AIRBAG TEST CONDITIONS BASED ON REAL-WORLD CRASH EXPERIENCE J. W. M e l v i n Highway S a f e t y Research I n s t i t u t e The U n i v e r s i t y o f Michigan Ann Arbor, Michigan 48109 FINAL REPORT June 1982 Prepared f o r Honda Research and Development Company, L t d . Wako Center 1-4-1 Chuo, Wako-Shi Sa i tama, 3 5 1 , Japan Tubricol Report Docrmtuti" Pogo 1. R-rt 2. Go-m Mo. 3. Ruipimt's Cetoly No. Accession No. UM-HSRI -82-25 5. Rapoft Dot* 4. Title d Subtitle June 1982 AlRBAG TEST CONDITIONS BASED ON REAL-WORLD CRASH EXPERIENCE 6. P u k i n g 0fp.nixotia Cod. I.P & n * y 7. Auko6s) UM-HSR 1-82-25 J. W. M e l v i n 10. WorC Unit No. (TRAIS) 9. P u b m i n e Orgmizotior, N r e d Ad&*ss Highway S a f e t y Research I n s t i t u t e The U n i v e r s i t y o f Michigan Ann A r b o r , Michigan 48109 NH 12. * w i n g O r g m i x d o n R.port No. 11. Conooct or Gronc No. Honda Research and Development Co., Wako Center 1-4-'1 C ~ U O , Wake-Shi Saitarna. 351, Japan TYP 13. a d Address of R-o* ond Period ~overod FINAL REPORT A p r i l 1982-June 1982 Ltd. 14. +enswing Agency Code IS. S u p p l m t w y Noto. 1'6. Abatrwt To e s t a b l i s h a c r a s h t e s t m a t r i x f o r d e v e l o p i n g and e v a l u a t i n g an a i rbag r e s t r a i n t system, an a n a l y s i s was made o f e x i s t i n g i n f o r m a t i o n on motor v e h i c l e a c c i d e n t s , biomechanical p r i n c i p l e s o f occupant p r o t e c t i o n , and p r i n c i p l e s o f occupant r e s t r a i n t systems. Eva1 u a t ions o f a i r b a g r e s t r a i n t systems by means o f c r a s h t e s t s u s u a l l y c e n t e r upon t h e t e s t c o n d i t i o n s o f FMVSS 208 ( f l a t b a r r i e r c r a s h t e s t i n g o f P a r t 572 t e s t dummies a t 30 mph w i t h impact angles from 0' t o 30'). But those c o n d i t i o n s s p e c i f i e d i n FMVSS 208 may n o t adequately r e p r e s e n t t h e p o s s i b l e r e a l - w o r l d c r a s h exposure t h a t a p r o d u c t i o n a i rbag m i g h t face on U.S. highways. T h i s r e p o r t suggests a supplemental c r a s h t e s t m a t r i x t o r e p r e s e n t more c o m p l e t e l y t h e r e a l - w o r l d c o n d i t i o n s an a i r b a g r e s t r a i n t system e v a l u a t i o n program must c o n s i d e r . 17. Koy Wwds 18. Disnibunor, S t o t n r r t Airbag Restraint Testing A c c i d e n t Data A n a l y s i s It. kcurity C l r u f . (of this None i Unl imi t e d 3. kcurity CIassil. ( . I this pogo) None 21.No.efPoges 25 n Price TABLE OF CONTENTS LIST O F TABLES ......................... l NTRODUCT l ON 2.0 ............ Impact D i r e c t i o n . . . . . . . . . . . . . . . . . . . Type o f O b j e c t S t r u c k . . . . . . . . . . . . . . . . V e h i c l e V e l o c i t y Change ( D e l t a V) .......... D i s t r i b u t i o n o f NCSS I n j u r i e s . . . . . . . . . . . . REVIEW OF REAL-WORLD ACCIDENT DATA 2.1 2.2 2.3 2.4 3.0 DISCUSSION OF FACTORS INFLUENCING AIRBAG DESIGN AND PERFORMANCE 4:O DISCUSSION OF 5.0 D l SCUSS l ON OF CRASH TEST l NG FACTORS AND SUGGESTED CRASH TEST MATRIX 6.0 REFERENCES ...................... BIOHECHANICAL FACTORS . . . . . . . . . . . . .............. ........................ LIST O F TABLES 1 2 3 4 . . . . D i s t r i b u t i o n o f Impact I n j u r y Groupings Direction for Various Occupant ..................... D i s t r i b u t i o n o f Accident Type f o r V a r i o u s Occupant I n j u r y Groupings ..................... D i s t r i b u t i o n of Vehicle Occupant I n j u r y Groupings Velocity Changes for 4 Various ................ ... .............. D i s t r i b u t i o n o f AlSn3.4.5. 6 I n j u r i e s by Body Region 5 . Honda A i r b a g Crash Test M a t r i x 3 5 7 15 1.0 INTRODUCTION An a n a l y s i s was conducted t o assess e x i s t i n g i n f o r m a t i o n vehicle accidents, biomechanics of occupant protection, p r i n c i p l e s o f occupant r e s t r a i n t systems i n order t o e s t a b l i s h test matrix on motor and a the crash t h e development and e v a l u a t i o n o f an a i r b a g r e s t r a i n t for system. The c r a s h t e s t centers upon the evaluation test of conditions airbag of restraint FMVSS 208. systems usually This involves f l a t b a r r i e r c r a s h t e s t i n g a t 30 mph w i t h impact angles from 0 " t o 30°, u s i n g 50th p e r c e n t i l e cond i t i ons male speci f i ed test in dummies FMVSS (Part 572). The limited crash 208 may n o t be adequate t o r e f 1 e c t t h e p o s s i b l e r e a l - w o r l d c r a s h exposure t h a t a p r o d u c t i o n a i r b a g system m i g h t f a c e on t h e highways o f t h e U n i t e d S t a t e s . report to suggest more c o m p l e t e l y t h e I t is the intent of this a supplemental c r a s h t e s t m a t r i x t h a t would r e f l e c t real-world conditions system e v a l u a t i o n program must c o n s i d e r . that an airbag restraint REVIEW OF REAL-WORLD ACCIDENT DATA 2.0 The d a t a base chosen t o p r o v i d e t h e i n f o r m a t i o n f o r real-world crash d a t a c o l l e c t i o n program (NHTSA) . March 31, In (NCSA) the exposure o f an a i r b a g system i s t h e d a t a c o l l e c t e d by t h e N a t i o n a l Crash S e v e r i t y Study (NCSS). Analysis analyzing of of the The NCSS was a major a c c i d e n t National Center for Statistics and t h e N a t i o n a l Highway T r a f f i c S a f e t y A d m i n i s t r a t i o n 1977, Data c o l l e c t i o n began on January 1 , and t e r m i nated on 1979. t h e NCSS study, a c c i d e n t s were i n v e s t i g a t e d i n seven geographic areas w i t h i n aggregate the of continental United States, selected so that the t h e areas c l o s e l y resembles t h e u r b a n i z a t i o n d i s t r i b u t i o n of the e n t i r e country. W i t h i n each area, a s t r a t i f i e d sampling p l a n was used t o gather d e t a i l e d i n f o r m a t i o n on passenger cars, l i g h t t r u c k s , and vans, as w e l l as t h e i r occupants, i n a c c i d e n t s severe enough t o that t h e v e h i c l e s be towed from t h e scene. (weighted total=54,318) tota1=67,281) , A t o t a l o f 11,386 a c c i d e n t s i n v o l v i n g 14,805 towed passenger c a r s 24,976 vehicle require (weighted occupants (weighted tota1=106,121), 917 f a t a l i t i e s (weighted t o t a l = 9 1 7 ) were c o l l e c t e d i n t h e NCSS study. more complete d e s c r i p t i o n o f t h e NCSS ed. (1) study can be found in and A Ricci, .* For this analysis, reviewed f r o m the instantaneous change types f o r crashes restraint systems. the summary d a t a on passengers c a r s ( 1 ) were standpoints in that of impact direction, object v e h i c l e v e l o c i t y ( c a l l e d d e l t a V) would Airbag be of systems relevance are to generally , and i n j u r y airbag felt struck, to occupant be most e f f e c t i v e i n crashes t h a t a r e o f t h e f r o n t a l t y p e and whose s e v e r i t y sufficiently great that system were n o t a c t i v a t e d . serious injuries W i t h t h a t i n mind, would the is l i k e l y occur i f t h e following analyses were conducted t o o b t a i n an overview o f t h e r e l e v a n t c r a s h d a t a . *Numbers t h i s report. in parentheses denote r e f e r e n c e s l i s t e d a t t h e end o f 2.1 - Impact D i r e c t i o n The p r i n c i p a l d i r e c t i o n o f f o r c e (PDOF) t o an impacted broken down i n t o " c l o c k d i r e c t i o n s " o r 30' necessarily the same as t h e a r e a o f t h e v e h i c l e damaged. into the side the f r o n t of the car. the left) occupant If compartment. d i r e c t i o n s o t h e r than 12 o ' c l o c k impact directions, we combine (0°), For example, impact vector The PDOF does, however, g i v e a general p i c t u r e o f t h e v e c t o r o r i e n t a t i o n o f t h e major the is T h i s PDOF i s n o t increments. i t i s p o s s i b l e t o have an 1 1 o ' c l o c k (30' t o vehicle we the find deceleration of l e f t and r i g h t c l o c k the distribution of p r e s e n t e d i n T a b l e 1 , grouped a c c o r d i n g t o occupant injury levels. TABLE 1 DISTRIBUTION OF IMPACT DIRECTION FOR VARIOUS OCCUPANT INJURY GROUPINGS Impact D i r e c t i o n (PDOF) A l l Occupants 12 O'Clock (0') 1 & 1 1 O ' c l o c k (f30°) 2 & 10 o l c l o c k (+60°) 3 & 9 O ' c l o c k (*go0) 27.3% 22.5% 14.8% 2.4% 3+ Fatal 17.0% 32.7% 20.0% 20.2% 3.2% 3.6% 34.4% 16.6% 19.2% 6.1% A I S 2+ 34.1% 21.0% AIS The d a t a i n T a b l e 1 i n d i c a t e t h a t t h e +30° t e s t cond i t i ons o f FMVSS 208 would c u m u l a t i v e l y i n c l u d e 50% t o a1 1 the NCSS crashes. 55% o f t h e occupants include addressed in the The r e v i s i o n proposed by NHTSA t o FMVSS 214 f o r s i d e impact a +60° impact P D O F . Thus, one m i g h t conclude t h a t t h e d i v i s i o n between f r o n t a l impact and s i d e impact should occur when t h e PDOF i s 245". in The quest i o n o f when t h e PDOF p e r t a i n s more t o s i d e impact than t o f r o n t impact has n o t r e a l l y been literature. involved This impact v e c t o r . would give equal Interpolation of frontal the at and l a t e r a l components t o t h e cumulative frequency data from T a b l e 1 i n d i c a t e s t h a t a p p r o x i m a t e l y 63% o f t h e occupants i n j u r e d a t t h e level + 4 5 O . o f AIS 3 o r g r e a t e r would be i n c l u d e d f o r PDOF d i r e c t i o n s between Thus, i t i s reasonable t o extend t h e range o f t h e PDOF f o r a i r b a g crash testing to include direct ions up to k45' in order to increase the coverage of real-world accident victims. 2.2 - Of Object Struck Table 2 shows the distribution of NCSS accidents by accident type for the same injury groups. TABLE 2 DISTRIBUTION OF ACCIDENT TYPE F O R VARIOUS OCCUPANT INJURY GROUPINGS Accident Type A l 1 Occupants A I S 2+ AIS 3+ Fatal Single Vehicle/Fixed Object Two Vehicles/Head-On Two Vehicles/Side Three or More Vehicles 19.5% 10.8% 36 7% 11.7% 31.6% 31.8% 17.8% 29.4% 20.8% 25.2% 7.2% 16.2% 27.6% 9.5% 27.2% 8.5% A few comments need to be made about this breakdown of The two-vehicle/side-impact data of the data pertain data. invariably include one side-impacted vehicle and one frontally-impacted vehicle in each half the to frontal impacts. crash. Thus, only These frontal impacts would most likely be different than those occurring in two-vehicle/headon crashes, in terms of both the vehicle-to-vehicle interaction and V of the frontally-impacted vehicle. delta the An estimate of the relative frequency of frontal impact for occupants in these crashes, obtained simply dividing all by "side" data by two, produces numbers of occupants injured at the AIS2+, AIS 3+, and fatal levels that are somewhat lower than those in two-vehicle/head-on crashes. Similarly, directions. the single-vehicle/fixed-object data include all impact An estimate of the relative frequency of frontal impact for occupants in these crashes can be made by vehi cl e/f i xed-object given in section 2.1. data taking 63% of the single- based on the re1 at ive frequency of k45' PDOF This would produce relative frequencies for each 18% t o 20%, which w o u l d be s i m i l a r t o t h e r e l a t i v e i n j u r y group o f about f r e q u e n c i e s o f t h e two-vehicle/head-on category. As a r e s u l t o f t h e above c o n s i d e r a t i o n s , i t appears in frontal i n vehicle-to-fixed o b j e c t , head-on v e h i c l e - t o - v e h i c l e , types. The implications for crash a i r b a g r e s t r a i n t systems a r e t h a t equal emphasis vehicle-to-fixed tests. occur object tests vehicle-to- test evaluation of should type be placed on frontal crashes s i m i l a r frequency t o t h e o t h e r two types o f f r o n t a l crashes should be c o n s i d e r e d i n s e t t i n g t h e t h r e s h o l d l e v e l airbag and and t o b o t h types o f v e h i c l e - t o - v e h i c l e Also, t h e f a c t t h a t f r o n t - t o - s i d e - v e h i c l e with injuries crashes occur w i t h s i m i l a r frequency i n t h e NCSS d a t a (+45') side-vehicle that deployment, because h i v e 1 ower d e l t a V l s and these for initiation of f r o n t - t o - s i d e crashes would tend t o decelerations than head-on f i xed-obj e c t or crashes. 2.3 V e h i c l e V e l o c i t y Change ( D e l t a V l The NCSS study contains 20,279 (weighted t o t a l ) frontal-damage Table 3 g i v e s i n f o r m a t i o n on occupants passenger cases. injured t h e 31,431 occupants i n these crashes i n two d i f f e r e n t ways. to among One way i s g i v e t h e percentage of a l l occupants i n j u r e d f o r v e l o c i t y changes up t o 35 mph and 40 mph, r e s p e c t i v e l y ( c u m u l a t i v e frequency) . The other way i s t o g i v e t h e percentage o f occupants i n j u r e d i n t h e v a r i o u s i n j u r y groupings among specif i c a l l y o f those involved in crashes 35 mph and 40 mph ( i n j u r y r a t e ) with velocity . TABLE 3 D l STR l BUT l ON OF VEH l CLE VELOC l TY CHANGES FOR VAR l OUS OCCUPANT l NJURY GROUP l NGS AIS 2+ AIS 3+ Fatal Cum. Freq. Injury Rate Cum. Freq. Injury Rate Cum. Freq. lnjury Rate 35 MPH 87% 50% 78% 3 3% 50% 11% 40 MPH 92% 58% 85% 43% 60% 20% Delta V changes These d a t a i n d i c a t e t h a t a c r a s h v e l o c i t y change o f 40 mph of instead 35 mph n e a r l y doubles t h e f a t a l i n j u r y r a t e as w e l l as p r o d u c i n g a 10% increase fatalities. in the cumulative Significant injury rates f o r the AIS frequency increases 2+ and in of the occurrence of t h e c u m u l a t i v e f r e q u e n c i e s and 3+ AIS levels also result when c o n s i d e r i n g t h e 40 mph l e v e l i n s t e a d o f t h e 35 mph l e v e l . a crash t e s t v e h i c l e d e l t a V o f 40 mph would appear t o be Choosing a s u i t a b l e goal f o r i n c r e a s i n g t h e p r o t e c t i v e c a p a b i l i t i e s o f a v e h i c l e . However, i t must be k e p t i n mind t h a t t h e d e l t a V data are not equivalent values t o b a r r i e r crash d e l t a Vs. in the NCSS The a c c e l e r a t i o n l e v e l s a s s o c i a t i o n w i t h b a r r i e r crashes tend t o be higher t h a n those f o r car-to-car complet; crashes a t t h e same d e l t a Vs. This is attributed to the and u n i f o r m c o n t a c t t h a t t h e f l a t b a r r i e r produces a g a i n s t t h e f r o n t o f the t e s t vehicle. real-world crash severity Thus, a 40 mph d e l t a V level in terms of may be r e p r e s e n t e d by a lower d e l t a V i n an e q u i v a l e n t b a r r i e r crash t e s t . The 35 mph b a r r i e r crash v e l o c i t y used by Honda i n p r e v i o u s t e s t i n g may be near t h i s equivalence l e v e l . 2.4 - D i s t r i b u t i o n o f NCSS I n j u r i e s The goal of any r e s t r a i n t system i s t o p r e v e n t s e r i o u s and f a t a l I n meeting t h i s goal i t i s p o s s i b l e t h a t some i n j u r i e s may be injuries. produced by t h e r e s t r a i n t injuries system may n o t be prevented. itself and that many lower Choosing t h e c r a s h t e s t s e v e r i t y l e v e l s f o r e v a l u a t i n g a r e s t r a i n t system r e q u i r e s a d e c i s i o n as t o of level what level i n j u r y w i l l be judged a c c e p t a b l e and what l e v e l s o f i n j u r y a r e t o be prevented. Currently, i t i s generally f e l t t h a t the A I S 3 level acceptable injury level for the upper crash is an severity l i m i t o f the vehicle. I n view o f t h i s , t h e NCSS d a t a on t h e most f r e q u e n t i n j u r i e s common a t A I S levels of 4, 5, and 6 can p r o v i d e i n j u r i e s t h a t a r e t o be prevented. injuries to the insight into the types of Table 4 p r e s e n t s t h e d i s t r i b u t i o n o f major body r e g i o n s f o r A I S 3 and t h e h i g h e r t h r e e A I S levels. The t h r e e most f r e q u e n t l y i n v o l v e d body r e g i o n s a t A I S 4, are the head, abdomen, and thorax. 5, and 6 These would most l i k e l y be w e l l TABLE 4 DISTRIBUTION OF ~ 1 5 = 3 , 4 , 5 , 6 INJURIES BY BODY REGION 5 Body Region AIS 3 AIS 4 AIS Head Abdomen Thorax Leg Neck Arm Back 10.2% 8.3% 36.6% 26.1% 4.2% 12.8% 1 .g% 24.7% 29.9% 19.2% 16.5% 1.3% 38 3% 30 7% 25 -4% 0.2% 4 .O% 0.0% 1.1% . 6 7 3% 1.0% p r o t e c t e d by an e f f e c t i v e a i r b a g system. AIS 6 A I S 4,5,6 30.1% 26.3% 21 .9% 8.6% 7.9% 3.8% 1 .O% 29.7% 1.4% 23.1% o .o% 43.4% 0.0% 0.9% Note t h a t a t t h e AIS 3 level t h e l e g r e p r e s e n t s a s i g n i f i c a n t p o r t i o n o f t h e i n j u r i e s , second o n l y t o the thorax. the I t would be v a l u a b l e f o r a r e s t r a i n t system t h a t d i m i n i s h e d occurrence of head, thoracic, and abdominal injuries t o also m i n i m i z e l e g i n j u r i e s , even though they a r e u s u a l l y c l a s s i f i e d as AIS and be 1 ow. 4 DlSCUSSlON OF FACTORS INFLUENCING AIRBAG DESIGN AND PERFORMANCE 3.0 The r o l e o f an occupant r e s t r a i n t system i s t o c o u p l e t h e tightly to vehicle's the vehicle energy preventing, so as body. the or limit capabilities possible, while at of the contact the same time occupant w i t h t h e A t h i r d f u n c t i o n o f a r e s t r a i n t system i n t e r i o r of the vehicle. distribute t h a t he can r i d e down t h e c r a s h u s i n g t h e absorbing insofar occupant is to t h e loads produced by t h e crash on t h e o c c u p a n t ' s W h i l e a l l o f these f u n c t i o n s can be p r o v i d e d for in principle, c r i t i c a l f a c t o r s t h a t come i n t o p l a y i n t h e a c t u a l s p e c i f i c a t i o n o f r e s t r a i n t performance l e v e l s a r e t h e mechanical response c h a r a c t e r i s t i c s o f t h e human body under mechanical Ioad i ng such and 1 imit s the of l o a d i n g t h a t can be r e l i a b l y a p p l i e d w i t h o u t s e r i o u s i n j u r y . Such i n f o r m a t i o n i s known as tolerance body. factors cond i t i ons of the has human impeded particular 1y with the the To p u t i t in mechanical characteristics impact response and The l a c k o f adequate knowledge o f such progress respect restraint. biomechanical to simple of restraint i nnovat i v e terms, an system approaches engineer to must design, occupant know the and f a i l u r e modes o f t h e s u b j e c t t h a t i s t o be p r o t e c t e d j u s t as much as those o f t h e s t r u c t u r e s or systems t h a t a r e b e i n g designed t o do the protecting. Given a desired upper crash v e l o c i t y l e v e l , i t i s t h e l i m i t s o f t h e human body t o w i t h s t a n d t h e t y p e and magnitude o f t h e loads produced on i t by t h e r e s t r a i n t system t h a t d i c t a t e t h e a c t u a l performance l e v e l s of the vehicle crashworthiness structures. In a frontal crash, t h e o r e t i c a l advantages over First, an airbag the lap/shoulder system belt has several restraint system. a i r b a g p r o v i d e s a much l a r g e r area t o r e s t r a i n t h e occupant the and thus can a p p l y l a r g e r t o t a l loads t o loading. restraint Second, the the body for a given unit a i r b a g can l o a d t h e head as w e l l as t h e r e s t o f t h e body and can thereby c o n t r o l t h e m o t i o n o f t h e head i n a manner t h a t be1 t systems cannot. increase the A third possible advantage is the abi l i t y to s t o p p i n g d i s t a n c e o f t h e occupant by p r o v i d i n g c o n t r o l l e d forward m o t i o n w i t h i n t h e occupant compartment d u r i n g t h e crash. This f e a t u r e can be designed i n t o b e l t systems a l s o . The above advantages were r e f e r r e d t o as t h e o r e t i c a l advantages because i t depends t o a g r e a t extent upon the s e v e r i t y o f t h e c r a s h v e l o c i t y l e v e l as t o whether o r n o t such f e a t u r e s a r e a c t u a l l y necessary injury to the v e h i c l e occupants. prevent severe or fatal The c r a s h w o r t h i n e s s f e a t u r e s o f t h e v e h i c l e s t r u c t u r e s must be capable o f managing to adequately doing their job of t h e c r a s h energy and p r e v e n t i n g occupant compartment i n t r u s i o n a t a p a r t i c u l a r d e s i g n c r a s h v e l o c i t y b e f o r e such a d d i t i o n a l f e a t u r e s as l o a d d i s t r i b u t i o n on t h e body, c o n t r o l o f stopping distance are needed. system i s s t i l l t o p r o v i d e uncontrolled has found ride down i n t e r i o r contacts. that, structures The have for crashes remained head basic of levels appear and increased function of the r e s t r a i n t the crash and to prevent Real-world accident i n v e s t i g a t i o n data in which the vehicle crashworthiness t h e p r o p e r use o f a l a p / s h o u l d e r effective, b e l t poses no s e r i o u s t h r e a t o f i n j u r y t o severity motion, the occupant. These crash t o i n c l u d e t h e c o n d i t i o n s o f t h e p r e s e n t FMVSS 208. Thus, are not i t appears t h a t t h e biomechanical advantages strictly airbag of crashworthiness in today's Only as t h e c r a s h w o r t h i n e s s l e v e l ( t h a t i s , t h e s u r v i v a b l e crash velocity) it the necessary f o r s a f e occupant p r o t e c t i o n i n s u r v i v a b l e v e h i c l e crashes w i t h t h e p r e s e n t l e v e l cars. of i s raised t o higher l e v e l s w i t h f u t u r e v e h i c l e become designs might necessary t o p r o v i d e t h e a d d i t i o n a l f r o n t a l c r a s h p r o t e c t i v e features o f the airbag. A t j u s t what l e v e l t h i s occurs depends to a g r e a t degree upon a good knowledge o f t h e biomechanical f a c t o r s i n v o l v e d i n human t o l e r a n c e t o impact i n j u r y . The airbag is a p a r t i c u l a r j o b very w e l l . restraint system that is designed t o do one That j o b i s t o p r o v i d e p a s s i v e p r o t e c t i o n f o r a we1 l - p l a c e d ( t h a t i s , seated, f o r w a r d - f a c i ng, centered, and back in t h e v e h i c l e seat) v e h i c l e occupant i n a p r i m a r i l y f r o n t a l f o r c e c r a s h i n which the inflated. major crash events take place forward passenger t h e a i r b a g remains The a i r b a g i s mounted i n t h e forward s t r u c t u r e o f t h e v e h i c l e and t h e r e f o r e depends t o some e x t e n t upon t h e the while structure, airbag. including Windshield the structural windshield, retention in integrity of i n t h e case o f t h e vehicle crashes is an i m p o r t a n t f a c t o r i n keeping u n r e s t r a i n e d occupants i n s i d e t h e car and i s covered FMVSS by windshield 212. integrity performance o f Performance a and However, during passenger Injury of and objects and An thus disrupt the m i g h t compromise t h e anal ys i s 10 and 2 of o'clock which 991 broken w i n d s h i e l d s o c c u r r e d . were broken 221 were o f unknown cause. o f t h e crashes may have can Col 1 i s i o n the (CP I R) a c c i d e n t d a t a f i 1 es f o r f r o n t a l between caused by occupant c o n t a c t , 358 contact, crash a i rbag. Report crashes w i t h impact f o r c e s vehicles a outside represented a by yielded 5,705 O f these, 412 were other than occupant T h i s means t h a t 6.3% t o 10.1% problem for passenger airbag performance. The out-of-position occupant presents another factor for c o n s i d e i a t i o n i n the d e s i g n and performance o f a i r b a g r e s t r a i n t systems. Thi s s i t u a t i o n can occur f o r b o t h t h e d r i v e r (2) and f o r (3,4). P r e v e n t i o n o f dangerous o u t - o f - p l a c e the r a p i d l y i n f l a t i n g a i r b a g has characteristics, of-position child bag significant the occupant i n t e r a c t i o n s w i t h influences on f o l d i n g p a t t e r n s , and system placement. occupant generally r e s t r i c t i o n on d e s i g n parameters. passenger presents the most inflation The o u t severe 4$ 0 The problem mechanisms, and D l SCUSS l ON OF B l OMECHAN l CAL FACTORS of describing tolerance r e s t r a i n t system design. the performance of restraint knowledge d e s i g n and e v a l u a t i o n . criteria for mechanical response, on systems, the of , the biomechanics optimize of the human body. can be u s e f u l i n many ways i n r e s t r a i n t system The information can be used to set design l o a d l i m i t s produced by t h e r e s t r a i n t system, such as t h e or the breaking HPR w i n d s h i e l d , w h i l e i t can a l s o be u s e f u l i n s p e c i f y i n g t h e response o f a human s u r r o g a t e , such as a model, and t h e g r e a t e r t h e need f o r more c o l l a p s e l o a d o f t h e energy-absorbing s t e e r i n g column load injury f o r c e o f t h e human body i s paramount i n As a t t e m p t s a r e made t o upgrade complete and a c c u r a t e d a t a Biomechanical to the Finally, it can be dummy or a mathematical used t o assess t h e i n j u r y p o t e n t i a l o f a p a r t i c u l a r r e s t r a i n t system t h r o u g h t h e use o f i n j u r y c r i t e r i a . There a r e s e v e r a l problems r e l a t e d t o t h e biomechanical use o f present type of test c a l l e d P a r t 572 dummy). that were intended dummies s p e c i f i e d f o r use i n FMVSS 208 ( t h e soSuch t e s t dummies had t h e i r o r i g i n s i n were only crudely t h e r e was no a t t e m p t a t critical dummies t o s i m u l a t e t h e shape and mass d i s t r i b u t i o n o f t h e average (50th p e r c e n t i l e ) male human body. dummies the The a r t i c u l a t i o n s representative simulating the of these o f t h e human l i n k a g e s , and mechanical s t r u c t u r e s as t h e head, neck, and c h e s t . o f t h e P a r t 572 dummy were developed t o improve the response of Most o f t h e f e a t u r e s repeatabi 1 i t y r e p r o d u c i b i l i t y o f t h e dummy, t h e f i r s t p r i o r i t y o f any t e s t d e v i c e . a result, r e s t r a i n t systems t e s t i n g . the impact As f a c t o r i s t h a t t h e i n j u r y c r i t e r i a used biomechanical impact data typical of in An a d d i t i o n a l c o m p l i c a t i n g FMVSS 208 were o b t a i n e d w i t h human cadavers. t h e 1 i m i t e d i n j u r y c r i t e r i a p u t f o r t h i n FMVSS injury situations These d i s c r e p a n c i e s a r e t h e r e s u l t o f a l a c k what i s known as biomechanical f i d e l i t y . femur and t h e P a r t 572 dummy g i v e s exaggerated v a l u e s o f a c c e l e r a t i o n s and f o r c e s generated under some o f of such 208 (head, based on As a r e s u l t , chest, and c r i t e r i a ) were o b t a i n e d w i t h t h e b e s t avai l a b l e s u r r o g a t e o f t h e human body b u t a r e i n t e r p r e t e d w i t h a s u r r o g a t e ( P a r t 5 7 2 dummy) t h a t does n o t n e c e s s a r i l y respond i n t h e same manner as t h e human body. The human body i s a v e r y c o m p l i c a t e d biomechanical s t r u c t u r e . critical structures understood. and their injury 1imits are not completely C u r r e n t research work i s aimed a t improving t h i s s i t u a t i o n , b u t i n some r e g i o n s , such as b r a i n i n j u r y , i t may be many an Its years before adequate u n d e r s t a n d i n g o f a l l t h e p o s s i b l e modes o f i n j u r y and t h e i r causes a r e achieved. The simplified The same i s t r u e t o a l e s s e r e x t e n t i n t h e injury criteria FMVSS of 208 represented a v a i l a b l e information a t the time o f i t s formulation, other possible it the best neglects forms o f i n j u r y , such as neck i n j u r y , because l i t t l e i s known q u a n t i t a t i v e l y about the s u b j e c t . Such of restraint potential but chest. types of injury in a incomplete specification system's performance standard r e q u i r e s t h a t r e s t r a i n t system development be approached very cgnservative basis to ensure that a system p r e v e n t i n g one t y p e o f i n j u r y does n o t produce on a t h a t i s aimed a t another, possibly more serious, type o f i n j u r y . The GM Hybr i d III dummy (5) biomechanical f i d e l i t y over t h e P a r t has 572 s i gni f icant dummy. I n addition, the Hybrid I l l dummy has p r o v i s i o n s f o r advanced transducers i n and legs regions that not can aid possible improvements i n the neck, chest, i n t h e assessment o f i n j u r y p o t e n t i a l i n body with the Part 572 dummy. The problem of understanding t h e i n j u r y l i m i t s remains, however. General Motors has a l s o developed a m o d i f i e d t h r e e - y e a r - o l d c h i l d dummy w i t h improved i n s t r u m e n t a t i o n i n t h e form o f neck and cells. This dummy was intended e v a l u a t i o n o f a i r b a g systems. primarily chest load for out-of-position test The dummy may n o t have good biomechanical f i d e l i t y , s i n c e such d a t a on c h i l d r e n a r e l a c k i n g . 5.0 DISCUSSION OF CRASH TESTING FACTORS AND SUGGESTED CRASH TEST MATRIX To t e s t t h e p r o t e c t i v e performance o f an occupant r e s t r a i n t system, i t i s most o f t e n necessary t o s i m u l a t e a v e h i c l e c r a s h t o and to i n c l u d e a s i m u l a t i o n o f t h e v e h i c l e occupants. can be s i m u l a t e d by a v a r i e t y o f techniques, component full-scale impact testing, and techniques, actual sled crash t e c h n i q u e has v a r i o u s advantages and d i s a d v a n t a g e s . experiments The most Each realistic crashing of cars i n t o r e a l i s t i c o b j e c t s (other car, and can result riproducib i 1 i t y of test resul ts. in problems of control repeatability of and Techniques t h a t o f f e r more c o n t r o l can compromise t h e r e a l i s m o f t h e c r a s h e n v i r o n m e n t by crash testing, testing. tree, o r roadside s t r u c t u r e ) , s u f f e r from a lack of p r e c i s e the degree, V e h i c l e crashes including car some eliminating vehicle m o t i o n s , such as p i t c h i n g and yawing, and t h e i r subsequent e f f e c t on occupant k i n e m a t i c s . Any t e s t program w i l l , of necessity, involve compromises between r e a l i s m and r e p e a t a b i l i t y . The goals of a i r b a g r e s t r a i n t system development program can an b e s t be met by a combined approach u s i n g f u l l - s c a l e c a r c r a s h t e s t s major system e v a l u a t i o n and supplementing them w i t h s e l e c t e d s l e d t e s t s f o r e v a l u a t i o n o f s p e c i a l cases. test for program (5) criteria for included selecting The General Motors a i r used such an approach. selecting test conditions cushion crash The GM s t u d y had a number o f and configurations. These simulations of high-occurrence r e a l - w o r l d accidents based on a c c i d e n t d a t a , m i l e a g e and e n v i r o n m e n t a l e f f e c t s , occupant s i z e and p o s i t i o n mix, and d u p l i c a t i o n o f p a r t i c u l a r a c c i d e n t s i n w h i c h t h e i r a i r b a g - e q u i p p e d v e h i c l e s had been i n v o l v e d . I n comparison t o t h e GM necessarily differ in two study, the aspects. proposed First, Honda study t h e r e a r e no r e a l - w o r l d a c c i d e n t s t o r e c r e a t e i n v o l v i n g a i r b a g - e q u i p p e d Honda c a r s , and the would second, Honda system has been developed t o exceed t h e r e q u i r e m e n t s o f FMVSS 208 by m e e t i n g t h e i n j u r y c r i t e r i a a t a additional factor, which a v a i l a b i l i t y o f advanced a d u l t system p e r f ormance. can and crash enhance child the speed of Honda dummies for 35 study, mph. An is the evaluation of The suggested t e s t c o n d i t i o n s study and configurations for the Honda a r e based on t h e i n f o r m a t i o n p r o v i d e d i n t h e p r e v i o u s s e c t i o n s o f t h i s r e p o r t and a r e intended t o r e f l e c t r e a l - w o r l d a c c i d e n t experience. The suggested test matrix (shown in 5) Table considers the following factors: a. b. c. d. e. The Type o f crash t e s t ( b a r r i e r , c a r - c a r , lmpact angle (0°, 30°, 45') Impact v e l o c i t y change ( D e l t a V) Occupant s i z e Occupant p o s i t i o n various combinations of been r a t e d a c c o r d i n g t o t h e i r car-pole, o r sled) these c o n d i t i o n s and c o n f i g u r a t i o n s have relative o v e r a l l performance o f t h e system. I importance in evaluating the The r a t i n g used t h e f o l l o w i n g code: = E s s e n t i a l Test A B C D = Important T e s t = U s e f u l Test = Can O m i t General comments on t h e f e a t u r e s o f t h e t e s t m a t r i x f o l l o w . A: Essential Tests. Although barrier tests are n o t as r e a l i s t i c as c a r - c a r o r c a r - p o l e t e s t s i n terms o f r e a l - w o r l d frequency, they do r e p r e s e n t a r e p e a t a b l e and h i g h l y s t a n d a r d i z e d The 0 ° / 35-mph barrier test condition. t e s t s w i t h t h e 5 0 t h p e r c e n t i l e male H y b r i d I I I dummy and t h e 5 t h p e r c e n t i l e female and 95th percentile male dummies have been g i v e n a r a t i n g o f A due t o t h e combined importance o f range o f occupant size and increased biomechanical d a t a needed f o r a complete e v a l u a t i o n o f t h e system performance. 40-mph 30' / 40-mph and have been S i m i l a r l y , car-car given r a t i ngs A r e p e a t a b i l i t y and t e s t c o n t r o l s t a n d p o i n t o n l y one o f the car-car t e s t s should be moving, i f p o s s i b l e . j0°/35-mph has been added localized vehicle to evaluate deformations. the tests a1 so. the at oO/ From a vehicles One c a r - p o l e t e s t a t system performance under The A-rated s l e d t e s t s a r e r e l a t e d t o o u t - o f - p o s i t i o n occupants f o r t h e 5 0 t h p e r c e n t i l e male and 3-year-old c h i l d dummies and a passenger-positioned 9 5 t h p e r c e n t i l e male dummy. is suggested t h a t t h e o u t - o f - p o s i t i o n based on s u i t a b l e performance in in It occupant t e s t s be r u n f i r s t , and, those tests, the resulting system TABLE 5 HONDA A I R B A G C R A S H T E S T M A T R I X - T y p e of Crash B a r r i e r Car-Car Impact Angle D r i v e r Pos. O u t of Pos. Driver POS. Pass. Pos. O u t of Pos. Driver Pos. Pass. Pos. O u t of Pos . Pass. Pos. O u t of Pos. C A B C B C C D D D C C A C C D D D C C D C D D 25 C C C C C C D D D C C C C C C D D D C C C C C C D D D D D D D D D A A B A A B D D D B A B A 6 45' 40 4 0 35 B D D D A B B B A B D D D C C D C D D 0‘ 30' 30 30 45' 25 C C C C C C D D D C C C C C C D D D C C C C C C D D D D D D D D D 0' 3045' 35 35 30 B B C C A C D D D C A C C C C D D D C C C C C C D D D C C 0 C D D 0' 30' 30 30 25 D D D D D D C C C C C C D 0 D C C C C C C D 45- D D D D D D D D D 20* * 20* * 20** C D D C D D A B C D 0 0 D D 0 B D D 0 0 D D B D D D D C B B 8 C 35 35 B B C B A B C B B B 6 A B C B B D D B 6 C B B D D C B B A B C 0' 30' 30 30 45' 0' 30' 45' 0' 30' 45' 35 A 6 , + S p e c i a l l y m o d i f i e d w i t h neck and chest **Or Pass. Pos. 0 D D 35 35 30 0- 0' Sled . 3-YEAR-OLD C H I L D DUMMY* 5 T H PERCENTILE F E M A L E DUMMY 9 5 T H PERCENTILE M A L E DUMMY 5 0 T H PERCENTILE M A L E H Y B R I D 111 DUMMY A B C 30' 45' 30' Car-Pole Impact Velocity Change. A V (mph t h r e s h o l d bag f i r i n g d e l t a V . A=Essential Test B=Important Test C=Useful Test D=Can O m i t C load c e l l s . C 6 D D A s h o u l d then be e v a l u a t e d w i t h t h e 9 5 t h p e r c e n t i l e male dummy sled test t o ensure p r o p e r performance o f t h e system. Impact Angle. The impact angles have been chosen t o r e f l e c t t h e information discussed i n Section 2.1. Impact V e l o c i t y Change, have been suggested. I n a l l cases two d i f f e r e n t v e l o c i t y l e v e l s T h i s was done t o a l l o w f o r the establishment of system performance over a range o f c r a s h v e l o c i t i e s r a t h e r t h a n " t u n i n g " a system f o r a p a r t i c u l a r v e l o c i t y . Occupant Size. chosen f o r two percentile female The basic dummies suggested f o r use i n t h i s s t u d y were reasons. dummies The 95th percentile male and 5th were chosen t o r e p r e s e n t t h e range o f a d u l t occupants t o be p r o t e c t e d by t h e system. The 5 0 t h p e r c e n t i l e H y b r i d I l l male and t h e 3 - y e a r - o l d c h i l d dummies were chosen t o p r o v i d e additional biomechanical d a t a on t h e system performance f o r t h e p r o p e r l y p o s i t i o n e d adult and out-of-position adult dummies a r e c o m m e r c i a l l y a v a i l a b l e driver and and c h i l d passenger. represent the best These available d e v i c e s f o r e v a l u a t i n g a i r b a g performance. Occupant Position. The l o n g i t u d i n a l s e a t l o c a t i o n o f t h e dummies i n t h e d r i v e r p o s i t i o n s s h o u l d correspond t o dummy s i z e , e x c e p t f o r out-of-position driver p o s i t i o n may be chosen. mid- t o far-back c h i l d dummies. where a closer the s e a t i n g p o s i t i o n o r a slumped Passenger-position dummies should be in a seated l o c a t i o n even f o r t h e 5 t h p e r c e n t i l e female and The o u t - o f - p o s i t i o n c h i l d dummy should kneeling c l o s e t o the instrument panel. be standing or 6.0 REFERENCES Ricci, L.L., ed. NCSS Statistics: Passenqer Cars. Highway Safety Research Institute, T h e University of Michigan, Ann Arbor, June 1980. Report No. UM-HSR I -80-36. Horsch, J.D. and Culver, C.C. "A Study of Driver Interactions with an l nf lati ng Air Cushion." Proceedings of the Twenty-Thi rd Stapp Car Crash Conference, 17-19 October 1979, San Diego, California. SAE Paper No. 791029. -- Biss, D.J. and F i tzpatrick, M.U. "A Systems Approach to Quantifying Air Bag-Thoracic Interaction.'' Proceedinqs of the Twenty-Fifth Conference of the American Association for Automotive Medicine, 1-3 October 1981, San Francisco, California. Takeda, H. and Kobayashi, S. "Injuries to Chi ldren from Airbag Deployment.'' Eighth International Technical Conference 2 Experimental Safety Vehicles, 21-24 October, Wolfsburg, Germany. Foster, J.K., Kortge, J.D., and Wolanin, M.J. "Hybrid Ill--A Biomechanical 1y-Based Crash Test Dummy." Proceedi nss of the Twenty-F i rst Stapp Car Crash Conference, 19-2 1 October 1977, New Orleans, Louisiana. S A E Paper No. 770938. Wilson, R.A. and Piepho, L.L. "Crash Testing the General Motors Ai r Cushion." F i fth International ~ e c h n ical Conference 2 Exper imental Safety Veh i cl es, 4-7 June 1974, London, Engl and. -
© Copyright 2026 Paperzz