980) as a p o t a m a l species, was nevertheless recorded f r o m 940 m to 2100 m , in accord with its e u r y t h e r m a l a n d eurytopic character p r o p o s e d by Caspers & Reiss (1987). T h e distribution of this species seems mostly determined by t h e presence of a soft organic s u b s t r a t u m (Buisson 1986). 179 Diamesinae species were arranged by Serra-Tosio (1973) into 3 g r o u p s according to their altitudinal distribution a n d water-temperature margins in t h e French Alps a n d the Massif Central. Only Pseudodiamesa nivosa, which occurs in some high-altitude lagoons ( > 2600 m) in t h e Sierra Nevada (Laville & Vilchez 1986), was recorded from Serra-Tosio's first g r o u p (high-altitude and cold-stenotherm species). F o r t h e second g r o u p , low-altitude species inhabiting less cold waters, we recorded 3 species in the Sierra N e v a d a : Sympotthastia zavreli, Potthastia montium a n d Potthastia gaedii. These species occurred at higher altitudes t h a n in the Alps a n d the Massif Central, although over a medium-low altitudinal range (740-1700 m) with respect t o t h e rest of Diamesinae in the Sierra N e v a d a . The remaining species are included in a g r o u p of intermediate species which live mainly in the mid-altitude r a n g e . In general, the distribution range of the Diamesinae was noticeably higher in the Sierra Nevada t h a n in the French Alps a n d the Massif Central. This m a y be d u e t o t h e latitudinal difference-the lower latit u d e of t h e Sierra N e v a d a may raise the altitude of the thermal threshold for species which require temperatures lower t h a n 15° C (Serra-Tosio 1973). M o r e o v e r , t h e presence of Hydrurus foetidus algae might influence t h e distribution of the Diamesinae, as s o m e species such as Diamesa zernyi prefer t o inhabit this algae (Serra-Tosio 1973, K o w n a c k i 1971), which grows only with ample light a n d low t e m p e r a t u r e s , between 2 a n d 12° C according t o Bursa (1934). In a d d i t i o n , t h e i m p o u n d m e n t of water mainly below 1000 m might indirectly affect this distribution p a t t e r n , b y modifying the t h e r m a l regime a n d current speed conditions. A m o n g O r t h o c l a d i i n a e , 15 species or taxa were distributed all along t h e altitudinal profile, a n d 16 other species were distributed from 600 m / 7 0 0 m t o the highest sampling station at 2100 m. Some t a x a are indicated in Table 3 as a group of species because of the difficulty of distinguishing in their p u p a l stage. However, some species identifications of imagines were possible. F o r example, most of t h e recorded imagines O* of Corynoneura belonged t o C. lobata E d w a r d s , at medium-high altitudes (940-2100 m ) ; t w o Thienemanniella species were identified as T. cf. morosa (Edwards) a n d T. cf. vittata ( E d w a r d s ) . Parorthocladius nudipennis and Paratrichocladius skirwithensis, despite their wide distribution, are more abundant in the upper reaches, J.J. CASAS, A. VILCHEZ-QUERO 180 e 9 in © a ae IN E "S A rt "5b «Kl ï 2 f u 00 a. '3 3 3 -3 g a .g o «3 (2 1 s S S u ëU ë •s o I •o S 15 O 5 *5 5 S g. T3 "5 •S T; "S' 1 c 2 S î 8 S o u g 2 ï S i 8 ,3 v I .3 •8 I - 1 a 1 1 V 1 o 1 .g o a: ta 5 E 2 v 9* e o e v CM £ V o 3 e e e ee kl i •S * «2 «a 1 3 2 ô •3 C a. 5 •S I E .o o Q ? ê 2 _o S» g 5 3 U 12 .3 î .S. •§ a Q 1 I 8 o î S3 3•s g 1 •1 1 CHIRONOMIDS DISTRIBUTION IN THE SIERRA NEVADA te o ^ •S? c a 8. g t î E •c 3 •a .3 =5 •c gS •aa -S ~ 08 S g 8 •o c 5 4 g O 1 Ia v 1 g B c § o s 3 f 00 I S o oc J 5 a es 1I g .g C Ic ca Ic 1 3 I •s "S E "C BQ I o Ui o 3 E e i H H E e e RSI Os -S ? *» 1 I c .«E uc u le Hs è 2P 3 3 5 Sa * :g -S S s ? 'C S. u S. S t S v 8 15 S. <3 « ^ > C .§ -g < 5 5 5 _ 3 •s • "•! 3 -S «M C s 5 3 ._ I 3 1. » S E .3 t '«9 •s c I o C <s E ë s ôô .S | J § 5 3 .o. •s • c >3. 13 f es s 182 J.J. CASAS, A. VILCHEZ-QUERO 2000 m A L T I T U D E 1500 m 1000 m • I' • Polypedilum Cricotopus • I 1 1 1 1 '• sp3 ——- • rubicundus (Meigen) " . : vierriensis Goetghebuer __; • Orthocladius Rheopehpia arduennensis maculipennis Phaenopsectra flavipes —; (Meigen) sylvestris Cricotopus beckeri Hirvenoja Sympotthastia (Goetghebuer) (Zettersledt) Cricotopus (Fabricius) zavreli Pagasi Eukiefferiella fuldensis Lehmann Rheosminia (Brundin) spinicomis — Cricotopus • —m*—mm trifascia Edwards . (Kieffer) ' bicinctus (Meigen) Parakiefferiella ' - Chironomus riparius Meigen Odontomesa fulva " — Paramerina. Pel Langton 1984 Cricotopus 500 m I i—i—i—i I i similis Goetghebuer Virgatanylarsus ' 1 convicium (Walker) Polypedilum Cricotopus (8) • sp d Wiilker %<2. 2<%<10, —— 10<%<20. • • • • % > 20. Table 3. Altitudinal distribution of the 99 most common chironomid species in the Sierra Nevada. Relative abundance of the species in respect to the other chironomid species at the stream reach considered. Tableau 3. Répartition altitudinale des 99 espèces de Chironomidés les plus fréquents dans la Sierra Nevada. Abondance relative de chaque espèce par rapport aux autres Chironomidés dans la station considérée. a n d are considered t o be cold-stenothermal (Caspers & Reiss 1987). T h e first species was recorded mainly f r o m t h e u p p e r reaches in some southern E u r o p e a n rivers ( P r a t et al. 1984, Rossaro 1991) : the second species is a typical Krenal species, extending t o the Rhitral during low-flow periods (Rossaro 1982), and w a s also signalized as the most a b u n d a n t species in a low-gradient alpine-tundra stream (Aagaard et al. 1987). These results are consistent with o u r observ a t i o n : we recorded P. skirwithensis with higher frequency from adjacent sources with low flow at t h e station M 2 . Most of the Cricotopus species were distributed at lower altitudes. C. sylvestris and C. bicinctus are usually considered as eurythermal and euryecious species (Caspers 1983). T h e presence of C. bicinctus is probably related t o the organic input at some low sampling stations (D2, M5). These two specie; tend to replace other species under conditions ol environmental stress (Simpson & Bode 1980). C annulator and C. nevadensis were distributed at th< highest altitudes, the latter species at present knowi only from the Sierra Nevada. (9) CHIRONOMIDS DISTRIBUTION IN THE SIERRA NEVADA Most of the Eukiefferiella species were widely dis tributed all along t h e altitudinal gradient, although with notable differences in a b u n d a n c e according t o the altitude. Eukiefferiella minor/fittkaui is more frequent from 1400 t o 2100 m . W e recorded a sin gle imago O* of E. fittkaui at 2100 m , a n d the remaining imagines belonging t o E. minor were col lected from 750 m t o 2100 m . This distribution agrees with the altitudinal division of b o t h species observed in other rivers o r streams ( L e h m a n n 1971, Laville & Lavandier 1977). E. cyanea, E. clypeata, E. devonica a n d E. claripennis are recorded at widely different altitudes in some E u r o p e a n rivers ( L e h m a n n 1971, Ringe 1974, Laville & Lavandier 1977, Laville 1981). T h e same is true of four Ortho cladius species : O. fuscimanus, O. ashei, O. frigidus a n d O. saxosus. Only t w o species of C h i r o n o m i n i , Paracladopelma mikiana a n d Polypedilum acutum, were recorded along t h e entire profile ; nevertheless in the headwaters a n d u p p e r reaches only o n e specimen was recorded from the summer sampling. The autoecology of these species is almost u n k n o w n . The remaining C h i r o n o m i n i species are distributed mainly in t h e lower p a r t s of t h e streams where they often occur in low abundance. Chironomus riparius is m o r e a b u n d a n t at low sites with sewage input, as is usually recorded (Me Gill et al. 1979, Hawkes 1978). A m o n g Tanytarsini, Micropsectra atrofasciata and Micropsectra bidentata h a d t h e widest distribu tion ; both are widely distributed in European rivers. Stempellinella reissi, Micropsectra seguyi and Zavrelia s p l , at present are recorded only from the Sierra N e v a d a , a n d although r a r e , these species seem t o prefer t h e headwaters a n d u p p e r reaches. T h e taxa noted in Table 3 as Cladotanytarsus s p p . , represent at least t w o species identified using imago O* as C. atridorsum Kief fer a n d C. vanderwulpi (Edwards). 4.3. Comparison with the;chironomid zonation of the Pyrenean streams T h e comparison of t h e atitudinal zonation of the chironomid communities of t h e Sierra N e v a d a with those of other E u r o p e a n m o u n t a i n ranges, seems useful only in the case of t h e Pyrenees (Laville & Vinçon 1991). O t h e r studies o n altitudinal distribu t i o n a r e limited in several aspects, as mentioned 183 above, a n d present altitudinal gradients hardly com parable with that considered in t h e present w o r k . In t h e Pyrenees, t h e altitudinal zonation was based mainly o n the chironomid communities of t w o natural lotie basins, little altered by human activity. This study covered an altitudinal range of 2000 m (400-2400 m), similar t o that considered in t h e Sierra N e v a d a . Table 4 lists t h e characteristic or m o s t fre quent species in t h e altitudinal reaches differentia ted in t h e Pyrenees (for detailed information con cerning zonation see Laville & Vinçon (1991). F o r c o m p a r i n g we have included in Table 4 t h e m o s t c o m m o n chironomid species collected in t h e Sierra N e v a d a a t these reaches (recorded in Table 3). T h e headwaters a r e considered by Laville & Vinçon (1991).to be u p s t r e a m of 2100 m ; however, this is the highest sampling altitude in the Sierra N e v a d a . Nevertheless, species such as Diamesa aberrata, D. permacra, Heterotrissocladius marcidus a n d Stem pellinella reissi are probably m o r e frequent, o r at least characteristic, u p t o 2100 m . F r o m T a b l e 4 we can draw four generalities : — T h e relative low n u m b e r of c o m m o n species living in t h e same reach ; — T h e relative high number of species with a dif ferent altitudinal distribution pattern, mainly in t h e middle a n d foothill reaches ; — T h e absence from the Sierra Nevada of a great n u m b e r of cold-stenothermal Pyrenean species, fre quent in t h e headwaters a n d upper reaches. A t t h e present time, four characteristic o r c o m m o n ele ments in t h e Sierra N e v a d a , a r e n o t recorded in t h e Pyrenees. — T h e relative high n u m b e r of species with alti tudinal distribution patterns which shift toward t h e upper reaches in t h e Sierra N e v a d a with respect t o the Pyrenees. T h e last two aspects are possibly related to t h e dif ferent latitudinal situations of the t w o m o u n t a i n massifs. Additional differences in historical, geogra phical a n d physiographical characteristics of t h e basins (climate, flow regime, gradient, pattern of branching) m a y also contribute t o the differences in altitudinal distribution patterns of species. F u r thermore, we should bear in mind that the study car ried o u t in the Pyrenees t o o k place in two basins scarcely altered b y h u m a n activity, a point well con trasting with o u r study area. 184 (10) J.J. CASAS, A . VILCHEZ-QUERO Table 4. Characteristic or common chironomid species at different altitudinal reaches in the Pyrenees and in the Sierra Nevada. Tableau 4. Espèces caractéristiques ou communes dans les différentes sections altitudinales des Pyrénées et de la Sierra Nevada. PYRENEES SIERRA NEVADA Laville & Vinçon (1991) Diameta i aberraia REACHES Pteudodiamesa Diamesa nivosa >20OO m permacra Hetero. Diamesa marcidus rteinbotcki Diamesa laticauaa Diamesa wuelkeri Stempellinelia Parakiefferiella parva Diamesa bertrami. Pteudodiamesa UPPER reissi braniddi, Euk. fittkaui REACHES 1600-2000 m Eukiefferiella tirolensis Micropsectra bidemata Diamesa Diamesa tonsa Paror. Diamesa laviilei Orthocladius Diamesa ihomasi Parai, Krenosminia boreoalpina Krenopsectra fallax Nilo. dubius. Hel. omaiicollis. NODDLE 1000-1600 m Eukiefferiella Diamesa veletensis Orth. rivuiorum semivirens Pseud. mikiana albicome Micropsectra lindrothi Diamesa latitarsis Diamesa lemyi saxosus Parât, skirwithensis Paror. nudipennis ^ ^ Rheotanytarsus reissi Eukiefferiella ctypeata Nanocladius rectinervis Paracricotopus Euk, cyànea. Eut lobifera, Orth. ashei, Rheo. Conchapelapia paltidula Macropelopia nebulosa Potlhastia Brillia gaedii flavifrons Cardiocladius devonica berthelemyi Cricotopus nigricauda FOOTHILL < 1000 m zemyi Eukiefferiella Polypedilum Rheocricolopus skirwithensis Tvetenia verraUi lobata Orthocladius saxosus Diamesa Syn. bavarica Paracladopetma latitarsis nudipennis Kren. camplophleps. fuldensis Corynoneura Tvetenia REACHES annulator incallida. Diamesa REACHES Cricotopus niger nevadensis spinicomis Orthocladius obumbratus Orthocladius mbicundus Cricotopus vierriensis' Tanytarsus brundini capucinus Cricotopus curtus Cricotopus similis Orthocladius Juscimanus Polypedilum convictum Eukiefferiella clypeata Nanocladius rectinervis Paracricotopus T niger Cr. tremulus. Nano. parvulus Poly.laetum. Rheotanytarsus Neozjuldensis Euk. brehmi pentapoda Species out of the boxes, not in common; Q species In common; • species with divergence or rare. ^d species in common in the next upper or lower reach respectively (11) CHIRONOMIDS DISTRIBUTION IN THE SIERRA NEVADA T h e most useful c o m p a r i s o n of altitudinal profiles between these t w o distantly separate m o u n t a i n areas, would be o n the basis of patterns of c o m m u nity diversity. I n t h e Pyrenees, t h e species richness increases from t h e headwaters toward the foothill reaches, where t h e m a x i m u m average richness occurs. According t o Laville & Vinçon (1991), the decrease in slope a n d t h e increase in flow favour the colonization of a c o m m u n i t y richer in p o t a m o p h i lic T a n y p o d i n a e a n d C h i r o n o m i n a e species. In t h e Sierra Nevada, a n increase in t h e species richness t o o k place d o w n - s t r e a m as well, from the headwaters (58 species), t h r o u g h t h e u p p e r reaches (72 species), t o the m a x i m u m in t h e middle reaches (121 species). But a s o m e w h a t lower species richness appeared in the foothill reaches (113 species). Thien e m a n n (1954) observed the m o s t diversified chiron o m i d communities in t h e foothill reaches, where the greatest b i o t o p e diversity occurs. W a r d (1986) found a similar p a t t e r n in t h e species richness of macroinvertebrates of a R o c k y Mountain river : t h e higher species richness at t h e foothill sites was related to a faunistic discontinuity produced by the tran- N of species 185 sition from t h e Rhithral t o t h e P o t a m a l c o n d i t i o n s . Such foothill reaches coincide mostly w i t h 3rd a n d / o r 4th order streams, that in t h e northern temperate regions have the greatest chironomid richness, according t o Coffman (1989) ; m a n y factors o p e rate in this increase, mainly related to t h e greater ecological heterogeneity of the streams with intermediate width a n d altitude. T h e general tendency t h r o u g h o u t t h e Sierra N e v a d a , can be observed as well in the particular case of the Monachil stream (Fig. 3), where t h e collecting effort was greatest, a n d therefore t h e p r o bability of bias lesser. This decreasing diversity seems t o be caused by t w o kinds of factors, n a t u r a l a n d h u m a n , which coincide mainly in the foothill reaches of t h e Sierra Nevada streams. T h e n a t u r a l factors refer t o the geologic composition a n d structure of this m o u n t a i n massif. It has a core of cristalline materials and a border of limestone which is mainly exposed in t h e foothil sites. The c h a n n e l s are relatively wide in the cristalline region, a b o v e the foothill, but begin to become n a r r o w , a n d in N of pupai exuviae ( x 1000 ) H I 60 - 40 - M1 M2 M3 sampling stations Fig. 3. Altitudinal changes in chironomid species richness and total number of pupal exuviae collected at each sampling station in the Monachil stream. Fig. 3. Evolution altitudinale de la richesse spécifique et du nombre total d'exuvies nymphales récoltées dans chaque station de la rivière Monachil. 186 (12) - J.J. CASAS, A . VILCHEZ-QUERO m a n y cases strongly shaded because of t h e very close riparian canopy. Both narrowness and shade may b e responsible, at least in p a r t , for t h e decrease in c h i r o n o m i d species richness ( H a w k i n s et al. 1982, L e n a t 1983, C o f f m a n 1989). O n the other h a n d , t w o h u m a n activities a r e particularly intense below 1000 m : sewage i n p u t a n d water i m p o u n d m e n t . Sewage i n p u t , condiserable in certain sampling stat i o n s (see B O D , T a b l e 1), limits h a b i t a t heterogeneity excluding a large n u m b e r of species in f a v o u r of a few, such as Eukiefferiella claripennis, Chironomus riparius, Micropsectra atrofasciata a n d Paratrichocladius rufiventris (Table 3). F u r t h e r m o r e , t h e i m p o u n d m e n t of w a t e r m a y cause i m p o r t a n t c h a n ges in lotie communities : flow reduction, according t o W a r d (1976), brings a b o u t certain physical changes t h a t decrease the number of species. W a t e r diversion for agriculture a n d small power stations results in l o n g periods of reduced a n d intermittent flow in certain stations of t h e lower reaches (Table 1). 5 Conclusions T h e altitudinal distribution of s o m e c h i r o n o m i d species in the Sierra N e v a d a streams, coincides with t h a t of other E u r o p e a n water courses. Nevertheless, in m a n y cases, as in the D i a m e s i n a e species, t h e r a n g e of distribution in the Sierra N e v a d a was noticeably higher in altitude t h a n in the F r e n c h Alps a n d t h e Massif Central. T h e same tendency can b e found in c o m p a r i s o n with t h e P y r e n e a n z o n a t i o n . I n addit i o n , t h e r e was a n absence in t h e Sierra N e v a d a of a great n u m b e r of cold-stenothermal P y r e n e a n species. B o t h tendencies m a y be connected with t h e different latitudinal situation of these t w o m o u n t a i n massifs. F u r t h e r m o r e , there was a relatively high n u m b e r of species with a different altitudinal dist r i b u t i o n pattern, which can be attributable t o m a n y historical, geographical a n d physiographical differences between t h e t w o massifs. T h e theoretically expected highest species richness in t h e foothill sites was n o t o b t a i n e d . P e r i o d s of r e d u c e d o r i n t e r m i t t e n t flow, t h e sewage i n p u t a n d t h e n a r r o w n e s s of t h e channels in t h e foothill sites a p p e a r t o decrease t h e species richness of t h e chiron o m i d c o m m u n i t i e s . It r e m a i n s t o b e seen t o w h a t extent h u m a n activity and n a t u r a l f a c t o r s , separately, influence c h i r o n o m i d species Acknowledgements We are grateful to Dr. W . P . Coffman for helpful comments, correcting an early English version of the manuscript and the facilities provided in his laboratory. Were are also indebted to Dr. H. Laville, Dr. F. Reiss and Dr. B. Serra-Tosio, for their taxonomic help. References Aagaard K., Olsen A. & Solem J.O. 1987. — Chironomids of Blesbekken, an alpine tundra stream at Dovrefjell national park, Norway. Ent. scand. Suppl., 29 : 349-360. Bass D . 1986. — Larval Chironomidae (Diptera) of the Big Thicket streams. Hydrobiologia, 135 : 271-285. Brouquet-Laglaire Y. 1985. — Etude des Chironomidés (Diptera) de quelques rivières polluées du bassin de la Garonne : Touyre, Agout, Dadou, Thoré, Bas Lot. Thèse 3 cycle, Univ. Paul Sabatier, Toulouse, 237 p. Buisson J. 1986. — Hydrobiologie du massif du Vercors (Préalpes calcaires) et d'une rivière type : le Furon. Ecologie des Diptères Chironomidae du Furon et de quelques cours d'eau pollués. Thèse de 3 cycle, Univ. de Grenoble. Bursa M.A. 1934. — Hydrurus foetidus Kirch, w Polskich Tatrach. 1. Hydrurus foetidus Kirch in der Polnischen Tatra. Oecologie, Morphologie. 1. Mémoire aus dan Institut fur pharmazautischen Botanik an der Jagellonischen Universitat, Krakow. Casas J.J. & Vilchez-Quero A. 1989. — A faunistic study of the lotie chironomids (Diptera) of the Sierra Nevada (S.E. of Spain) : Changes in the structure and composition of the populations between spring and summer. Acta Biol. Debr. Oecol. Hung., 3 : 83-93. Caspers N . 1983. — Chironomiden Emergenz zweier Lunzer Bâche, 1972. Arch. Hydrobiol. Suppl., 65 : 484-549. Caspers N . & Reiss F. 1987. — Chironomidae des Lunzer Seengebietes in Niederosterreich (Insecta, Diptera, Nematocera). Spixiana, 10 : 13-35. Coffman W . P . 1973. — Energy flow in a woodland stream ecosystem. II. The taxonomic composition and phenology of the Chironomidae as determined by collection .of pupal exuviae. Arch. Hydrobiol., 71 : 281-322. Coffman W.P. 1989. — Factors that determine the species richness of lotie communities of Chironomidae. Acta Biol. Debr. Oecol. Hung., 3 : 95-100. Cranston P.S., Oliver D.R. & Saether O.A. 1983. — The larvae of Orthocladiinae (Diptera : Chironomidae) of the Holarctic region.-keys and diagnosis. Ent. scand. Suppl., 19 : 149-291. Giller P.S. 1984. — Community Structure and the Niche. London, Chapman and Hall. 176 p. Hawkes H.A. 1978. — Invertebrates as indicators of rivers water quality, pp. 21-245. In : A. James and L. Evinson (eds.). Biological indicators of water quality. John Wiley and Sons, Inc. New York, N4. 597 p: Hawkins C P . , Murphy M.L.& Anderson N.H. 1982. —- Effects of canopy, substrata composition and gradient on the structure of macroinvertebrate communities in Cascade Range streams of Oregon. Ecology, 63 : 1840-1856. Hayes B.P. & Murray D . A . 1988. — Diel variation in chironomid emergence and implications for the use of pupal exuviae in river clasification. Verh. Int. Ver. LimnoL, 23 :1261-1266. e e (13) 187 CHIRONOMIDS DISTRIBUTION IN THE SIERRA NEVADA Kownacki A . 1971. — Taxocens of Chironomidae in streams Polish High Tatra Mts. Acta Hydrobiol. Krakow, 13 : 439-464. Laville H. 1979. — Etude de la dérive de exuvies nymphales des Chironomidés au niveau de confluent Lot-Truyère. Annls. LimnoL, 15 (2) : 155-180. Laville H. 1981. — Récolte d'exuvies de Chironomidés dans le Haut-Lot, de la source (1295 m) au confluent de la Truyère (223 m). Annls. LimnoL, 17 (3) : 255-289. Laville H. & Lavandier P. 1977. — Les Chironomidés (Diptera) d'un torrent pyrénéen de haute montagne : L'Estaragne. Annls. LimnoL, 13 (1) : 57-81. Laville H. & Vilchez-Quero A. 1986. — Les Chironomidés (Diptera) de quelques « Lagunas » de haute altitude de la Sierra Nevada (Granada, Espagne). Annls. LimnoL, 22 (1) : 53-63. Laville H. & Vinçon G. 1991. — A typological study of Pyrenean streams : Comparative analysis of the Chironomidae (Diptera) communities in the Ossau and Aure Valleys. Verh. Int. Ver. LimnoL, 24 : 1775-1784. Lehmann J. 1971. — Die Chironomiden der Fulda (systematische, okologische und faunistiche Untersuchungen). Arch. Hydrobiol. Suppl., 37 : 466-555. Lehmann J. 1972. — Revision europaischen Arten von Eukiefferiella Thienemann. Beitrag. Ent. Bd., 22 (7-8) : 348-405. LenatD.R. 1983. — Chironomid taxa richness : natural variation and use in pollution assessment. Freshwat. Invertbr. biol., 2 (4) : 192-198. Lindegaard-Petersen C. 1972. — An ecological investigation of the Chironomidae (Diptera) from a Danish lowland stream (Linding A). Arch. Hydrobiol., 69 (4) : 465-507. Mc Gill J.D., Wilson R.S. & Brake A . M . 1979. — The use of chironomid pupal exuviae in the surveillance of sewage pollution within a drainage system. Water Research, 13 : 889-894. Prat N., Puig M.A., Gonzalez G. & Millet X. 1984. — Chironomid longitudinal distribution and macroinvertebrate diversity along the Llobregat river (NE Spain). Mem. Am. Entomol. Soc, 34 : 267-278. RingeF. 1974. — Chironomiden-Emergenz 1970 in Breitenbach und Rohrwiesenbach. Schlitzer Produktions-biologische Studien, 10 : Arch. Hydrobiol. Suppl., 45 : 212-304. Rossaro B. 1982. — Guide per il riconoscimento delle especie animali delle aque interne italiana, n 16. Chironomidi, 2 (Diptera, Chironomidae : Orthocladiinae). Consiglio Nationale delle Ricerche, aq. 171 p. Rossaro B. 1991. — Chironomids of stony bottom streams : a detrended correspondence analysis. Arch. Hydrobiol., 122 (1) : 79-93. Serra-Tosio B. 1973. — Ecologie et biogeographie des Diamesini d'Europe (Diptera, Chironomidae). Trav. Lab. Hydrobiol. Grenoble, 63 : 5-175. Simpson K.W. & Bode R.W. 1980. — Common larvae of Chironomidae (Diptera) from New York State streams and rivers, with particular reference to the fauna of artificial substrates. Bull. N.Y. State Mus., 439 : 1-105. Thienemann A. 1954. — Chironomus. Leben, Verbreitung und wirtschafliche Bedeutung der Chironomiden. Binnengewasser, 20 ; 834 p. Verneaux J. & Vergon J.P. 1974. — Faune dulçacuicole de France-Comté. Sixième partie : Les Diptères Chironomidés. Ann. Scient. Univ. Besançon ZooL, 11 : 179-198. Ward J.V. 1976. — Effects of flow patterns below large dams an stream benthos : A review ; 235-253. In : J.F. Orsborn & C.H. Alman (eds.). Instream Flow Needs Symposium. Vol. II Amer. Fish. S o c , Bethesda, Md. Ward J.V. 1986. — Altitudinal zonation in a Rocky Mountain stream. Arch. Hydrobiol. Suppl., 74 : 133-199. Wilson R.S. 1977. — Chironomid pupal exuviae in the River Chew. Freshwater Biol., 7 : 9-17. Wilson R.S. 1980. — Classifying rivers using Chironomid pupal exuviae, 209-216. In : Chironomidae, Ecology, Genetic and Physiology. IX International Symposium on Chironomidae. Murray D.A. (ed.). Pergamon Press. Dublin. Wilson R.S. & Bright P.L. 1973. — The use of Chironomid pupal exuviae for characterizing streams. Freshwater Biol. 3 : 283-302. 0
© Copyright 2026 Paperzz