POTASSIUM FLUORIDE A S A BASE IN O R G A N I C S O L U B I L I Z E D BY A REACTIONS 18-CROWN-6 THESIS Presented to The F a c u l t y of the D i v i s i o n of G r a d u a t e Studies by T h o m a s Ray In P a r t i a l Henson Fulfillment of the R e q u i r e m e n t s M a s t e r of Science Georgia for the in I n s t i t u t e of March, 1975 Degree Chemistry Technology POTASSIUM FLUORIDE AS A B A S E IN O R G A N I C S O L U B I L I Z E D BY REACTIONS 18-CROWN-6 Approved: Charles Liotta, Chairman in^/ G r o v e n s t e i n D a t e a p p r o v e d by C h a i r m a n £ UJgyuly 11*75 ACKNOWLEDGMENTS The author w i s h e s to e x p r e s s his a p p r e c i a t i o n to his r e s e a r c h d i r e c t o r , D r . C. L. L i o t t a , for the s u g g e s t i o n this r e s e a r c h p r o b l e m and for his g u i d a n c e and throughout of encouragement the course of this w o r k . The author a l s o w i s h e s Drs. E. Grovenstein to e x p r e s s his a p p r e c i a t i o n and L. Zalkow for r e a d i n g this The D e p a r t m e n t of C h e m i s t r y is g r a t e f u l l y for f i n a n c i a l s u p p o r t , as w e l l a s . D r . C. L. Finally, the author e x p r e s s e s m a d e this w o r k possible. and thesis. acknowledged Liotta. a s p e c i a l word to his w i f e , Sandy, w h o s e u n d e r s t a n d i n g to of thanks encouragement iii T A B L E OF CONTENTS Page ACKNOWLEDGMENTS ii L I S T OF T A B L E S iv L I S T OF I L L U S T R A T I O N S SUMMARY Chapter I. v vi INTRODUCTION 1 Condensation Reactions P o t a s s i u m F l u o r i d e as a Base Crown E t h e r s II. EXPERIMENTAL 13 Chemicals 18-Crown-6 S y n t h e s i s Michael Condensations Alkylations 18-Crown-6 Complexes III. RESULTS AND DISCUSSIONS 47 Michael Condensations Knoevenagel Condensations Alkylations 18-Crown-6 C o m p l e x e s IV. V. CONCLUSIONS 66 RECOMMENDATIONS 67 BIBLIOGRAPHY 68 iv LIST OF TABLES Table Page 1. Solubility 2. M i c h a e l C o n d e n s a t i o n s Initiated by P o t a s s i u m in the P r e s e n c e and A b s e n c e of 18-Crown-6 3. 4. 5. 6. of KF by 18-Crown-6 at 2 5 ° C Solubility of KF in A n h y d r o u s E t h a n o l s per m o l e of e t h a n o l 48 Fluoride 49 (moles of salt 54 K n o e v e n a g e l C o n d e n s a t i o n s Initiated by P o t a s s i u m F l u o r i d e in the P r e s e n c e and A b s e n c e of 1 8 - C r o w n - 6 . A l k y l a t i o n s Initiated by P o t a s s i u m F l u o r i d e P r e s e n c e and A b s e n c e of 18-Crown-6 E l e m e n t a l A n a l y s i s of 18-Crown-6 C o m p l e x e s in . 56 the 59 62 LIST OF ILLUSTRATIONS gure O v e r v i e w of C y a n o g e n B r o m i d e / 1 8 - C r o w n - 6 Complex S i d e v i e w of C y a n o g e n B r o m i d e / 1 8 - C r o w n - 6 Complex vi SUMMARY Heterogeneous r e a c t i o n s w e r e carried out in w h i c h tassium fluoride was solubilized in the p o l a r and aprotic s o l v e n t s , a c e t o n i t r i l e and b e n z e n e , in the and a b s e n c e of 1 8 - c r o w n - 6 , a s o l u b i l i z i n g sium s a l t s . The r e a c t i o n s ants w i t h a c r y l o n i t r i l e nonpolar presence for p o t a s studied w e r e selected K n o e v e n a g e l , and a l k y l a t i o n r e a c t i o n s . tions e t h y l c y a n o a c e t a t e agent Michael, In the M i c h a e l and d i e t h y l m a l o n a t e w e r e the and e t h y l a c r y l a t e In the K n o e v e n a g e l r e a c t i o n s the the same r e a c t a n t s reac react- substrates. as the Michael r e a c t i o n s w e r e used w i t h the i n c l u s i o n of m a l o n o n i t r i l e benzaldehyde as the s u b s t r a t e . as a s u b s t r a t e reactant for one reaction. out w i t h d i e t h y l m a l o n a t e crown-6 present W i t h only c a t a l y t i c q u a n t i t i e s the r e a c t i v i t y base was enhanced. of the f l u o r i d e The r e a c t i o n tions w i t h no 1 8 - c r o w n - 6 . the to r e a c The p r o d u c t y i e l d s w e r e a l s o com synthetic methods. Three unique complexes with 18-crown-6 were also C y a n o g e n b r o m i d e , m a l o n o n i t r i l e , and w a s found to form two to one io of 1 8 - times w e r e s h o r t e r and to y i e l d s o b t a i n e d by other the anion as a p r o d u c t y i e l d s w e r e b e t t e r or at least e q u i v a l e n t lated. as and b e n z y l b r o m i d e , b e n z y l c h l o r i d e , and m e t h y l d i d e as s u b s t r a t e s . parable and C y c l o h e x a n o n e w a s a l s o used in the K n o e v e n a g e l r e a c t i o n s T h e a l k y l a t i o n s w e r e carried po iso succinonitrile (nitrile to 1 8 - c r o w n - 6 molar vii ratio) complexes. Of t h e s e , t h e m a l o n o n i t r i l e and n i t r i l e c o m p l e x e s were t h e most s t a b l e m e l t i n g a t and 8 3 - 8 4 ° C , r e s p e c t i v e l y . Small s h i f t s succino129-130°C in the infrared g i o n of t h e n i t r i l e m o i e t y was n o t e d w i t h c o m p l e x a t i o n , re as 1 o well a s , small s h i f t s t r i l e moieties with in the J C-NMR f o r 1 8 - c r o w n - 6 and n i complexation. CHAPTER I INTRODUCTION Condensation Reactions The K n o e v e n a g e l c o n d e n s a t i o n w a s i n i t i a l l y concerned w i t h the r e a c t i o n of f o r m a l d e h y d e w i t h a c t i v e m e t h y l e n e nucle ophiles in the p r e s e n c e of b a s i c c a t a l y s t s y i e l d i n g b i s prod u c t s as (I).! In 1896 K n o e v e n a g e l r e p o r t e d e t h y l acetoace- ,CH(COOEt) CH 0 + 2CH (COOEt) 2 2 ) 2 CH (1) 2 ^^CH(COOEt) (I) tate and b e n z a l d e h y d e at low t e m p e r a t u r e s condensed to yield in the p r e s e n c e of ethyl piperdine benzylideneacetoacetate 2 (II) . The scope and u t i l i t y of the K n o e v e n a g e l condensation C H C H O + C H (COCH ) COOEt — > C ^ (H) C=C (COCH ) COOEt + H 0 6 5 2 3 3 (2) 2 (ID has since been expanded. The K n o e v e n a g e l c o n d e n s a t i o n tion of a c t i v e m e t h y l e n e brought pounds drawing groups, usually as the compound w i t h k e t o n e s or about by b a s i c c a t a l y s i s . are c h a r a c t e r i z e d is d e f i n e d aldehydes The active m e t h y l e n e by the p r e s e n c e of two. reac com electron-with The m o s t common activating 2 g r o u p s arc the c y a n o , n i t r o , a c y l , and c a r b o a l k o x y . g r o u p s are n e c e s s a r y to i n c r e a s e the a c i d i t y of the g r o u p by p r o v i d i n g r e s o n a n c e jugate b a s e . These methylene s t a b i l i z a t i o n of the a n i o n i c T h e p r i m a r y p r o d u c t of the c o n d e n s a t i o n ally an u n s a t u r a t e d compound, although con is u s u in some c a s e s a M i c h a e l c o n d e n s a t i o n can o c c u r w i t h an a d d i t i o n a l m o l e of a c t i v e m e t h ylene compound to y i e l d a b i s c o m p o u n d A consistent mechanism condensations as ( 1 ) . for the w i d e r a n g e of in a s i n g l e u n i f i e d m e c h a n i s m seems Knoevenagel impossible. T h e r e is e v i d e n c e for the e x i s t e n c e of t w o m e c h a n i s m s ing on the type of b a s e u s e d . The intermediacy Schiff b a s e s w i t h the u s e of p r i m a r y depend of i m i n e s a m i n e s and a m m o n i a and is 3—6 favored. H o w e v e r , in p o l a r mechanism s o l v e n t s t h e H a n n and Lapworth is f a v o r e d , w h e r e i n the b a s e r e m o v e s a p r o t o n the a c t i v e m e t h y l e n e c o m p o u n d . The resonance from stabilized a n i o n then adds to the c a r b o n y l forming an i n t e r m e d i a t e droxy 1 compound.7-10 Cope ' found t h a t a m i n e salts of o r g a n i c a c i d s the p r e s e n c e of a c e t i c acid w e r e b e t t e r c a t a l y s t s t h a n bases. hy T h e c o n t i n u o u s r e m o v a l of w a t e r from the w a s a l s o s h o w n to i n c r e a s e the y i e l d s . a m o u n t s of acid to b e p r e s e n t d u r i n g been substantiated.-^ free condensation The n e e d for the c o n d e n s a t i o n The temperature in and c h o i c e of small has catalyst n e e d e d t o carry o u t the c o n d e n s a t i o n d e p e n d s o n the n a t u r e the r e a c t a n t s . The m o s t c o m m o n l y used c a t a l y s t s in the Knoevenagel of 3 condensation have been pyridine, piperdine, and ammoniu amine acetates. Other catalysts employed besides these amino acides, basic resins, sodium hydroxide, acetic dride, zinc chloride, titanium tetrachloride and potass fluoride. The Michael condensation, unlike the Knoevenagel densation for carbon-carbon double bond formation, is cess for alkylation of a carbon-carbon double bond. densation is the nucleophilic addition of an anion, resonance stabilized, to a carbon-carbon double bond a, 3-unsaturated aldehyde, ketone, nitrile, or carbo acid derivatives. These unsaturated compounds are gene referred to as Michael acceptors, characterized by t ence of an electron-withdrawing group capable of stab a carbanionic intermediate of the reaction. The con takes place under the influence of basic reagents.15 acrylonitrile is the Michael acceptor, the process ly known as cyanoethylation.^ The mechanism of the Michael condensation has established.17-21 general representation of the reaction is as follows, where L-^, L , L3 represent labilizin L^—CH2"-1^ ^ A 2 (3) (4) (III) 4 L -C!H-CH -CH-L 1 L^, L 2 2 or — C H O 2 2 + BH - or b o t h may be — C O O R , —S0 R, —N0 , 3 or — S 0 R . 2 and L 3 * L -CH-CH -CH -L 1 —COR, 2 —CN, may be — C O O R , anism three conclusions can be r e a c h e d : + B —CONH , —COR, (5) —N0 , 2 2 —CN, —CONH , 2 (4) is The carbanionic (III) is r e s o n a n c e s t a b i l i z e d by L^. generating 3 T h e r a t e - l i m i t i n g r e a c t i o n step f o r m a t i o n of a n e w c a r b o n - c a r b o n b o n d . mediate 2 inter F r o m the m e c h 1) the b a s e for the a n i o n is r e g e n e r a t e d , t h e r e f o r e o n l y a c a t a lytic a m o u n t of b a s e is r e q u i r e d , 2) the M i c h a e l p r o c e s s r e v e r s i b l e r e q u i r i n g an e x c e s s of a c t i v e m e t h y l e n e and 3) d u e to the r e v e r s i b i l i t y banionic the intermediate is compound, and s t a b i l i z a t i o n of the c a r (III) side r e a c t i o n s are p o s s i b l e . s e q u e n t l y , the M i c h a e l c o n d e n s a t i o n is e f f e c t e d u s i n g Con the m i l d e s t p o s s i b l e c o n d i t i o n s , w e a k b a s i c c a t a l y s t , low t e m p e r a t u r e , and s h o r t r e a c t i o n t i m e s . T h e c a t a l y s t s m o s t c o m m o n l y used in the M i c h a e l con densation have been piperidine, pyridine, triethylamine. p o tassium hydroxide, benzyltrimethylammonium B), hydroxide sodium hydroxide, sodium ethoxide, potassium s o d i u m h y d r i d e , or o t h e r m e t a l a m i d e s . (triton t-butoxide, Besides these, other less f r e q u e n t l y used c a t a l y s t s h a v e b e e n a c i d i c catalysts such as b o r o n t r i f l u o r i d e , zinc c h l o r i d e , and s u l f u r as w e l l a s , the b a s i c c a t a l y s t s c a l c i u m h y d r i d e , dioxide, sodium cyanide, potassium carbonate, sodium triphenylmethide, and 5 potassium 1 fluoride. -* P o t a s s i u m F l u o r i d e as a B a s e T h e use of f l u o r i d e as a b a s i c c a t a l y s t in o r g a n i c r e a c t i o n s is only a r e l a t i v e l y r e c e n t d e v e l o p m e n t . The ability of f l u o r i d e ions to a c t as a b a s e can be r a t i o n a l i z e d . f l u o r i d e ion is m u c h s m a l l e r than o t h e r h a l i d e i o n s , fore, increasing The result t h i s e f f e c t m e a n s f l u o r i d e w o u l d h a v e an i n c r e a s e d fluoride there the c h a r g e to v o l u m e r a t i o , l e a d i n g to a g r e a t e r e f f e c t at c e n t e r s of p o s i t i v e c h a r g e . for a p r o t o n . The T h i s f a c t is e s t a b l i s h e d from d a t a affinity showing i o n s , or b o n d e d f l u o r i n e , f o r m i n g s t r o n g e r b o n d s than o t h e r i o n s . ^ 3 / 2 4 b e e n used as a f l o u r i n a t i n g Nesmeyanov^ Potassium fluoride has a g e n t in o r g a n i c found t h a t u p o n h e a t i n g hydrogen mainly chemistry.^5 trichloroacetic acid in n i t r o b e n z e n e w i t h dry p o t a s s i u m f l o u r i d e , a g a s volved and c h l o r o f o r m formed in 7 0 % y i e l d pected trifluroacetic acid. Other carboxylic acids were and c y c l o h e x a n o n e , r e s p e c t i v e l y . c a r b o n y l a t i o n of c h l o r a l w a s a l s o found to o c c u r ly in r e f l u x i n g , a b s o l u t e e t h a n o l . yield The d e - showed of a d i p i c acid with f l u o r i d e to b e the r e m o v a l of the acid p r o t o n f l u o r i d e f o r m i n g the m o n o c a r b o x y l a t e carboxylates anion. also spontaneous Rand, et al.,^? the i n i t i a l step in the d e c a r b o x y l a t i o n potassium e- i n s t e a d of the e x found to d e c a r b o x y l a t e , w i t h a d i p i c and p i m e l i c a c i d s ing c y c l o p e n t a n o n e of by This anion d e - f o r m i n g a c a r b a n i o n w h i c h then c y c l i z e s and elim- 6 inates hydroxide. Rand, et a l . , ^ 8 , 2 9 zene u n d e r g o e s potassium ] that N - c h l o r o b e n z a m i d e rearrangement phenyl isocyanate in the p r e s e n c e of The m e c h a n i s m fluoride removing a Hoffmann-type of the starting 6 5 of p o t a s s i u m > by The N-chlorobenzamide the N - b e n z o y l - N * - p h e n y l u r e a + KF con giving phenyl isocyanate. f l u o r i d e , two in high dependent equivalents amide to one e q u i v a l e n t of p o t a s s i u m C H -$-NH anhydrous the amide p r o t o n , followed The y i e l d of the p r o d u c t w a s found to be upon the c o n c e n t r a t i o n in b e n for the r e a c t i o n w a s then adds one m o l e of the with hydrolysis yielding yields. o u n c a Hofmann reaction fluoride. sistent w i t h f fluoride. [ C H - § - N - C l ] ~ + HF (6) C H -N=C=0 (7) 6 5 CI [C H -1!-N-C1] " 6 Aoyama a base > 5 3 0 - 3 3 5 + CI" has used a n h y d r o u s p o t a s s i u m in the K n o e v e n a g e l conditions. 6 condensation The m o s t commonly under a variety used s o l v e n t s w e r e e t h e r or e t h a n o l and in m a n y c a s e s n o s o l v e n t . densed ethylcyanoacetate with various aromatic ethylacetoacetate with aliphatic ketones. and of Aoyama con aldehydes, alde ethylcyanoacetate M a l o n i c e s t e r s and a c e t o a c e t i c to react w i t h the a l i p h a t i c k e t o n e s under these ditions. 3/ as diethyl and d i e t h y l m a l o n a t e w i t h a l i p h a t i c hydes, acetone with ethylcyanoacetate, failed fluoride ester con H o w e v e r , S a k w e a i * w a s able to c o n d e n s e e t h y l m a - 7 lonate and e t h y l a c e t o a c e t a t e w i t h a l i p h a t i c a l d e h y d e s . y i e l d s of the r e a c t i o n s ranged required external Rand^5/36 catalyst from 20 to 8 0 % and usually heating. showed p o t a s s i u m f l u o r i d e to a c t as a b a s i c in the K n o e v e n a g e l c o n d e n s a t i o n of b e n z a l d e h y d e cyclohexanone with malononitrile, ethyl cyanoacetate, diethyl malonate. yl cyanoacetate T h e k i n e t i c s of the c y c l o h e x a n o n e condensation photometrically. in e t h a n o l w a s s t u d i e d The kinetics indicated t i o n , f i r s t o r d e r in the f l u o r i d e . From kinetic as the m e t a l f l u o r i d e ion p a i r a b s t r a c t i n g + ^CH active methylene 2 v compound :. H + fluoride ranging from and conduct from CH found s u c c e s s f u l . 3 7 - 4 2 The the (8) Ethanol was temperatures 40°C to r e f l u x i n g e t h a n o l t e m p e r a t u r e . ranged the condensations some e x t e r n a l h e a t i n g , w i t h for the c o n d e n s a t i o n s reac postulated a proton + eth spectro- as a c a t a l y s t in the c o m m o n s o l v e n t or n o s o l v e n t at a l l . generally required and forming a carbanion. T h e use of p o t a s s i u m Michael condensation was MF or and a third-order a n c e d a t a the first step of the c o n d e n s a t i o n w a s MF The The time f r o m o n e h o u r t o , as m u c h a s , forty-eight hours giving yields f r o m 40 t o 8 0 % . W h e n d o n o r s of the M i c h a e l c o n d e n s a t i o n , such as e t h y l nitroacetate, nitroketones with a C H 2 N O 2 t r o a l k a n e s , are used w i t h p o t a s s i u m double g r o u p , and fluoride gem-dini- as the b a s e , a salt is f o r m e d , for e x a m p l e , g e m - d i n i t r o e t h a n e formed 8 C^H .INT C> K„F . 2 4 2 4 2 2 The double c o m p o u n d s w i t h a pKa salts w e r e less than 7. found to be formed The d o u b l e by Y salts a l s o the n o r m a l M i c h a e l p r o d u c t w h e n an a c c e p t o r w a s p r e s e n t , cept gave ex for the n i t r o k e t o n e s w h i c h gave c o n d e n s a t i o n p r o d u c t s acceptors reacting with nitromethane. d o u b l e salts s u p p o r t s tion w i t h p o t a s s i u m the a s s u m p t i o n The f o r m a t i o n of that the M i c h a e l fluoride p r o c e e d s via of such reac f o r m a t i o n of a carbanion.^3 Potassium f l u o r i d e has also been used to aldol c o n d e n s a t i o n s , ^ M i c h a e l - K n o e v e n a g e l 5 q u e n c e s , ' * ' ^ and p o l y f l u o r o a l k y l a t i o n . ^ f l u o r i d e s have a l s o been used whereby dehydration to p r o v i d e a h o m o g e n o u s in p o l a r , a p r o t i c the t e t r a a l k y l a m m o n i u m and h i g h e r t e m p e r a t u r e s to e t h y l e n e , t r i e t h y l a m i n e and h y d r o g e n hexaoxatricyclo dicyclohexyl-18-crown-6 increased the a d d i t i o n of the s o l u b i l i t y of p o t a s s i u m This increase ride also accompanied (4). 5 3 2,5,8,15,18,21- for (ethylene g l y c o l in the s o l u b i l i t y structure] mono-n-butyl of p o t a s s i u m an i n c r e a s e in the r e a c t i v i t y The g r e a t e s t r e a c t i v i t y w a s termed f l u o r i d e in a c e t o n i f l u o r i d e as a base in the f o r m a t i o n of a c e t y l e n e ture un degrading commonly [see later d i s c u s s i o n t r i l e , D M F , and b u t y l c e l l u l o s e ether). fluoride. [20.4.0.0^'Hexacosane, However, found to be stable at room t e m p e r a t u r e found system, elimination solvents.48-52 f l u o r i d e s h a v e been N a s o and Ronzini se Tetraalkylammonium the f l u o r i d e acts as a b a s e , to e x p l o r e reaction mechanisms catalyze found in of from fluo the struc acetonitrile 9 P-N0 C H, 2 6 4 ^ o / c Br C=C (9) (IV) with and 53 to 7 1 % c o n v e r s i o n to a c e t y l e n e w i t h the crown 0% c o n v e r s i o n w i t h no crown p r e s e n t . w a s found to occur Less of an in DMF and b u t y l c e l l u l o s e Pedersen55-61 cyclic polyethers. of the p o l y e t h e r s first isolated charged to complex interactions the alkali m e t a l c a t i o n s ability and Pedersen described and a t t r i b u t e d in many their f o r m a t i o n are s y m m e t r i c a l l y to negatively arranged also gave these m a c r o c y l i c p o l y e t h e r s trivial nomenclature are a s s i g n e d of "crown" c o m p o u n d s . on the following b a s i s : of h y d r o c a r b o n r i n g s , if p r e s e n t , in the p o l y e t h e r 4) the number placements symmetrical asym. the m a c r o - in the ring. Pedersen atoms and d e s c r i b e d b e t w e e n the c a t i o n and the o x y g e n atoms w h i c h polyether present.^4 The m o s t n o t a b l e d i s c o v e r y w a s the initial complexes ion-dipole great Ethers some cases to form stable c o m p l e x e s . of these effect although er c o n v e r s i o n s w e r e o b t a i n e d w h e n the c r o w n w a s Crown present ring, the The t r i v i a l 1) the number and 2) the total number 3) the c l a s s n a m e , c r o w n , of o x y g e n atoms in the p o l y e t h e r ring. names kind of and The of the h y d r o c a r b o n r i n g s and o x y g e n atoms are as p o s s i b l e , and the e x c e p t i o n s For e x a m p l e , structure are i n d i c a t e d (V) has the s y s t m a t i c name as by 2,5, 10 8 ,15 ,18 , 2 1 - h e x a o x a t r i c y c l o | 20 . 4 . 0 . 0^ ' ^] hoxacosano or d i cyclohexyl-18-crown-6 r e f e r r e d t o p r e v i o u s l y by t r i v i a l V nomenclature. VI Structure (VI) has t h e s y s t e m a t i c name 1 , 4 , 7 , 1 0 , 1 3 , 1 6 - h e x a o x a c y c l o o c t a d e c a n e or 18-crown-6 by t h e nomenclature. Structure trivial (VI) w i l l be r e f e r r e d t o as 18-crown- 6 t h r o u g h o u t t h e remainder of t h e t h e s i s . New and improved s y n t h e s i s have r e c e n t l y been p u b l i s h e d for v a r i o u s crown e t h e r s y s t e m s , ^ ' ^ i n c l u d i n g 18-crown-6^^ 12-crown-4, and 15-crown-5. Besides t h e oxygenated crown e t h e r s , crown e t h e r s c o n t a i n i n g o t h e r h e t e r o - a t o m s have been fi fi — 7 1 synthesized for i n v e s t i g a t i o n . Crown e t h e r s have a l s o been p r e p a r e d i n polymeric form w i t h m o l e c u l a r w e i g h t s r a n g ing from 30,000 t o 100,000 by r a d i c a l or a n i o n i c initiation reactions.72-75 The a b i l i t y of t h e crown e t h e r s t o complex a l k a l i m e t a l c a t i o n s has d i r e c t e d much e f f o r t t o e x p l o r i n g t h e s e interactions. With t h e formation and i s o l a t i o n of s o l i d com p l e x e s , x - r a y c r y s t a l l o g r a p h y was used t o e l u c i d a t e structures. 7 6 - 8 8 these The s o l u t i o n chemistry of crown e t h e r s 11 i n t e r a c t i n g w i t h m e t a l c a t i o n s has been studied by etry, 89—91 potentiometry, 92 distribution equilibria, 94-96 ble and u l t r a v i o l e t spectroscopy, colorim93 visi- 97 ESR, and p a p e r chro- 98 matography. Other complexes of crown e t h e r s b e s i d e s 99-101 m e t a l c a t i o n c o m p l e x e s h a v e a l s o been the reported. C r o w n e t h e r s have b e e n used as addends to investigate the i o n - p a i r p r o c e s s e s of f l u o r e n y l salts in s o l u t i o n . crown e t h e r s w e r e ion-pair dissociation found to i n c r e a s e The in a v a r i e t y of s o l v e n t s by c o n v e r t i n g c o n t a c t i o n - p a i r s to s o l v e n t - s e p a r a t e d ion p a i r s . 1 0 2 - 1 1 4 B e c a u s e of this e f f e c t , crown e t h e r s h a v e a l s o b e e n used as a d d e n d s in e l i m i n a t i o n reactions as a d e f i n i t i v e m e a n s of d e t e r m i n i n g base association in these Few synthetic the e f f e c t of reactions.H5-119 applications of the crown e t h e r s have 120 been reported. manganate Sam and Simmons solubilized in b e n z e n e w i t h c o n c e n t r a t i o n s Molar using dicyclohexyl-18-crown-6. found c a p a b l e of o x i d i z i n g o r g a n i c potassium as high as 0.03 Such a s o l u t i o n substrates per was as o l e f i n s , a l c o h o l s , a l d e h y d e s , and a l k y l b e n z e n e s u n d e r mild conditions in 121 excellent yields. 18-crown-6 Sam and Simmons dicyclohexyl- to s o l u b i l i z e p o t a s s i u m b r o m i d e and i o d i d e in a c e tone to carry out n u c l e o p h i l i c late. also used substitutions on n - b u t y l P o t a s s i u m m e t h o x i d e w a s shown a l s o to i n c r e a s e activity when dicyclohexyl-18-crown-6 was present. brosy- in r e Liotta 122 and H a r r i s in b e n z e n e and solubilized potassium acetonitrile. This fluoride with "naked" 18-crown-6 fluoride showed 12 marked activity to act as a n u c l e o p h i l e 123 conditions. potassium Liotta cyanide in the p r e s e n c e of and base under 124 ' a l s o found p o t a s s i u m a c e t a t e to have increased reactivity in 18-crown-6. thesis w a s to i n v e s t i g a t e the ability of "naked" and b e n z e n e , consisted n a g e l , and a l k y l a t i o n of 18-crown-6 of r u n n i n g s e l e c t e d M i c h a e l , reaction in the p r e s e n c e and times and p r o d u c t s The f o r m a t i o n of three n o v e l n o n - m e t a l l i c is discussed. this solvents, in the p r e s e n c e of 1 8 - c r o w n - 6 . reactions comparing in fluoride ions to act as a b a s e in polar and n o n p o l a r a p r o t i c investigation and acetonitrile T h e r e f o r e , the p u r p o s e of the w o r k p r e s e n t e d acetonitrile mild 18-crown-6 The Knoeve absence isolated. complexes 13 CHAPTER II EXPERIMENTAL A l l b o i l i n g p o i n t s and m e l t i n g p o i n t s reported thesis are u n c o r r e c t e d and recorded Infrared spectrum w e r e obtained infrared spectrophotometer in d e g r e e s films 237B NMR d a t a w e r e on a V a r i a n A 6 0 D or a V a r i a n T60 s p e c t r o m e t e r . w e r e obtained E l m e r RMV-7L Foundation] absorp spectra Perkin- [bought by funds p r o v i d e d by N a t i o n a l Science G l p c w o r k w a s carried out on a V a r i a n M o d e l 90P G a s C h r o m a t o g r a p h w i t h t h e r m a l detector CCl^) obtained Mass on e i t h e r a V a r i a n M 6 6 or a H i t a c h i spectrometers. grating (neat or or as p o t a s s i u m b r o m i d e p e l l e t s using the 1 6 0 1 . 4 cm~^ tion of p o l y s t y r e n e as a r e f e r e n c e . this centigrade. on a P e r k i n - E l m e r as thin liquid in and h e l i u m as c a r r i e r g a s . was p e r f o r m e d by A t l a n t i c M i c r o l a b , Elemental conductivity microanalysis Inc., A t l a n t a , Georgia. Chemicals Acetonitrile (Fisher and A l d r i c h ) w a s used further purification. sodium (2-5 g. per tion 8 0 . 1 - 8 1 ° C . Benzene without (Fisher) w a s d i s t i l l e d liter) u n d e r n i t r o g e n collecting Acrylonitrile from the (Fisher) w a s p u r i f i e d by frac the 125 method without of F i e s e r and stored further p u r i f i c a t i o n . in a b r o w n b o t t l e and Ethyl acrylate d i s t i l l e d u n d e r reduced p r e s s u r e (< 1 mm) used (Eastman) and c o l l e c t e d was in a 14 round b o t t o m stored flask, immersed in a dry i c e / a c e t o n e b a t h in a b r o w n b o t t l e in the r e f r i g e r a t o r . (Fisher) w a s d i s t i l l e d w i t h the c o l o r l e s s b.p. 178-180°C stored (740 m m ) [lit. in a b r o w n b o t t l e in r e f r i g e r a t o r . (Eastman) w a s used w i t h o u t Malonate 1 2 7 Ethyl (Fisher) w a s d i s t i l l e d , b . p . 6 3 - 6 7 ° C b.p. 223-224°C [lit. (760 mm)] 1 2 7 and Cyanoacetate Diethyl Potassium was dried fluoride and stored (0.1 m m ) in a b r o w n Diethyl ether bottle further (Fisher) for e x purification. (ROC/RIC) used in these in an o v e n at 120°C for 12 h o u r s . f l u o r i d e w a s then finely p o w d e r e d feree! to a h o t 500 m l . b e a k e r . The reactions potassium in a h o t m o r t a r and The potassium trans fluoride to dry for 12 a d d i t i o n a l h o u r s b e f o r e u s a g e . powdered potassium Ma the m a t e r i a l s o l i d i f i e d , m . p . m . p . 31.7°C"J. t r a c t i o n s w a s used w i t h o u t allowed (760 mm)] further p u r i f i c a t i o n . in the r e f r i g e r a t o r , w h e r e b y 31°C collected, (Fisher) w a s used w i t h o u t f u r t h e r p u r i f i c a t i o n . lononitrile [lit. Benzaldehyde fraction b . p . 179.1 and was The f l u o r i d e w a s then s t o r e d in the o v e n at 120°C at a l l t i m e s . 1,4,7,10,13,16-Hexaoxacyclooctadecane (18-crown-6) 1 8 - c r o w n - 6 w a s p r e p a r e d by the m e t h o d of C r a m , Liotta, 64 et a l . A f i v e - l i t e r , three n e c k e d flask e q u i p p e d w i t h m e c h a n i c a l s t i r r e r and w a t e r - c o o l e d b e a r i n g , a r e f l u x con d e n s e r , and a 500 m l . d r o p p i n g f u n n e l , w a s c h a r g e d w i t h of t r i e t h y l e n e g l y c o l ( M a t h e s o n , C o l e m a n and B e l l 1.5 a 230 moles) g. 15 in 1000 m l . THF (Fisher). Potassium hydroxide 85% pellets) was dissolved added in w a t e r (218 g. Fisher, (120 m l . d i s t i l l e d ) and in one p o r t i o n to the stirred t r i e t h y l e n e g l y c o l m i x ture. After 30 m i n u t e s of s t i r r i n g at a m b i e n t temperature (solution slowly d a r k e n s ) , a s o l u t i o n of 280 g. of dichloro-3,6-dioxaoctane (Eastman p r a t i c a l , 1.5 m o l e s ) m l . THF w a s added in a thin s t r e a m to the stirred mixture. n o t e d to b e d i s c o l o r e d orator. A f t e r this t i m e , the s o l u t i o n 200 heated was and solid p o t a s s i u m c h l o r i d e w a s T h e bulk of the s o l v e n t w a s r e m o v e d on a r o t a r y pre evap T h e r e s i d u a l o i l and solid w a s t h e n s t i r r e d w i t h a mechanical s t i r r e r w i t h a liter of m e t h y l e n e c h l o r i d e , t e r e d , and d r i e d over M g S O ^ . concentrated vacuum. in reaction W i t h the a d d i t i o n c o m p l e t e d , the m i x t u r e w a s to r e f l u x for 15 h o u r s . sent. 1,8- This solution was filtered on a rotary e v a p o r a t o r and d i s t i l l e d u n d e r A f t e r an i n i t i a l f o r e r u n b o i l i n g crude crown ether (0.2 m m ) . fil (140 g., 128-150°C t h r o u g h the a c e t o n i T h e c r u d e c r o w n w a s p l a c e d in a 250 m l . E r l e n m e y e r flask and 200 m l . of a c e t o n i t r i l e w a s a d d e d . s u l t i n g s l u r r y w a s h e a t e d u n t i l all the m a t e r i a l The re dissolved. T h e n a m a g n e t i c s t i r r i n g b a r w a s added and the s o l u t i o n stirred vigorously. flask's top. A drying tube was (Drierite) w a s p u t on A s the s o l u t i o n c o o l e d to r o o m the temperature, f i n e , w h i t e c r y s t a l s of the c r o w n e t h e r / a c e t o n i t r i l e were formed. a (0.2 m m ) , 35%) w a s c o l l e c t e d , b . p . This material was purified trile c o m p l e x . 25-127°C and T h e flask w a s f u r t h e r cooled in an complex ice/acetone 16 bath to e f f e c t complete p r e c i p i t a t i o n . n i t r i l e c o m p l e x was filtered bottom flask. A magnetic T h e crown and t r a n s f e r e d to a 240 m l . round stirring b a r w a s added to the which was also equipped with a vacuum take-off mantle. The p u r e crown e t h e r ing and w a s sealed pure 1 8 - c r o w n - 6 (66 g., ether m e l t e d and ir a b s o r p t i o n s (alkane C - H ) , and 1120 c m - 1 Michael Acrylonitrile in the NMR 6 3 m l . round b o t t o m 6.25 g. was flask, 2.65 g. s o l u t i o n w a s added 1.30 g. and allowed weighed and and diluted Into a (0.05 m o l e s , 2.0 M) diluted (Fisher). The to a three necked flask e q u i p p e d w i t h a m a g n e t i c of 1 8 - c r o w n - 6 w a s added 1350 (0.055 m o l e s , (Fisher). (Fisher) w a s d i r e c t l y w e i g h e d solution, TMS) 4 Condensation flask, g r o u n d g l a s s s t o p p e r , r u b b e r septum, ethylcyanoacetate 39-40°], Condensations to the m a r k w i t h a d d i t i o n of a c e t o n i t r i l e ethylcyanoacetate m.p. ( C C 1 , internal ethylcyanoacetate directly of a c r y l o n i t r i l e The (alkane C - H ) , 1450 and and E t h y l c y a n o a c e t a t e 25-ml. volumetric on c o o l 2 to the m a r k w i t h a d d i t i o n of a c e t o n i t r i l e second (Ca. flask u n d e r N » [lit. to (ether C - O ) . Into a 25-ml. volumetric 2.2 M ) of (0.3 slight w a r m i n g at 36-38°C (neat) at 2875 flask heating 45%) s o l i d i f i e d in the round b o t t o m showed only a s i n g l e t at 6 3.5 I. and T h e a c e t o n i t r i l e w a s removed u n d e r a v a c u u m 0.1 mm) o v e r a p e r i o d of six h o u r s w i t h 40°). ether/aceto- 100- stirring and t h e r m o m e t e r . To bar, the (0.0049 m o l e s , 0.098 M) to stir for five m i n u t e s . 17 Then 3.2 g. added (0.055 m o l e s ) of hot, dry p o t a s s i u m to the o t h y c y a n o a c e t a t e for five m i n u t e s . solution and allowed The a c r y l o n i t r i l e to was stir s o l u t i o n w a s slowly ed by s y r i n g e over a f i v e - m i n u t e period slowly heated fluoride and the to 45°C d u r i n g this t i m e . add reaction The s o l u t i o n was o cooled in an i c e - w a t e r bath to a t e m p e r a t u r e moved. After ten m i n u t e s of r e a c t i o n reaction mixture was withdrawn resonance corresponding NMR s p e c t r u m . and its NMR r u n . The r e a c t i o n m i x t u r e w a s stirred solution during found this t i m e . mixture was poured 300 m l . of d i e t h y l e t h e r . The organic dried over M g S O ^ , m a t e r i a l w a s removed amounted m.p. 36-37°C g (KBr) at 2250 cm"" NMR p e a k s (86%) of [lit. 1 The The extracted layer and filtered This Only a low b o i l i n g and the m a t e r i a l The solid m a t e r i a l after s u b l i m a t i o n to 9.4 1 2 8 ' 1 2 9 the the and shown to be e t h y l c y a n o a c e t a t e The pot m a t e r i a l w a s r e m o v e d solidified. in reaction and e t h e r removed by rotary e v a p o r a t o r . left an o i l w h i c h could not be d i s t i l l e d . the hours funnel. and the aqueous p h a s e re proton and s t i r r e d . into a s e p a r a t o r y ether e x t r a c t s w e r e combined, 2 g.). four four h o u r s , the into 250 m l . of w a t e r layer w a s s e p a r a t e d under v a c u u m , Vinyl in the N M R s p e c t r u m of After a q u e o u s m i x t u r e was p o u r e d twice w i t h t i m e , a sample of to a c r y l o n i t r i l e w a s not found and no v i n y l p r o t o n s w e r e organic of 30 C and (^ slowly in v a c u o y-carbethoxy-y-cyanopimelonitrile: m . p . 38°C]; infrared (nitrile -C=N) and (CDCl^, i n t e r n a l TMS) 1740 c m " at 6 4.40 absorption 1 (ester C=0) ; (2H q u a r t e t . 18 —CH -Me), at 6 2.8-1.8 2 1.36 (311 t r i p l e t , C H ^ - ) ; ments was (8H m u l t i p l e t , N C - C H - C H - ) , 2 and at 6 2 and m a s s s p e c t r u m m / e a b u n d a n t 1 7 4 , 1 0 7 , 6 8 , 5 4 , 4 1 , and 27. No polymeric frag material found. S i m i l a r l y , the same r e a c t i o n w a s r u n in the a b s e n c e 18-crown-6. D u r i n g the i n i t i a l four h o u r s of the N M R ' s of the r e a c t i o n m i x t u r e a m o u n t of a c r y l o n i t r i l e reaction, showed a steady d e c l i n e in in the m i x t u r e . The mixture the was stirred four a d d i t i o n a l h o u r s . 8.8 (80%) of y - c a r b e t h o x y - y - c y a n o p i m e l o n i t r i l e w a s g. of A f t e r the w o r k u p , as a b o v e , col lected. II. Into a 2 5 - m l . v o l u m e t r i c f l a s k , 6.25 g. (0.055 m o l e s , 2.2 M ) of e t h y l c y a n o a c e t a t e w a s d i r e c t l y w e i g h e d to the m a r k w i t h a d d i t i o n of a c e t o n i t r i l e . 25-ml. volumetric f l a s k , 5.30 g. lonitrile was directly weighed acetonitrile. three necked and Into a diluted second (0.1 m o l e s , 4.0 M) of and d i l u t e d The e t h y c y a n o a c e t a t e to the m a r k acry with s o l u t i o n w a s a d d e d to a 1 0 0 - m l . round b o t t o m flask e q u i p p e d w i t h a m a g netic stirring b a r , ground glass stopper, rupper septum, thermometer. moles, T o the e t h y l c y a n o a c e t a t e solution 1.30 0.098 M ) of 1 8 - c r o w n - 6 w a s added and a l l o w e d for five m i n u t e s . Then 3.2 g. g. to and (0.0049 stir (0.055 m o l e s ) of h o t , dry p o t a s s i u m f l u o r i d e w a s added to the e t h y l c y a n o a c e t a t e and a l lowed solution to stir for five m i n u t e s . The acrylonitrile w a s s l o w l y added by s y r i n g e over a s e v e n - m i n u t e p e r i o d and the r e a c t i o n The slowly h e a t e d to 45° C d u r i n g this t i m e . 19 flask w a s immersed in an i c e - w a t e r b a t h , cooled ture of 30° C and r e m o v e d . The t e m p e r a t u r e again but then slowly d r o p p e d to a rose to 35° C to 25° C after one half The s o l u t i o n w a s also a slight y e l l o w in c o l o r . m i n u t e s of r e a c t i o n tempera hour. After t i m e , a sample of the r e a c t i o n mixture was withdrawn and its N M R w a s t a k e n . corresponding to a c y l o n i t r i l e w a s not found in the N M R trum. Vinyl proton The r e a c t i o n m i x t u r e w a s stirred vinyl proton resonance was solution during this t i m e . funnel. arated and the a q u e o u s p h a s e e x t r a c t e d The o r g a n i c The o r g a n i c removed by rotary e v a p o r a t o r , left in the round b o t t o m and a vacuum take-off. light, b r o w n w a x y solid. m.p. 36-37° C [lit. Similarly, 18-crown-6. 1 2 8 ether rotare gave a The solid after s u b l i m a t i o n in vacuo y-carbethoxy-y-cyanopimelonitrile; m.p. 38°, m.p. 37° C 1 2 9 ]. the same r e a c t i o n w a s run in the a b s e n c e The d e c r e a s e in a c r y l o n i t r i l e w a s followed in the m i x t u r e . The m i x t u r e w a s stirred of by N M R over a 40-hour p e r i o d w i t h a slow but steady d e c l i n e acrylonitrile oil Complete in v a c u o at ice b a t h t e m p e r a t u r e s (83%) of com The for m o v a l of s o l v e n t s g. sep 300 m l . of leaving a v i s c o u s o i l . flask w h i c h w a s used and e q u i p p e d w i t h to 9.2 was layer and ether e x t r a c t w e r e b i n e d , dried over M g S O ^ , filtered u n d e r a vacuum, amounted poured layer w a s twice w i t h no the The a q u e o u s m i x t u r e into a s e p a r a t o r y vaporation spec for one h o u r and The r e a c t i o n m i x t u r e w a s poured was resonance found in the N M R s p e c t r u m of into 100 m l . of w a t e r and s t i r r e d . diethyl ether. ten in for an 20 additional three h o u r s . After the w o r k u p , as a b o v e , 9.6 (84%) of y - c a r b e t h o x y - y - c y a n o p i m e l o n i t r i l e was g. (m.p. 35-36° C) collected. III. moles, Into a 2 5 - m l . v o l u m e t r i c flask, 6.25 g. (0.055 2.2 M) e t h y l c y a n o a c e t a t e w a s d i r e c t l y w e i g h e d luted to the m a r k w i t h the a d d i t i o n of a c e t o n i t r i l e over P 2 ^ 5 u n < volumetric ^ e r N 2 ^ flask, directly weighed under N by a c a n u l l a . 2 5.30 g. under N round b o t t o m flask e q u i p p e d w i t h Into a second by a c a n u l l a . A three n e c k e d potassium tum and The 2 and 3.2 g. flask u n d e r N The a c r y l o n i t r i l e to 40° C and the bath u n t i l the t e m p e r a t u r e solution was removed and p r o c e d u r e lized b e l o w 35° C. and its NMR and slowly in an The flask spectrum taken. icewas stabi time, a Vinyl pro to a c r y l o n i t r i l e w a s not The r e a c t i o n m i x t u r e w a s stirred was temperature followed u n t i l the t e m p e r a t u r e corresponding 100 m l . of w a t e r . The A f t e r ten m i n u t e s of r e a c t i o n sample w a s w i t h d r a w n ton r e s o n a n c e to 30° C. sep solution flask w a s immersed dropped dry by c a n u l l a 2 of (0.0049 (0.055 m o l e s ) h o t , added by s y r i n g e over a t e n - m i n u t e p e r i o d . rose q u i c k l y 1.30 g. The e t h y l c y a n o a c e t a t e to the round b o t t o m five m i n u t e s . was glass flask w a s sealed w i t h a r u b b e r flushed w i t h N « transferred stirred 18-crown-6 fluoride. 25-ml. 100-ml. a s t i r r i n g b a r , ground s t o p p e r , and rubber septum w a s charged w i t h 0.098 M) (dried to the mark w i t h the a d d i t i o n acetonitrile moles, di (0.1 m o l e s , 4.0 M) a c r y l o n i t r i l e and d i l u t e d 2 and present. four h o u r s and then added The a q u e o u s m i x t u r e w a s p o u r e d to into a s e p - 21 aratory funnel. phase e x t r a c t e d organic MgSO^, The o r g a n i c twice w i t h layer w a s s e p a r a t e d 300 m l . tary e v a p o r a t o r amounted to 10 g. The dried The oil solidified The solid (90%) of aqueous over and the ether removed by to give an o i l . ing in the r e f r i g e r a t o r . the of d i e t h y l e t h e r . layer and ether e x t r a c t s w e r e c o m b i n e d , filtered under a v a c u u m , and ro upon after s u b l i m a t i o n cool in vacuo y-carbethoxy-y-cyanopimelonitrile (m.p. 36° C ) . Acrylonitrile I. and D i e t h y l m a l o n a t e Into a 2 5 - m l . v o l u m e t r i c Condensations flask, 8.80 g. (0.055 m o l e s , 2.2 M) of d i e t h y l m a l o n a t e w a s d i r e c t l y w e i g h e d and to the m a r k w i t h the a d d i t i o n of a c e t o n i t r i l e . Into a second 25-ml. volumetric flask, 5.30 g. lonitrile was directly weighed acetonitrile. three necked moles, (0.1 m o l e s , 4.0 M) of and d i l u t e d with The d i e t h y l m a l o n a t e s o l u t i o n w a s added to a 1 0 0 - m l . round b o t t o m flask e q u i p p e d w i t h a m a g stopper, rubber T o the d i e t h y l m a l o n a t e solution 0.098 M) of 18-crown-6 w a s added for five m i n u t e s . The 3.20 g. septum g. (0.0049 and allowed to stir (0.055 m o l e s ) of d r y , hot f l u o r i d e w a s added to the d i e t h y l m a l o n a t e to stir for five m i n u t e s . The a c r y l o n i t r i l e added by s y r i n g e over a f i v e - m i n u t e period action slowly h e a t e d of to 41° C d u r i n g this t i m e . in an i c e - w a t e r b a t h , cooled to a 30° C, and r e m o v e d . The t e m p e r a t u r e and solution slowly immersed and 1.30 tassium was acry to the m a r k n e t i c s t i r r i n g b a r , ground g l a s s thermometer. diluted po allowed was and the r e The flask temperature increased again to 22 38° C but slowly dropped over two hours to 25° minutes of reaction time a sample of the mixture and its NMR was taken. Vinyl proton resonance co to acrylonitrile was found. The decrease in the was followed by NMR over a three and one-half ho which time no vinyl proton resonance was found. was allowed to stir overnight an additional nine a hours. The reaction mixture was poured into 100-ml and stirred. The aqueous mixture was poured into funnel. The organic layer was separated and the was extracted twice with 300 ml. of diethyl ether ganic layer and ether extracts were combined, dried filtered under a vacuum, and the ether removed on evaporator. This left an oily material which solidi solid after sublimation in vacuo amounted to 10.8 130 131 of y, y-dicarbethoxypimelonitrile; m.p. 56-57° C [lit m.p. 61° C;] infrared absorption (KBr) at 2250 cm CSN) and 1730 cm" (ester C=0) ; NMR peaks (cf at 6 4.05 (4H quartet, -CH-Me), at 6 2.2-1.8 NC-CH -CH -) and at 6 0.96 (6H triplet, CH~); an trum, m/e abundant, fragments 221, 173, 154, 108, Similarly, the same reaction was run in the 18-crown-6. The decrease in acrylonitrile was followed NMR over a 121 hour period with a slow decrease trile in the mixture. After passage of the 121 action time, the reaction mixture was poured into 1 2 2 2 2 23 w a t e r and s t i r r e d . aratory The a q u e o u s m i x t u r e w a s p o u r e d f u n n e l and the o r g a n i c layer s e p a r a t e d . ing a q u e o u s p h a s e w a s e x t r a c t e d ether. The organic into a sep- The remain twice w i t h 300 m l . of layer and e t h e r e x t r a c t s w e r e diethyl combined, dried over M g S O ^ , filtered u n d e r a v a c u u m , and the e t h e r r e m o v e d by r o t a r y e v a p o r a t o r . n o t s o l i d i f y on cooling tillation yielded in the f r e e z e r . 5.9 g. m a l o n a t e and 2.1 g. T h e r e r e m a i n e d an o i l w h i c h (0.037) b . p . 40° C 1 3 2 b.p. 175-18- frared a b s o r p t i o n , 1735 c m " 4.23 1 (25 m m ) , b . p . b . p . 96-100 1 3 3 ( C C 1 ) at 2240 c m - 1 (ester C = 0 ) ; N M R p e a k s (0.1 m m ) (0.6 m m ) ] ; i n (nitrile -C=N) and (III, T r i p l e t - C - H ) (4H, m u l t i p l e t C N - C H - C H - ) , and at <S 1.27 3 malonate) 3 2 let, C H ~ ) ; diethyl ( C D C 1 , i n t e r n a l TMS) at 6 (4H q u a r t e t , - C H ~ M e ) , at 6 3.46 2.7-2.4 104-110 4 dis (0.1 m m ) of ( 5 4 % , b a s e d on r e c o v e r e d d i e t h y l ethyl a-carbethoxy-y-cyanobutyrate; [lit. The oil after did 2 2 and m a s s s p e c t r u m m / e 213 at 6 (6H, t r i p + ( M ) and a b u n d a n t frag m e n t s 1 6 8 , 1 3 3 , 1 1 5 , 1 0 1 , 9 6 , 8 8 , 5 4 , 4 3 , and 2 9 . II. Into a 2 5 - m l . V o l u m e t r i c flask 8.81 g. (0.055 m o l e s , 2.2 M ) of d i e t h y l m a l o n a t e w a s d i r e c t l y w e i g h e d to the m a r k w i t h the a d d i t i o n of a c e t r o n i t r i l e . 25-ml. volumetric flask 2.65 g. lonitrile was directly weighed acetronitrile. three necked diluted Into a second (0.05 m o l e s , 2.0 M) of and d i l u t e d to the m a r k acry with The d i e t h y l m a l o n a t e s o l u t i o n w a s added to a 100-ml. round-bottom netic stirring b a r , ground-glass thermometer. and flask e q u i p p e d w i t h a m a g stopper, rubber septum, T o the d i e t h y l m a l o n a t e s o l u t i o n 1.30 g. and (0.0049 24 moles, 0.098 M) of for five m i n u t e s . tassium 18-crown-6 w a s added and allowed Then 3.20 g. f l u o r i d e w a s added and allowed to stir (0.055 m o l e s ) of dry, hot to the d i e t h y l m a l o n a t e to stir five m i n u t e s . po solution The a c r y l o n i t r i l e solution w a s slowly added by syringe over a t h i r t y - f i v e - m i n u t e period to a l l o w the s o l u t i o n to heat slowly not e x c e e d i n g 40° C. The r e a c t i o n m i x t u r e w a s stirred u n t i l the t e m p e r a t u r e dropped to 25° C and remained stable. This required The r e a c t i o n m i x t u r e w a s then poured stirred. extracted twice w i t h layer r e m o v e d . This [lit. Y, 1 3 0 , 1 3 1 (0.022 m o l e s ) , b . p . 40° C The pot m a t e r i a l w a s r e m o v e d solid distil (0.1 m m ) , of and solidified. in v a c u o y i e l d e d Y-dicarbethoxypimelonitrile; 5.18 g. m . p . 54-56° C m . p . 61° C ] . Ethyl Acrylate I. MgSO^, The m a t e r i a l after The solid m a t e r i a l after s u b l i m a t i o n (73%) of dried over organic left a light y e l l o w o i l w h i c h did not 3.5 g. diethyl malonate. The was and the ether r e m o v e d on a rotary ify after three days in a f r e e z e r . lation y i e l d e d and separatory The a q u e o u s p h a s e layer and ether e x t r a c t s w e r e c o m b i n e d , evaporator. into a 300 m l . of d i e t h y l e t h e r . filtered u n d e r a v a c u u m , period. i n t o 1 0 0 - m l . of w a t e r The a q u e o u s m i x t u r e w a s p o u r e d funnel and the o r g a n i c a four-hour and E t h y l C y a n o a c e t a t e Into a 2 5 - m l . v o l u m e t r i c Condensation flask 6.22 g. (0.055 m o l e s , 2.2 M) e t h y l c y a n o a c e t a t e w a s d i r e c t l y w e i g h e d the m a r k w i t h the a d d i t i o n of a c e t o n i t r i l e . 25-ml. volumetric flask 10.0 g. and d i l u t e d to Into a second (0.1 m o l e s , 4.0 M) e t h y l aery- 25 late w a s d i r e c t l y w e i g h e d trile. necked and d i l u t e d The ethyl c y a n o a c e t a t e 1 0 0 - m l . round b o t t o m to the m a r k w i t h s o l u t i o n w a s added to a moles, T o the e h t y l c y a n o a c e t a t e Then f l u o r i d e w a s added lowed 2.90 g. to the e t h y l c y a n o a c e t a t e The flask w a s immersed rapidly slowly but s t a b i l i z e d b e l o w C over the next h o u r . M SE 3 0 , 5' x 1 / 4 , decreased (0.0049 to stir potassium s o l u t i o n and a l The e t h y l a c r y l a t e solution The t e m p e r a t u r e tem 26° of the reac The a q u e o u s p h a s e w a s e x t r a c t e d twice w i t h layer 300 m l . of layer and ether e x t r a c t s w e r e filtered under a v a c u u m , on a rotary e v a p o r a t o r in v a c u o y i e l d e d After poured The a q u e o u s m i x t u r e f u n n e l and the o r g a n i c 11.8 g. was separated. diethyl combined, and the e t h e r to give an o i l . (3% acrylate t i m e , the r e a c t i o n m i x t u r e w a s into a separatory distillation to over the next twelve h o u r s . i n t o 1 0 0 - m l . of w a t e r and s t i r r e d . d r i e d over M g S O ^ , to a increased of e t h y l the first ten m i n u t e s constant The o r g a n i c time. 40° C and slowly d r o p p e d 58° C) for d i s a p p e a r a n c e 12.8 h o u r s of r e a c t i o n this The The r e a c t i o n w a s m o n i t o r e d by glpc rapidly d u r i n g tion and r e m a i n e d to 40° C d u r i n g in an i c e - w a t e r b a t h , cooled p e r a t u r e of 30° C, and r e m o v e d . moved g. ther added by s y r i n g e over a f i v e - m i n u t e p e r i o d . r e a c t i o n m i x t u r e heated ether. 1.30 (0.05 m o l e s ) of d r y , hot to stir for five m i n u t e s . w a s slowly poured solution and 0.098 M) of 18-crown-6 w a s added and a l l o w e d five m i n u t e s . three flask e q u i p p e d w i t h a m a g n e t i c s t i r r i n g b a r , ground glass s t o p p e r , r u b b e r septum, mometer. acetoni The oil (75%) of d i e t h y l re after y- 26 carbethoxy-y-cyanopimelate; 228° (20 m m ) ] ; infrared C=0) ; N M R p e a k s (CDC1 -CH - M e ) , at 6 2.7-1.9 2 at 6 1.30 b . p . 156 absorption (0.15 m m ) (CC1 ) [lit. 1740 c m " 4 , i n t e r n a l T M S ) at 6 4.21 (6 H , q u a r t e t , 2 ^ (9 H, t r i p l e t , - C H ^ ) ; m a s s s p e c t r u m , m / e and 2 8 ; C 1 3 nitrile, -C=N). M R peaks (CDC1 lowed by g l p c After (1 C , T h e d e c r e a s e in e t h y l a e r y l a t e w a s (3% SE 3 0 , 5' x 1 / 4 " , 58° C) o v e r a 12.8 2.9 h o u r s of r e a c t i o n t i m e the e t h y l to 9 7 % at 12.8 h o u r s . m i x t u r e a f t e r w o r k u p , as a b o v e , y i e l d e d ethyl y-carbethoxy-y-cyanopimelate; Into a 5 0 - m l . v o l u m e t r i c 1.77 M ) of e t h y l c y a n o a c e t a t e flask g. aerylate After reaction (0.08 m m ) . (0.0089 m o l e s , 0.179 and d i l u t e d to t h e m a r k I n t o a second to the m a r k w i t h 2 5 0 - m l . r o u n d b o t t o m flask e q u i p p e d w i t h m a g n e t i c b a r , g r o u n d g l a s s s t o p p e r , r u b b e r s e p t e m , and solution hour (0.0084 m o l e s , 50-ml. 10.0 g. vol acrylate acetonitrile. s o l u t i o n w a s added to a t h r e e T o the e t h y l c y a n o a c e t a t e fol (67%) of d i (0.177 m o l e s , 3.54 M) of e t h y l w a s d i r e c t l y w e i g h e d and d i l u t e d The ethyl cyanoacetate 10.0 and 2.30 g. w i t h t h e a d d i t i o n of a c e t o n i t r i l e . 17.7 g. 10.6 g. b.p. 148-149° C 18-crown-6 was directly weighed u m e t r i c flask (M ) in the a b the p a s s a g e of the 12.8 h o u r s of r e a c t i o n t i m e , the M ) of + 313 , i n t e r n a l T M S ) at - 1 1 7 . 9 4 4 had d e c r e a s e d by 9 0 % c o m p a r e d II. and 268, 222, 213, 194, 167, 108, 55, S i m i l a r l y , the same r e a c t i o n w a s c o n d u c t e d sence of 1 8 - c r o w n - 6 . (ester (8 H, m u l t i p l e t , -CH - C H ^ - C O O E t ) , and a b u n d a n t f r a g m e n t s m / e period. 1 b.p. necked stirring thermometer. (0.172 m o l e s ) of 27 hot, dry p o t a s s i u m 15 m i n u t e s . f l u o r i d e w a s added The e t h y l a c r y l a t e to 43° C during removed. toward fifteen m i n u t e s the p o t a s s i u m NMR The flask w a s to a t e m p e r a t u r e The reaction mixture warmed slowly d r o p p e d C, C, and but A f t e r one h o u r and the r e a c t i o n m i x t u r e w a s filtered A sample w a s r e m o v e d for v i n y l p r o t o n r e s o n a n c e heated immersed of 2 0° again t o 35° room t e m p e r a t u r e . fluoride. added by The r e a c t i o n m i x t u r e this p e r i o d . in an i c e - w a t e r b a t h , cooled to stir for s o l u t i o n w a s slowly syringe over a ten-minute period. rapidly and allowed corresponding to r e m o v e and e x a m i n e d to e t h y l by acrylate. N o v i n y l p r o t o n r e s o n a n c e w a s found and the sample w a s r e turned t o the r e a c t i o n m i x t u r e . poured into a separatory The r e a c t i o n m i x t u r e w a s funnel and 100 The m i x t u r e w a s shaken v i g o r o u s l y arated. combined, The organic 4 on a rotary after d i s t i l l a t i o n evaporator in v a c u o y i e l d e d y-carbethoxy-y-cyanopimelate; Similarly, reaching 40° 1.5 300 under a vacuum, b.p. 141-143° ml. were and the to give an o i l . 1 7 . 6 g. (63.4%) sep The oil of d i e t h y l C (0.05 m m ) . in the a b A slow r i s e in t e m p e r a t u r e w a s n o t e d C in thirty m i n u t e s . an i c e - w a t e r b a t h , cooled ter layer twice w i t h the same r e a c t i o n w a s c o n d u c t e d s e n c e of 1 8 - c r o w n - 6 . added. layer and e t h e r e x t r a c t s dried over MgS0 , filtered ether removed moved. and the o r g a n i c The aqueous phase was extracted of d i e t h y l e t h e r . m l . of w a t e r to a t e m p e r a t u r e The reaction mixture warmed h o u r s of r e a c t i o n T h e flask w a s immersed of 20° C, in and r e to room t e m p e r a t u r e . Af t i m e , the m i x t u r e w a s filtered r e - 28 m o v i n g the p o t a s s i u m fluoride. A sample w a s r e m o v e d and e x amined by N M R for v i n y l p r o t o n r e s o n a n c e c o r r e s p o n d i n g ethyl aerylate. was returned Vinyl proton resonance was found. to the r e a c t i o n m i x t u r e . a f t e r the w o r k u p , as a b o v e , y i e l d e d y-carbethoxy-y-cyanopimelate; III. g. flask 6.22 g. sample mixture (36%) of b.p. 138-140° C Into a 25-ml. volumetric The The reaction 9.91 to diethyl (0.05mm). (0.055 m o l e s , 2.2 M ) e t h y l c y a n o a c e t a t e w a s d i r e c t l y w e i g h e d and d i l u t e d the m a r k w i t h the a d d i t i o n of a c e t o n i t r i l e . 25-ml. volumetric flask 5.0 g. I n t o a second (0.05 m o l e s , 2 M ) of e t h y l late w a s d i r e c t l y w e i g h e d and d i l u t e d t o the m a r k w i t h trile. necked The ethyl cyanoacetate to acry- acetoni s o l u t i o n w a s added to a three 1 0 0 - m l . r o u n d b o t t o m flask e q u i p p e d w i t h a m a g n e t i c s t i r r i n g b a r , g r o u n d g l a s s s t o p p e r , r u b b e r s e p t u m , and mometer. T o the e t h y l c y a n o a c e t a t e solution 1.30 g. (0.0049 m o l e s , 0.098 M) of 1 8 - c r o w n - 6 w a s added and a l l o w e d to for five m i n u t e s . T h e n 2.9 g. ther stir (0.05 m o l e s ) of d r y , h o t p o t a s s i u m f l u o r i d e w a s added and a l l o w e d t o stir for five m i n utes. T h e e t h y l a c r y l a t e s o l u t i o n w a s slowly added by syringe o v e r a t w e n t y - m i n u t e p e r i o d w i t h the r e a c t i o n n o t h e a t i n g 35° C. T h e r e a c t i o n w a s m o n i t o r e d by g l p c 58° C) for d i s a p p e a r a n c e jection (3% SE 3 0 . 5' x of e t h y l a c r y l a t e . peak size of the e t h y l a c r y l a t e w a s noted to 1/4", N o c h a n g e in the from the i n i t i a l i n (reaction time 25 m i n u t e s ) over t h e n e x t t h r e e h o u r s . T h e r e a c t i o n m i x t u r e w a s s t i r r e d an a d d i t i o n a l n i n e h o u r s , at w h i c h t i m e , the r e a c t i o n m i x t u r e w a s p o u r e d i n t o 100 m l . of 29 w a t e r and stirred. aratory The aqueous m i x t u r e w a s p o u r e d funnel and the o r g a n i c phase was extracted organic MgSO^, twice w i t h filtered a n o a c e t a t e b . p . 40° C cyanoacetate 148° C (0.1 mm) 5.8 g. and ethyl 10.0 g. Condensation flask 1.30 the a d d i t i o n of a c e t o n i t r i l e . g. 8.81 g. (0.055 m o l e s , (0.0049 m o l e s , 0.19 M) and d i l u t e d Into a second to the m a r k 25-ml. ethyl malonate, to the m a r k w i t h a c e t o n i t r i l e . 18-crown-6 ed 1 0 0 - m l . round b o t t o m s o l u t i o n w a s added to the d i e t h y l m a l o n a t e to a three over a s i x - m i n u t e p e r i o d . over a t h i r t y - m i n u t e p e r i o d Then added to stir for s o l u t i o n w a s added by in f o r t y - f i v e m i n u t e s . slowly The five syringe The r e a c t i o n m i x t u r e h e a t e d to 40° C, a f t e r w a r d s neck bar, fluoride was s o l u t i o n and allowed The e t h y l a c r y l a t e ing to room t e m p e r a t u r e The d i and t h e r m o m e t e r . (0.055 m o l e s ) of d r y , hot p o t a s s i u m with directly flask e q u i p p e d w i t h a s t i r r i n g s t o p p e r , r u b b e r septum, of volumetric (0.1 m o l e s , 4 M) of e t h y l a c r y l a t e w a s and d i l u t e d minutes. (64% based on cy ycarbethoxy-y-cyanopimelate and D i e t h y l M a l o n a t e 18-crown-6 were directly weighed 3.2 g. distillation (0.08 m m ) . 2.2 M) d i e t h y l m a l o n a t e ground g l a s s The oil after and Into a 2 5 - m l . v o l u m e t r i c weighed over (0.021 m o l e s ) of r e c o v e r e d , e t h y l r e a c t e d ) of d i e t h y l Ethyl Acrylate flask dried The and the e t h e r r e m o v e d on a to give an o i l . 2.4 g. aqueous 300 m l . of d i e t h y l e t h e r . under a v a c u u m , in v a c u o y i e l d e d I. The layer and e t h e r e x t r a c t s w e r e combined, rotary e v a p o r a t o r b.p. layer s e p a r a t e d . into a s e p - slowly cool reaction 30 was m o n i t o r e d by glpc (3% SE 30, 5' x 1/4", a p p e a r a n c e of ethyl a c r y l a t e . 58 C) for dis A steady d e c l i n e w a s noted ethyl acrylate concentration for 2.9 h o u r s of r e a c t i o n w h e r e b y , no further d e c r e a s e in e t h y l a c r y l a t e w a s n o t e d . ter t w e n t y - o n e h o u r s of r e a c t i o n was poured into 100 m l . of w a t e r and s t i r r e d . m i x t u r e w a s poured layer s e p a r a t e d . into a s e p a r a t o r y tracts w e r e c o m b i n e d , The o r g a n i c mm) [lit. infrared (CDC1 , 3 1 1 7 i n t e r n a l TMS) (8 H, s i n g l e t , CH^-); 214, (CCl^) 1735 c m 6 4.2 2 (58%) (0.05 (12 m m ) -CH Me), (12 H, peaks in the in the e t h y l to stir over a four-day the p a s s a g e of this t i m e , the r e a c t i o n up, as a b o v e , y i e l d e d ethyl malonate 32° C 5.29 g. 2.24 triplet, late c o n c e n t r a t i o n over a t h r e e - h o u r m o n i t o r i n g p e r i o d . After ] ; 29. N o d e c r e a s e w a s noted r e a c t i o n m i x t u r e w a s allowed 1 3 5 at 6 2 the same r e a c t i o n w a s c o n d u c t e d sence of 1 8 - c r o w n - 6 . 10.5 g. fragments, m/e 315, 260, 241, 1 9 5 , 1 8 6 , 153, 140, 1 2 7 , 55, and Similarly, an (ester C = 0 ) ; N M R and at 6 1.2 m a s s s p e c t r u m of a b u n d a n t ex to give b.p. 142-145° C (8 H, q u a r t e t , -CH -CH -COOEt) 2 - 1 with filtered u n d e r a v a c b . p . 2 1 7 - 2 1 9 ° C/20 mm, b . p . 215° C absorption organic layer and e t h e r in v a c u o y i e l d e d of d i e t h y l y, y - d i c a r b e t h o x y p i m e l a t e ; Af aqueous twice on a rotary e v a p o r a t o r The oil after d i s t i l l a t i o n time, mixture funnel and the dried over M g S O ^ , and the e t h e r removed oil. The The a q u e o u s p h a s e w a s e x t r a c t e d 300 m l . of d i e t h y l e t h e r . uum, t i m e , the r e a c t i o n in acry The period. after the w o r k (0.022 m o l e s ) of r e c o v e r e d (0.08 m m ) , and 3.12 g ab (36% based di on r e - 31 covered b.p. diethyl malonate) 90° C absorption (0.05 mm) (CC1 ) 4 [lit. 1735 c m " t e r n a l TMS) at 6 4.19 triplet, - C - H ) , and at 6 1.22 + (M ) of d i e t h y l a - c a r b e t h o x y and 1 3 5 1 b . p . 157-158 (ester C = 0 ) ; NMR p e a k s 2 (CDC1 , in 3 at <S 3.46 (4 H, m u l t i p l e t , (9 H, t r i p l e t , C H ^ - ) ; and a b u n d a n t (12 m m ) ] ; infrared (6 H q u a r t e t , C H M e ) , 62.6-2.0 glutarate; (1 H, -CH -CH -COOEt), 2 2 m a s s spectrum, m/e 260 fragments m / e 2 1 5 , 169, 1 3 3 , 115, 43, and 29. II. Into a 2 5 - m l . v o l u m e t r i c flask 8.81 g. (0.055 m o l e s , 2.2 M ) of d i e t h y l m a l o n a t e w a s d i r e c t l y w e i g h e d to the m a r k w i t h a c e t o n i t r i l e . flask 5.0 g. weighed Into a second and diluted s o l u t i o n was added ground glass s t o p p e r , rubber septum, diethyl malonate solution 1.30 g. 18-crown-6 w a s added and allowed (0.055 m o l e s ) and a l l o w e d to stir late s o l u t i o n w a s slowly period. To the to stir for five m i n u t e s . fluoride The e t h y l added by s y r i n g e over a was acry five-minute to stir for three h o u r s . into 100 m l . of w a t e r The a q u e o u s m i x t u r e w a s p o u r e d layer s e p a r a t e d . twice w i t h bar, (0.0049 m o l e s , 0.0098 M ) T h e n the r e a c t i o n m i x t u r e w a s p o u r e d phase was extracted 100-ml. and t h e r m o m e t e r . for five m i n u t e s . tory f u n n e l and the o r g a n i c directly stirring of dry, hot p o t a s s i u m The s o l u t i o n w a s allowed and s t i r r e d . volumetric The d i to a three n e c k e d flask e q u i p p e d w i t h a m a g n e t i c added 25-ml. to the mark w i t h a c e t o n i t r i l e . round b o t t o m 3.2 g. diluted (0.05 m o l e s , 2 M) of e t h y l a c r y l a t e w a s ethyl m a l o n a t e Then and into a The separa- aqueous 300 m l . of d i e t h y l e t h e r . The 32 organic layer and ether extracts were combined, dried MgSO^, filtered under a vacuum, and the ether rem rotary evaporator to five an oil. The oil after in vacuo yielded 7.23 g. (62%) of diethyl a-carb b.p. 97.5° C (0.08 mm) and 2.91 g. of pot material was redistilled and yielded 1.32 g. (8%) y, y-dicarbethoxypimelate b.p. 146° C (0.08 mm). Ethyl Acrylate and Cyclohexanone Condensation A three necked 100 ml. round bottom flask eq a magnetic stirring bar, ground glass stopper, rubbe and thermometer was charged with 10.11 g (0.103 mo cyclohexanone and 2.70 g. (0.0102 moles) of 18-crow ml. of acetonitrile. To this solution was added moles) of dry, hot potassium fluoride and allowed one hour. Then, 10.3 g. (0.103 moles) of ethyl slowly added by syringe over a 45-minute period. ture increase was noted at all. After two days finitive change in the reaction mixture was noted. a reflux condenser equipped with a drying tube of chloride was added to the reaction vessel. The ma refluxed for five days over which time the reaction turned a dark brown. Refluxing was stopped and the was poured into 150 ml. of water and stirred. mixture was poured into a separatory funnel and the layer separated. The aqueous phase was extracted tw 125 ml. of diethyl ether. The organic layer and 33 tracts w e r e combined, dried and the e t h e r removed on a rotary e v a p o r a t o r The oil after d i s t i l l a t i o n over M g S 0 , 4 in v a c u o y i e l d e d m o l e s ) of c y c l o h e x a n o n e and hexanepropionate; C (0.13 mm) C=0) and 6 3.95 1735 c m - 1 g. -CH ~Me) mm) [lit. (CC1 ) 3 b . p . 145° C 1708 c m " 4 peaks 1 3 7 1 (ketone C=0) and CH ~); s p e c t r a , m / e 29 8 1728 c m " 1 and at 6 1.23 + (M ) Knoevenagel and B e n z a l d e h y d e 2.64 g. weighed g. at multiplet) g. (9%) d i (0.15 absorption (ester C = 0 ) ; NMR (6 H, CH ~Me), 2 triplet, fragments 29. A large No are fur quantity flask. Condensations Condensation Into a 5 0 - m l . v o l u m e t r i c and 1.99 and a b u n d a n t in the d i s t i l l a t i o n 6.61 (ketone (4 H, q u a r t e t , ther a t t e m p t s w e r e m a d e to improve y i e l d s . of b e n z a l d e h y d e , 1 96-100° + 2 0 7 , 1 9 8 , 189, 165, 1 5 2 , 1 2 3 , 6 7 , 55, and Malononitrile b.p. (13 H, (0.05 m m ) ] ; infrared (16 H, m u l t i p l e t ) of tar r e m a i n e d 1 3 6 ( d i p r o p i o n a t e ) ; b . p . 155° C at 6 2 . 7 - 1 . 5 253, 2-oxocyclo- (internal, TMS) and y i e l d e d 3 mass lit. (0.024 m a s s s p e c t r a , m / e 198 ( M ) . ( C D C 1 , i n t e r n a l TMS) at 6 4.14 3 2.1 g. (CCl^) 1715 cm"" (3 H, t r i p l e t , - C H ) ; 2-oxocyclohexanebis to give an o i l . at 6 2.5-1.2 2 The pot m a t e r i a l w a s r e d i s t i l l e d ethyl (0.3 mm) abosrptions under a vacuum, (8%) of e t h y l (ester C = 0 ) ; NMR p e a k s (2 H, q u a r t e t , and at 6 1.05 1.20 b.p. 104-109° C ; infrared filtered flask 10.6 g. (0.1 m o l e s , 2 M) of (0.1 m o l e s , 2 M ) malononitrile, (0.01 m o l e s , 0.2 M ) of 18-crown-6 w e r e and sealed w i t h a r u b b e r septum. Then dry directly benzene 34 w a s added solution to the v o l u m e t r i c by canulla shaken until h o m o g e n e o u s . round b o t t o m to the m a r k and A three necked flask e q u i p p e d w i t h a m a g n e t i c t h e r m o m e t e r , rubber septum, the 100-ml. stirring bar, and c o n d e n s e r w i t h a d r y i n g tube of c a l c i u m c h l o r i d e w a s charged w i t h the b e n z e n e solution. Then fluoride 1.55 g. added (0.026 m o l e s ) of dry, hot p o t a s s i u m to the b e n z e n e s o l u t i o n and stirred v i g o r o u s l y . solution immediately a rise in t e m p e r a t u r e 68° C. The followed by glpc the d i s a p p e a r a n c e action (3% S E C - 3 0 , 5 of b e n z a l d e h y d e . time, a s u b s t a n t i a l d e c r e a s e (comparing 1 x 1/4", The 100° C) in b e n z a l d e h y d e was at a g i v e n A f t e r one hour r e a c t i o n the o r g a n i c twice w i t h layer s e p a r a t e d . e t h e r e x t r a c t s w e r e combined, a vacuum, dried The solid potassium funnel The o r g a n i c over M g S O ^ , (77%) of b e n z y l i d e n e m a l o n o n i t r i l e ; and extracted layer and filtered on a rotary e v a p o r a t o r after s u b l i m a t i o n reac stirred. The a q u e o u s p h a s e w a s and the ether removed a red solid. 11.9 g. into a s e p a r a t o r y 300 m l . of d i e t h y l e t h e r . noted t i m e , the i n t o 100 m l . of w a t e r and T h e a q u e o u s m i x t u r e w a s poured for reaction time to the i n i t i a l peak area of b e n z a l d e h y d e b e f o r e tion m i x t u r e w a s p o u r e d reac A f t e r ten m i n u t e s of r e the peak area of b e n z a l d e h y d e fluoride w a s a d d e d ) . by formation of a second p h a s e w h i c h was w a t e r was also n o t e d . tion w a s The turned a d e e p red color a c c o m p a n i e d to a p p r o x i m a t e l y was in_ v a c u o under to yielded m . p . 81-83° C 138 [lit. m . p . 8 3 . 5 - 8 4 . 0 ° C ] ; infrared (KBr) 2225 c m " 1 spectrum (nitrile, C = N ) ; NMR p e a k s absorption (CDCl^, internal give 35 TMS) at 6 8.2-7.2 m/e, 154 + (M ) Approximately (6 H, m u l t i p l e t , p h e n y l — C H = ) ; and abundant fragments left in the m a t i o n a p p a r a t u s as a gum w h i c h could not be by glpc The d e c r e a s e (3% S E C - 3 0 , 5' x 1/4", whereby, subli in the in b e n z a l d e h y d e w a s The stirred for nine days and after the w o r k u p , as yielded 13.1 g. (84%) b e n z y l i d e n e m a l o n o n i t r i l e , Into a 5 0 - m l . v o l u m e t r i c of c y c l o h e x a n o n e , and 2.64 g. weighed 6.61 g. above, m . p . 81-83° C. Condensation flask 9.8 g. (0.1 m o l e s , 2 M) (0.1 m o l e s , 2 M) of malononitrile, (0.01 m o l e s , 0.2 M) of 18-crown-6 w e r e and sealed w i t h a rubber period reaction mixture and C y c l o h e x a n o n e ab followed 100° C) over a 16.8 hour the b e n z a l d e h y d e had slowly d e c r e a s e d . Malononitrile 32. characterized. the same r e a c t i o n w a s c o n d u c t e d sence of 1 8 - c r o w n - 6 . spectrum, 1 2 7 , 103, 76, 51, and 1.5 g. of solid m a t e r i a l w a s Similarly, mass septum. directly Then dry b e n z e n e was added to the v o l u m e t r i c by c a n u l l a to the m a r k and the solu tion s h a k e n u n t i l h o m o g e n e o u s . round- A three n e c k e d bottom flask e q u i p p e d w i t h a m a g n e t i c rubber septum, (0.026 m o l e s ) of dry, hot p o t a s s i u m benzene solution diately changed in t e m p e r a t u r e stirring bar, and c o n d e n s e r w i t h a d r y i n g c h l o r i d e w a s charged w i t h the b e n z e n e tube of solution. color to a dark y e l l o w , followed by g l p c calcium Then 60° C. The s o l u t i o n accompanied 1.55 to g. the imme by a rise The f o r m a t i o n of a second p h a s e , w h i c h w a s w a t e r , w a s also n o t e d . was thermometer, f l u o r i d e w a s added and stirred v i g o r o u s l y . to a p p r o x i m a t e l y 100-ml. (3% S E C - 3 0 , 5' x 1/4", The reaction 89° C) for the 36 disappearance decrease of c y c l o h e x a n o n e . After ten m i n u t e s , a in the c y c l o h e x a n o n e was noted area of c y c l o h e x a n o n e (comparing at a given r e a c t i o n large the time to the peak area of c y c l o h e x a n o n e b e f o r e p o t a s s i u m peak initial fluoride was added). A f t e r one h o u r of r e a c t i o n t i m e , the r e a c t i o n m i x t u r e w a s tered to r e m o v e a y e l l o w c r y s t a l l i n e m a t e r i a l , m . p . 124.5-129° C, w h i c h w a s shown to be a n o v e l 1:2 c r o w n - m a l o n o n i t r i l e plex (to be d i s c u s s e d later in further d e t a i l ) . m i x t u r e w a s then p o u r e d The a q u e o u s m i x t u r e w a s p o u r e d the o r g a n i c twice w i t h layer s e p a r a t e d . into a s e p a r a t o r y 300 m l . of d i e t h y l e t h e r . der a v a c u u m , and the e t h e r removed give an o i l . The oil after d i s t i l l a t i o n [lit. 1 3 9 b.p. 137-138° C + (M ) and layer and filtered un b.p. 69-70° C (10 m m ) ] ; infrared to 10.5 (0.5 absorption -1 (neat) 2235 cm tiplet) extracted in v a c u o y i e l d e d -1 (nitrile, C=N) and C = C ) : NMR p e a k s and on a rotary e v a p o r a t o r (72%) of c y c l o h e x y l i d e n e m a l o n o n i t r i l e ; mm) reaction funnel The organic dried o v e r M g S O ^ , com stirred. The a q u e o u s p h a s e w a s ether e x t r a c t s w e r e combined, g. The into 1 0 0 - m l . of w a t e r and fil 1599 cm (double ( C D C 1 , i n t e r n a l TMS) at 6 2.8-2.4 3 6 2.1-1.4 and a b u n d a n t bond, (4 H, m u l - (6 H, m u l t i p l e t ) ; m a s s s p e c t r a , m / e fragments 146 1 3 1 , 1 1 8 , 105, 9 2 , 8 1 , 6 9 , 55, and 41. Similarly, the same r e a c t i o n w a s c o n d u c t e d sence of 1 8 - c r o w n - 6 . lowed by glpc The d e c r e a s e in the in c y c l o h e x a n o n e w a s (3% S E C - 3 0 , 5' x 1/4, 89° C) over a one period, whereby the c y c l o h e x a n o n e had slowly d e c r e a s e d ab fol hour steadily. 37 The r e a c t i o n m i x t u r e w a s stopped up, as a b o v e , y i e l d e d trile, b.p. 67-68° C Ethylcyanoacetate 9.9 g. (68%) of cyclohexylidenemalononi- (0.5 m m ) . and B e n z a l d e h y d e Into a 5 0 - m l . v o l u m e t r i c of b e n z a l d e h y d e , after one hour and the w o r k 11.3 g. Condensation flask 10.6 g. (0.1 m o l e s , 2 M) (0.1 m o l e s , 2 M) of e t h y l cyanoacetate, and 2.6 4 g. (0.01 m o l e s , 0.2 M) of 18-crown-6 w e r e directly weighed sealed w i t h a rubber benzene and w a s added to the v o l u m e t r i c septum. by c a n u l l a lution shaken u n t i l h o m o g e n e o u s . bottom Then 1.55 added g. (0.026 m o l e s ) immediately followed by glpc disappearance stirring bar, of dry, hot p o t a s s i u m solution turned a rise in t e m p e r a t u r e was and stirred a deep red to a p p r o x i m a t e l y of b e n z a l d e h y d e . the o r g a n i c phase was extracted organic The filtered u n d e r a v a c u u m , rotary evaporator The 100° C) for by the a reac water into a s e p a r a The aqueous 300 m l . of d i e t h y l e t h e r . layer and e t h e r e x t r a c t s w e r e c o m b i n e d , MgSO^, was reaction into 100 m l . of layer s e p a r a t e d . twice w i t h fluoride A f t e r six h o u r s of The a q u e o u s m i x t u r e w a s p o u r e d funnel and solution. A f t e r twelve m i n u t e s only tion, the r e a c t i o n m i x t u r e w a s poured tory round- color a c c o m p a n i e d 60° C. so thermometer, vigorously. (3% S E C - 3 0 , 5' x 1/4", trace of b e n z a l d e h y d e w a s p r e s e n t . and s t i r r e d . 100-ml. stopper w a s charged w i t h the b e n z e n e to the b e n z e n e solution to the m a r k and the A three-necked flask e q u i p p e d w i t h a m a g n e t and g r o u n d - g l a s s T h e n dry dried The over and the ether r e m o v e d on a to give a solid. The solid after sublima- 38 tion in v a c u o y i e l d e d 16.3 g. (81%) of e t h y l benzylidene- 30 c y a n o a c e t a t e ; m . p . 48-49° C [lit. absorptions C=0), and (KBr) 2225 c m " 1615 c m t e r n a l TMS) multiplet, - 1 1 m . p . 50-52 (nitrile, C = N ) , 1725 c m " (double b o n d , C = C ) ; NMR p e a k s at 6 8.28 phenyl-), (1 H, s i n g l e t , H - C = C ) , 6 4.4 (2 H, q u a r t e t , sence of + (M ) (5 H, and and 6 abundant in the The d e c r e a s e in b e n z a l d e h y d e w a s by glpc (3% S E C - 3 0 , 5' x 1/4", whereby the b e n z a l d e h y d e 1.33 51. the same r e a c t i o n w a s c o n d u c t e d 18-crown-6. (ester, (CDCl^, i n -CJ^Me), at 2 0 0 , 1 7 2 , 156, 1 2 8 , 1 0 2 , 7 7 , and Similarly, 1 6 8.1-7.3 (3 H, t r i p l e t , CH.,-); m a s s spectrum, m / e 201 fragments C ] ; infrared 100° C) over a six-day followed period, six days the r e a c t i o n m i x t u r e w a s w o r k e d u p , as a b o v e , and y i e l d e d 9.18 g. had slowly d e c r e a s e d . ab (46%) of e t h y l b e n z y l i d e n e c y a n o a c e t a t e , m . p . 48-49° C. Diethyl Malonate and B e n z a l d e h y d e Into a 5 0 - m l . v o l u m e t r i c of b e n z l a d e h y d e , and After 2.6 4 g. weighed flask 10.6 g. (0.1 m o l e s , 2 M) (0.1 m o l e s , 2 M) of d i e t h y l (0.01 m o l e s , 0.2M) of 18-crown-6 w e r e and sealed w i t h a rubber w a s added solution 16.0 g. Condendation septum. malonate, directly T h e n dry benzene to the v o l u m e t r i c by c a n u l l a to the m a r k and shaken u n t i l h o m o g e n e o u s . round b o t t o m A three necked flask e q u i p p e d w i t h a m a g n e t i c c h a r g e d w i t h the b e n z e n e of d r y , hot p o t a s s i u m solution. Then 100-ml. stirring t h e r m o m e t e r , ground g l a s s s t o p p e r , and D e a n - S t a r k 1.55 g. the bar, trap w a s (0.026 f l u o r i d e w a s added to the b e n z e n e tion and stirred v i g o r o u s l y . The s o l u t i o n w a s heated moles) solu to r e - 30 fluxing w i t h the internal t w e l v e h o u r s of r e a c t i o n Stark trap. and After temperature reaching 92° C. t i m e , w a t e r w a s noted in the w a s then stopped and poured layer separated. The organic 1 6 7.74 (5 H, m u l t i p l e t , phenyl), with ex 8.1 g. (0.11 mm) absorption at fragments 6 4.6-4.0 -CH^): vacuum, to g i v e an o i l . (CC1 ) (33%) [lit. 1 4 0 1730 c m 4 (1 H, singlet, H - C = C - ) , (6 H, sextet, + twice (double bond, C = C ) ; NMR p e a k s i n t e r n a l T M S ) at and in v a c u o y i e l d e d b.p. 120-124° C 1630 cm"" ( M ) , and a b u n d a n t organic 4 (4 m m ) ] ; infrared 6 1.5-1.1 aqueous dired over MgSC> , f i l t e r e d u n d e r a The o i l after d i s t i l l a t i o n and reaction layer and ether and the e t h e r r e m o v e d on a r o t a r y e v a p o r a t o r ethyl benzalmalonate; black The funnel and the The a q u e o u s p h a s e w a s e x t r a c t e d tracts were combined, t e r , C = 0 ) , and The into 100 m l . of w a t e r . into a s e p a r a t o r y 300 m l . of d i e t h y l e t h e r . 140-142° C Dean- three d a y s , the s o l u t i o n had turned 0.7 m . of w a t e r w a s in the D e a n - S t a r k t r a p . m i x u t r e w a s poured After at (4 H, o c t e t , of b.p. - 1 (es (CDC1 , 3 6 7.6-7.2 -CH -Me), 2 m a s s spectrum, m / e 248 203, 1 7 4 , 1 5 8 , 1 3 1 , 1 3 0 , 1 0 2 , 7 7 , 29. Similarly, the same r e a c t i o n w a s c o n d u c t e d sence of 1 8 - c r o w n - 6 . t r a p and diethyl N o w a t e r w a s found in the in the ab Dean-Stark the w o r k u p , as a b o v e , y i e l d e d o n l y starting material, malonate. Alkylations Diethyl Malonate with Benzyl Bromide Into a 5 0 - m l . v o l u m e t r i c flask 9.4 g. (0.059 m o l e s . 40 1.18 M ) of d i e t h y l m a l o n a t e , b e n z y l b r o m i d e and 1.55 g. were directly weighed The acetonitrile geneous. (0.59 m o l e s , 1.18 M ) (0.0058 m o l e s , 0.12 M ) of and d i l u t e d to the m a r k w i t h solution was thoroughly A three necked with a magnetic 10.0 g. stirring (0.23 m o l e s ) od d r y , hot p o t a s s i u m to the a c e t o n i t r i l e solution and action was monitored the d i s a p p e a r a n c e by g l p c to removed solution. After the p o t a s s i u m The reaction and The solid m a t e r i a l was The a q u e o u s m i x t u r e w a s p o u r e d twice with diethyl ether. The e t h e r e x t r a c t s w e r e c o m b i n e d , for reac fluoride f u n n e l and e x t r a c t e d in 300 m l . of dried over f i l t e r e d u n d e r a v a c u u m , and the e t h e r r e m o v e d o n a rotary evaporator in v a c u o y i e l d e d malonate 40° C to g i v e an o i l . 1.1 g. The oil a f t e r (0.11 mm) (0.11 m m ) and [lit. (CC1 ) 4 1 4 1 9.14 b.p. 150-160° C 1735 c m " 6 7.2 1 distillation (0.007 m o l e s ) of r e c o v e r e d g. diethyl (63% based on d i e t h y l m a l o n a t e ) of d i e t h y l b e n z y l m a l o n a t e ; T M S ) at added The r e 41 h o u r s of to a s e p a r a t o r y tion rub Then fluoride was be d e t e c t e d . into 100 m l . of w a t e r . washed with diethyl ether. MgSO^, equipped (3% SE 3 0 , 5" x 1/4", 1 0 0 ° C) tion t i m e , no b e n z y l b r o m i d e could then p o u r e d flask homo stirred v i g o r o u s l y . of b e n z y l b r o m i d e . m i x t u r e w a s filtered acetonitril b a r , ground g l a s s s t o p p e r , and ber septum w a s c h a r g e d w i t h the a c e t o n i t r i l e 13.5 g. 18-crown- shaken u n t i l 1 0 0 - m l . round b o t t o m of recovered b.p. 100-105° C (7 m m ) ] ; infrared (ester C = 0 ) ; NMR p e a k s (5 H, singlet, A r H ) , at 6 4.1 (CDC1 , 3 (4 H, absorp internal quartet. 41 -CH -Me), a t 6 3.68 (1 H, q u a r t e t , C-H), a t 6 3.20 (2 H, doub 2 l e t , Ar-CH ~), and a t 5 1.1 2 (6 H, t r i p l e t , CII^-): mass s p e c + trum, m/e 250 (M ) and abundant fragments 205, 176, 159, 148, 131, 103, 9 1 , 77, 5 1 , and 29. There was 2.72 g. of p o t m a t e r i a l remaining which was r e d i s t i l l e d t o g i v e 1.34 g. (12.1% based on r e c o v e r e d d i e t h y l malonate) of d i e t h y l d i b e n z y l m a l o n a t e ; b . p . 143-148° C (0.24 m) [ l i t . infrared absorptions cm - 1 (CCI4) 1735 c m - 1 (double bond, p h e n y l ) ; NMR peaks 1 4 2 234-5 (23 mm)]; ( e s t e r , C=0) and 1601 (CDCI3, i n t e r n a l TMS) a t (S 7.2 (10 II, s i n g l e t . Aril), a t 6 4 . 1 (4 H, q u a r t e t , -CH -Me) , 2 a t <S 3.24 (4 II, s i n g l e t , -CH ~) , and a t 6 1.1 2 CH3-); + (6 H, t r i p l e t , mass spectrum, m/e 340 (M ) and abundant fragments 295, 249, 203, 192, 115, 9 1 , 6 5 , and 29. S i m i l a r l y , t h e same r e a c t i o n was conducted i n t h e a b sence of 18-crown-6. No change i n benzyl bromide was noted by g l p c (3% SE-30, 5' x 1/4", 100° C) and t h e work up, as above, y i e l d e d only t h e s t a r t i n g m a t e r i a l d i e t h y l m a l o n a t e . D i e t h y l Malonate with Benzyl C h l o r i d e I n t o a 50-ml. v o l u m e t r i c f l a s k 9.4 g. 1.18 M) of d i e t h y l m a l o n a t e , 7.4 g. benzyl c h l o r i d e and 1.58 g. (0.059 moles, (0.059 moles, 1.18 M) of (0.006 m o l e s , 0.12 M) of 18-crown-6 were d i r e c t l y weighed and d i l u t e d t o t h e mark with a c e t o n i t r i l e . The a c e t o n i t r i l e s o l u t i o n was t h o r o u g h l y shaken u n t i l homo geneous. A t h r e e - n e c k e d 100-ml. round bottom f l a s k equipped with a magnetic s t i r r i n g b a r , ground g l a s s s t o p p e r , and r u b b e r septum was charged with t h e a c e t o n i t r i l e s o l u t i o n . Then 42 13.5 g. (0.23 m o l e s ) of dry, hot p o t a s s i u m to the a c e t o n i t r i l e s o l u t i o n and stirred v i g o r o u s l y . action w a s m o n i t o r e d by glpc for the d i s a p p e a r a n c e (3% S E - 3 0 , 5' x 1/4", of b e n z y l c h l o r i d e . After r e a c t i o n , only a trace of b e n z y l c h l o r i d e The r e a c t i o n m i x t u r e w a s filtered fluoride and then p o u r e d 300 m l . of d i e t h y l e t h e r . dried over M g S O ^ , distillation malonate gave 40° C covered and N o change (3% S E - 3 0 , 5' x 1/4", above, yielded were directly weighed 105-110 in the in b e n z y l c h l o r i d e w a s ab noted the w o r k u p , as malonate. Iodide flask 2.50 M) of d i e t h y l m a l o n a t e , 9.2 g. 1.7 g. diethyl dibenzylmalonate. 100° C) and Into a 2 5 - m l . v o l u m e t r i c i o d i d e , and upon (10% b a s e d on r e only the s t a r t i n g m a t e r i a l d i e t h y l Diethyl Malonate with Methyl methyl 1.00 g. re recovered the same r e a c t i o n w a s c o n d u c t e d 18-crown-6. with combined, The oil (56% based on of d i e t h y l mixture and the ether of d i e t h y l b e n z y l m a l o n a t e , b . p . diethyl malonate) sence of 8.1 g. solid twice (0.008 m o l e s ) of r e c o v e r e d T h e r e w a s a l s o isolated Similarly, by g l p c g. (0.1 mm) diethyl malonate) (0.15 m m ) . 1.25 The The e h t e r e x t r a c t s w e r e to give an o i l . of detected. The a q u e o u s filtered under a v a c u u m , re potassium funnel and e x t r a c t e d m o v e d on a rotary e v a p o r a t o r The 186 h o u r s into 100 m l . of w a t e r . into a s e p a r a t o r y added 100° C) could be to remove the material was washed with diethyl ether. w a s poured fluoride was 10.0 g. (0.0624 m o l e s , (0.0648 m o l e s , 2.59 M ) (0.0064 m o l e s , 0.26 M) of and d i l u t e d to the m a r k w i t h of 18-crown-6 acetonitrile. 43 The a c e t o n i t r i l e geneous. s o l u t i o n was t h o r o u g h l y The a c e t o n i t r i l e round b o t t o m flask, w i t h a rubber solution w a s poured 10.9 g. sium f l u o r i d e w a s added, and the round b o t t o m After , 90° C) for d i s a p p e a r a n c e 58 d a y s , the r e a c t i o n m i x t u r e The r e a c t i o n m i x t u r e w a s poured funnel and e x t r a c t e d twice w i t h e t h e r e x t r a c t s w e r e combined, an o i l . SE-30, samples stopped. and separatory on a rotary e v a p o r a t o r in v a c u o at 41° g. and under to give (0.1 mm) diethyl 3% to c o n s i s t of 13% (53.4% based diethyl methylmalonate. of p u r e m a t e r i a l w e r e used C The internal standard, the m i x t u r e (0.797 g.) and 5.33 covered d i e t h y l m a l o n a t e ) that 300 m l . of d i e t h y l e t h e r . (bromocyclohexane 5' x 1/4", 90° C) showed diethyl malonate glpc diethyl showed into a g. of a m i x t u r e of d i e t h y l m a l o n a t e Glpc by dried over M g S O ^ , filtered and the e h t e r removed methylmalonate. of agi i n t o a 100 m l . of w a t e r The oil after d i s t i l l a t i o n gave 6.13 sealed and the r e a c t i o n w a s The a q u e o u s m i x t u r e w a s p o u r e d a vacuum, flask w a s shaker and m o n i t o r e d the d i e t h y l m a l o n a t e had d e c r e a s e d stirred. into a 5 0 - m l . The r e a c t i o n m i x t u r e w a s tated by m e a n s of a w r i s t - a c t i o n malonate. homo (0.188 m o l e s ) of dry, hot p o t a s septum q u i c k l y . (3% S E - 3 0 , 5' x 1/4" shaken u n t i l to identify on r e Actual the above com pounds. Similarly, the same r e a c t i o n was c o n d u c t e d in the sence of 1 8 - c r o w n - 6 . A slower r e a c t i o n w a s noted and the up, as a b o v e , y i e l d e d 4.21 g. of a m i x t u r e of d i e t h y l and d i e t h y l m e t h y l m a l o n a t e . Glpc (bromocyclohexane ab work malonate internal 44 standard, 3% S E - 3 0 , 5' x 1/4", 9 0 ° C) showed c o n s i s t of 46V. d i e t h y l m a l o n a t e (1.95 g.) the m i x t u r e and 2.26 g. based o n r e c o v e r e d d i e t h y l m a l o n a t e ) of d i e t h y l 18-Crown-6 Cyanogen Bromide/18-crown-6 I. (26V. methylmalonate. Complexes Complex To a v i a l c o n t a i n i n g a p p r o x i m a t e l y s e v e n m l . of d i e t h y l e t h e r w a s added 1 8 - c r o w n - 6 u n t i l t h e became difficult. dry solubilization T h e n solid c r y s t a l s of c y a n o g e n (Eastman K o d a k ) w e r e a d d e d to t h e e t h e r bromide s o l u t i o n and solubi lized by c r u s h i n g the c r y s t a l s w i t h a s p a t u l a u n t i l a l l solid d i s s o l v e d . was placed and the s o l u t i o n c o l l e c t e d . in a v i a l and sealed u n d e r N 2 large monoclinic The The solution After a week a crystal formed approximately (nujol) 2160 cm (ether, C - 0 ) ; N M R p e a k s 1 white solution 5mm. b y 3mm. T h e c o m p l e x had a m e l t i n g p o i n t a t 6 4 . 5 - 6 8 ° C; i n f r a r e d sorptions the T h i s p r o c e d u r e w a s f o l l o w e d u n t i l fine c r y s t a l s b e g a n to p r e c i p i t a t e from t h e s o l u t i o n . was then filtered to (nitrile, C = N ) and 1 1 0 0 cm ( C D C 1 , internal TMS) 3 6 3.7 ab 1 (crown 143 e t h e r ) ; crystal density, c a l c . 1.529 g / m l , found 1.526 g/ml. II. To a vial containing was added f i v e m l . of c a r b o n 1 8 - c r o w n - 6 and the m i x t u r e w a s h e a t e d 18-crown-6. tetrachloride to dissolve This procedure was repeated until no more 1 8 - crown-6 could be solubilized. T h e n solid c y a n o g e n bromide (Eastman) w a s a d d e d to the h o t s o l u t i o n and d i s s o l v e d by 45 crushing milky the solid w i t h a spatula until in c o l o r . lowed to cool percipitated Then the s o l u t i o n w a s heated slowly to room t e m p e r a t u r e . from the s o l u t i o n . in a v i a l . of the crystals filtered and The d e n s i t y of the c r y s t a l s w a s m e a s u r e d g/ml and 1.517 value. Nice prism in a g l o v e bag 2 in c a r b o n t e t r a c h l o r i d e and b e n z e n e . 1.514 turned a g a i n and a l The c r y s t a l s w e r e from the c a r b o n t e t r a c h l o r i d e u n d e r N sealed the s o l u t i o n g/ml compared The v a l u e o b t a i n e d to 1.529 g/ml, was calculated The m . p . of these c r y s t a l s a g r e e d w i t h the a b o v e m . p . complex. Anal. Calcd. for C N, 5.89; Br, 3 3 . 5 7 . 1 2 H Found; 2 4 0 6 (CNBr) *. C, 2 3 5 . 3 1 ; H, 5.08; C, 3 8 . 4 5 ; H, 5.81; N , 5.02; Br, 28.39. Malonitrile/18-Crown-6 Complex To e i g h t m l . of dry b e n z e n e w a s added moles) 18-crown-6 and 1.5 s o l u t i o n w a s heated allowed until g. solubilization was effected and w a s c o l l e c t e d rial was recrystallized A white from dry b e n z e n e and y i e l d e d (CD CN, 3 glet, malononitrile) frared MR absorption (acetone-dg, S 3.7 (nujol m u l l ) and The m a t e uniform 6 3.9 (4 H, sin (24 H, s i n g l e t , c r o w n ) ; 2242 cm i n t e r n a l TMS s t a n d a r d ) -1 at then complex; m . p . 1 2 7 - i n t e r n a l TMS) at and at The crystalline by f i l t r a t i o n . n e e d l e c r y s t a l s of m a l o n i t r i l e / 1 8 - c r o w n - 6 1 2 9 ° C; N M R p e a k s (0.0076 (0.023 m o l e s ) m a l o n i t r i l e . to c o o l to room t e m p e r a t u r e . solid p r e c i p i t a t e d 2.0 g. (nitrile, C = N ) ; 6 -70.742 in13 C (methylene, 13 -CH -0); 0 C NMR (acetonitirle-d-,, i n t e r n a l TMS s t a n d a r d ) at 4 6 <S - 1 1 2 . 7 9 0 ( N I T R I L E , A N A L . 7 . 1 2 ; N , - C = N ) C A L C U L A T E D 1 4 . 1 4 ; 0, , A L C F O R 2 4 . 2 1 . «S 1 2 1 9 8 5 N 2 * 2 5 4 . 4 7 ; H , 1 4 ° 6 F O U N D ; * C , C 3 H 2 : C . -CII -0) ( M E T H Y L E N E 2 5 ' 4 7 . 1 4 ; 4 - 3 ; 1 N , 1 ' 1 4 . 1 6 ; 2 4 . 2 3 . 0, S U C C I N O N I T R I L E / 1 8 - C R O W N - 6 T O E I G H T C I N O N I T R I L E M O L E S ) . F E C T E D T H E M L . ( 0 . 0 0 2 5 T H E A N D O F M O L E S ) S O L U T I O N T H E N S O L U T I O N W A S 2 . 9 ( 8 M U L L ) A T 6 - C H 2 , A N W H I T E , T M S ) S I N G L E T , 2 2 2 1 C M " - 1 1 8 . 1 2 9 1 T O G I V E 3 . 7 6 S O L I D ( 2 4 ( N I T R I L E , ( N I T R I L E , C = N ) ; C = N ) C A N D B A T H 1 T O C R Y S T A L S C ; A T 6 E F T H E N P R E A N D O F W A S S U C - N M R S I N G L E T , M R W A S R E C R Y S T A L L I Z E D I N F R A R E D 3 ( 0 . 0 0 3 8 E F F E C T P R E C I P I T A T E D 8 3 - 8 4 ° S U C C I N O N I T R I L E ) ; S U C - 1 8 - C R O W N - 6 W A S H , G . T E M P E R A T U R E . N E E D L E M . P . 0 . 2 0 2 S O L U B I L I Z A T I O N R O O M M A T E R I A L C O M P L E X ; A T O F I C E - W A T E R T H E T O A D D E D U N T I L C R Y S T A L L I N E T E T R A C H L O R I D E I N T E R N A L H , H E A T E D I N C I N O N I T R I L E / 1 8 - C R O W N - 6 3 G R A M O N E C O O L E D F I L T R A T I O N . ( C D C 1 A N D C O O L C O L L E C T E D C A R B O N W A S T O A F R O M B E N Z E N E A L L O W E D W A S B Y C O M P L E X D R Y C I P I T A T I O N . P E A K S C R O W N ) A N D A B S O R P T I O N ( C D C 1 3 , I N T E R N A L - 7 0 . 7 1 3 6 ( N U J O L T M S ) ( M E T H Y L E N E , - 0 ) . A N A L . C A L C U L A T E D F O R C , 1 2 7 . 6 0 ; O , I - 7 0 . N , 1 3 . 2 8 . 2 2 . 6 2 ; O , 1 3 . 2 0 . O A 1 4 F O U N D : ( C . H . N c 6 C , 4 4 5 7 . 0 6 ; N 2 ) N : C , 5 6 . 5 5 ; H , N , 2 1 . 9 8 ; 2 H , 7 . 6 8 ; 47 CHAPTER RESULTS AND III DISCUSSIONS A s n o t e d e a r l i e r , t h e m a i n u s e of p o t a s s i u m in o r g a n i c c h e m i s t r y h a s b e e n a s a f l u o r i n a t i n g fluoride agent, al t h o u g h r e p o r t s i n d i c a t e the a b i l i t y of f l u o r i d e i o n s to act 22-45 as a base. The major problem in e i t h e r in u s i n g p o t a s s i u m system h a s b e e n t h e i n s o l u b i l i t y o f the m a t e r i a l 122 in o r g a n i c markable fluoride solvents. L i o t t a and H a r r i s s u c c e s s in s o l u b i l i z i n g p o t a s s i u m and n o n p o l a r , a p r o t i c solvents 123 ' h a v e had r e fluoride in p o l a r (acetonitrile and b e n z e n e ) with the aid of 1 8 - c r o w n - 6 ; the r e s u l t i n g r e a g e n t w a s e f f e c t i v e fluorination. T h e c a p a b i l i t i e s o f t h e "naked" f l u o r i d e to b e h a v e a s a b a s e w a s i n v e s t i g a t e d in ion in t h e p r e s e n t w o r k . S e l e c t e d M i c h a e l , K n o e v e n a g e l , and a l k y l a t i o n r e a c t i o n s were conducted a t r o o m t e m p e r a t u r e w i t h the f o l l o w i n g g e n e r a l clusion: the r e a c t i o n s u s i n g "naked" f l u o r i d e i o n s con required s h o r t e r r e a c t i o n s t i m e s and p r o d u c e d b e t t e r , o r a t l e a s t a l e n t , y i e l d s of p r o d u c t s t h a n t h e r e a c t i o n s w i t h no equiv 18-crown-6. A l l the r e a c t i o n s w e r e c a r r i e d o u t in a c e t o n i t r i l e , e x c e p t the K n o e v e n a g e l r e a c t i o n s w h i c h w e r e c a r r i e d o u t benzene. and used These solvents were used i n e r t to the f l u o r i d e a n i o n . since t h e y a r e l o w 122 Harris boiling The 18-crown-6 ether in a l l c a s e s o n l y in c a t a l y t i c q u a n t i t i e s . in Liotta was and 123 ' measured the s o l u b i l i t i e s o f p o t a s s i u m fluoride 4 8 i n t h o s e s u m i n g s o l v e n t s . a l i n e a r c r o w n a n d r a n g e o f i n t h e T h e i r r e l a t i o n s h i p u s e d i n t h e - 3 2 i n x o f a r e t a b u l a t e d b e t w e e n c o n c e n t r a t i o n c o n c e n t r a t i o n s s o l u t i o n , d a t a o f t h e p r e s e n t T a b l e 1 . c o n c e n t r a t i o n p o t a s s i u m p o t a s s i u m i n f l u o r i d e , f l u o r i d e o r r e a c t i o n s w a s a n d o f t h e n t h e f l u o r i d e M t o 5 . 6 x i o n a p p r o x i m a t e l y - 3 1 0 A s - 3 1 0 M i n a c e t o n i t r i l e K F i n P r e s e n c e 8 . 2 x 1 0 1 8 - C r o w n - 6 a t M b e n z e n e . T a b l e 1 . S o l u b i l i t y o f S o l v e n t ( 1 8 - C r o w n - 6 ) , o f 2 5 ° C (KF)T~M M - 4 A c e t o n i t r i l e 3 x 1 0 3 . 5 x 1 0 5 . 2 x 1 0 1 . 4 x 1 0 0 - 3 0 . 1 6 - 2 B e n z e n e 1 . 0 1 0 . 3 4 M i c h a e l T h e l o n i t r i l e a c e t a t e M i c h a e l a n d a n d s u b s t r a t e d i e t h y l m o l a r f r o m o f r e a c t i o n s t h e o n e E t h y l l o n i t r i l e a n d p r o d u c t s , Y " " t o s u b s t r a t e s m a l o n a t e a s r e a c t a n t s . ( r e f e r r e d ( 1 : 1 ) c a r o f i n t o t o w i t h a s e a c h g e n e r a t e t h e c y a n o R / S t o r a t i o ) T h e w a s r e s u l t s 2 . r e s p e c t i v e l y , H o w e v e r , a c r y r e a c t a n t ( 1 : 2 ) . s u b s t r a t e t h e k e t h o x y - y - c y a n o p i m e l o n i t r i l e 1 8 - c r o w n - 6 . u s i n g e t h y l T h e t w o T a b l e o u t w i t h f u r t h e r o n e r e a c t e d a c r y l a t e , c a r b e t h o x y - y - c y a n o p i m e l a t e , a b s e n c e t o t o t a b u l a t e d c y a n o a c e t a t e e t h y l c a r r i e d a s o n e a r e w e r e a c r y l a t e r a t i o v a r i e d C o n d e n s a t i o n s c o n d e n s a t i o n s e t h y l - 2 d i s u b s t i t u t e d a n d i n r e a c t i o n a c r y t h e d i e t h y l p r e s e n c e t i m e s w e r e y ~ a n d d e - Table 2. Michael Condensations initiated by Potassium Fluoride in the Presence and Absence of 18-Crown-6 Product Substrate Cone.. (M) Reactant Cone. (M) 1..0 1,.0 2,.0 2,.0 2,.0 1.1 1.1 1.1 1.1 1.1 0..098 0 0.,098 0 0..098 ambient Y,Y~dicarbethoxypimelonitrile 1..0 2,.0 1.1 1.1 0.,098 0.,098 ambient ambient ethyl a-carbethoxyY-cyanobutyrate 2..0 1.1 0 25° diethyl Y~carbethoxyY-cyanopimelate 1,.0 2..0 2..0 1.1 1.1 1.1 0,.098 0,.098 0 diethyl a-carbethoxyglutarate 1,.0 2..0 1.1 1.1 diethyl Y,Y~dicarbethoxypimelate 1..0 2..0 1.1 1.1 Y-carbethoxy-YcyanopimeIon i t irle a : b : c : d : d*: e : Crown Cone. (M) Temperature °C e Time (hr) % Yield isolated 0.17 4 0.25 A3 0.25 86 80 83 84 90 a a a a a 73 82 b b 121 84 b ambient ambient ambient 3 0.17 13 64 75 67 c c c 0..098 0 ambient 25° 3 96 62 36 d* d 0,.098 0..098 ambient ambient 3 3 8 58 d* d ambient 25° ambient 4 3.5 acrylonitrile as substrate with ethyl cyanoacetate as reactant acrylonitrile as substrate with diethyl malonate as reactant ethyl acrylate as substrate with ethyl cyanoacetate as reactant ethyl acrylate as substrate with diethyl malonate as reactant the same reaction ambient refers to a temperature increase above room temperature for a period of time during the reaction with eventual return to room temperature to 50 p e n d e n t on the s u b s t r a t e 18-crown-6. concentrations Ethyl cyanoacetate in the p r e s e n c e reacted w i t h e q u a l facility w i t h late w h e n of reaction acrylonitrile the R/S r a t i o w a s one to one 18-crown-6 the above r e a c t i o n s times. disubstituted Even in dry products, Y~ c a r and the p r e s e n c e of of 18-crown-6 and e t h y l (1:1). In the absence all had c o n s i d e r a b l e acetonitrile with acry longer 18-crown-6 the bethoxy-Y-cyanopimelonitrile, was isolated. Aoyama 37 ethyl acrylate fluoride and K a n b e ducts were obtained The c o n d i t i o n s synthetic in e t h a n o l w i t h in low y i e l d s of 3 2 % and for the r e a c t i o n s (R/S r a t i o at 4 0 - 5 0 ° C for a c r y l o n i t r i l e and substituted ethyl cyanoacetate routes potassium 39%, 1:1) are b e t t e r pro respectively. required and r e f l u x i n g for e t h y l a c r y l a t e . a c e t o n i t r i l e , as s o l v e n t , products with In each c a s e , the d i s u b s t i t u t e d for three and o n e - h a l f h o u r s 18-crown-6 reacted and a c r y l o n i t r i l e as the b a s e . seven h o u r s 39 However, the y i e l d s and compare ethanol with of the d i favorable to other to these products. obtained Y"Carbethoxy-Y-cyanopimelonitnle 129 Bruson in a 9 8 % c r u d e y i e l d anoacetate C. acrylonitrile and e t h y l (R/S r a t i o 2:1) in d i o x a n e w i t h T r i t o n B at 12 8 Similarly, Tenniswood cyanopimelate in an isolated anoacetate with 1:1) from r e a c t i n g 3-cyanoethyl in e t h a n o l w i t h obtained 86% y i e l d diethyl 30-35° Y^carbethoxy-y from r e a c t i n g toluene-p-sulphonate s o d i u m at room t e m p e r a t u r e Diethyl malonate cy ethyl (R/S for reacted w i t h each s u b s t r a t e , - cy ratio 18 h o u r s . aery- 51 lonitrile and e t h y l c y a n o a c e t a t e . p r e s e n c e of With acrylonitrile 1 8 - c r o w n - 6 , d i e t h y l m a l o n a t e yielded tuted p r o d u c t y, y d i c a r b e t h o x y p i m e l o n i t r i l e w h e r e the R/S r a t i o s w e r e one to one (1:2). (1:2), disubsti in b o t h cases and the R/S only the m o n s u b s t i t u t e d a-carbethoxy-y-cyanobutyrate w a s found. product, With ethyl ratio ethyl acrylate in the p r e s e n c e of 1 8 - c r o w n - 6 , d i e t h y l m a l o n a t e y i e l d e d the m o n o and d i s u b s t i t u t e d (1:1) the product, diethyl a-carbethoxygluterate, ydicarbethoxypimelate. w a s isolated as Y, y d i c a r b e t h o x y g l u t e r a t e crown-6 was present the only p r o d u c t was isolated. isolated w a s d i e t h y l for the r e a c t i o n s w i t h actions containing product, However, no the pro ratio diethyl if n o 1 8 - and the R/S r a t i o w a s one to two In each c a s e , a g a i n , the r e a c t i o n shorter W h e n the R/S (1:2) only the d i s u b s t i t u t e d ratio. monosubstituted m a j o r p r o d u c t with the m i n o r p r o d u c t , the d i s u b s t i t u t e d w a s one to two both p r o d u c t s d e p e n d i n g on the R/S W h e n the R/S r a t i o was one to one d u c t , d i e t h y l y, the (1:1) and one to two Yet, w h e n n o 18-crown-6 w a s p r e s e n t w a s one to two the in (1:2) a-carbethoxygluterate. times w e r e considerably 18-crown-6 p r e s e n t than the re 18-crown-6. 3 8 39 Kanbe ' and a c r y l o n i t r i l e base. ratio Kanbe reacted d i e t h y l m a l o n a t e w i t h e t h y l in e t h a n o l w i t h p o t a s s i u m found d i e t h y l m a l o n a t e 1:1) y i e l d e d fluxing f l u o r i d e as and e t h y l a c r y l a t e only the m o n o s u b s t i t u t e d a-carbethoxygluterate acrylate product, the (R/S diethyl w i t h an isolated y i e l d of 55% after for f o u r t e e n h o u r s . On the other h a n d , K a n b e re found 52 diethyl malonate and acrylonitrile (R/S ratio 1:2) only the disubstituted product, diethyl y, y-dicarbeth nitrile with an isolated yield of 68% and required seven hours at 50-60° C. However, the use of conjunction with 18-crown-6 gave equivalent yields, as above, with less stringent conditions. In fact, t compare favorable to yields obtained by other synthet Tenniswood obtained both ethyl a-carbethoxy-y-cyanopimelonitrile and y, y-dicarbethoxypimelonitrile in isolate yields of 33% and 34%, respectively from reacting malonate and $-cyanoethyl toluene-p-sulphonate (R/S ratio in refluxing ethanol for eight hours with sodium. R/S ratio was one to two (1:2), only y, y-dica 129 lonitrile was isolated in 80% yield. Bruson isolate y-dicarbethoxypimelonitrile in 82% yield from the reactio diethyl malonate and acrylonitrile (R/S ratio 1:2) with Triton B as the base at room temperature fo Bankertobtained diethyl a-carbethoxyglutarate and diethy y, y-dicarbethoxypimelate in 21 and 18% isolated yie spectively by reacting diethyl malonate and beta-propiol (R/S ratio 1:1) in ethanol at 30° with sodium. Attempted Michael condensation of cyclohexanone with ethyl acrylate in the presence of 18-crown-6 yielded small amounts of the mono and disubstituted products, 2-oxocylohexanepropionate and diethyl 2-oxocyclohexanebis (dipropionate), respectively, even at reflux conditions. 12 8 641 r low y i e l d s and long r e a c t i o n a b i l i t y of the f l u o r i d e ing to the in r e a c t i o n times of the M i c h a e l two closely pair a s s o c i a t i o n . c e n t r a t i o n of p o t a s s i u m centration of "naked" condensa related p r o c e s s e s , s o l u b i l i t y fluoride lead can be e x p l a i n e d In the p r e s e n c e of 1 8 - c r o w n - 6 lity of p o t a s s i u m in enolate. tions caused by the p r e s e n c e of 1 8 - c r o w n - 6 considering to the ions to remove the alpha p r o t o n f o r m a t i o n of the The decrease time may be related >3 increases. fluoride fluoride the and ion- solubi W i t h the i n c r e a s e d con in s o l u t i o n , an increased ion w a s e x p e c t e d by since con 18-crown- 102—119 6 has been shown to i n c r e a s e With a reduction pected ion-pair in s o l v a t i o n to show an increased the "naked" f l u o r i d e reactivity c r e a s e in the M i c h a e l d o n o r c a r b a n i o n s h i f t i n g of the e q u i l i b r i u m s w i t h shorter dissocation. should lead to an concentration to the M i c h a e l adduct r e a c t i o n times w h i c h are ion w a s and a products conducted Michael condensations with potassium fluoride bility in e t h a n o l w a s d e t e r m i n e d fluoride in noticed. A s noted e a r l i e r , Kanbe and A o y a m a of p o t a s s i u m ex in a l c o h o l . The solu by 147 Germuth. potassium The d a t a is t a b u l a t e d fluoride temperatures However, than is m o r e s o l u b l e in T a b l e 3. As noted, in e t h a n o l at the corresponding in a c e t o n i t r i l e even w i t h 1 8 - c r o w n - 6 present. the r e a c t i o n c o n d i t i o n s used by Kanbe and A o y a m a h a r s h e r and r e q u i r e d longer t i m e s . T h e longer t i m e s are d o u b t l y d u e to s o l v a t i o n e f f e c t s , n a m e l y h y d r o g e n and the d e c r e a s e of the s o l u b i l i t y of p o t a s s i u m were un148 bonding, fluoride at 54 T a b l e 3. S o l u b i l i t y of KF in A n h y d r o u s E t h a n o l per m o l e of e t h a n o l ) Temperature salt KF 20 0.00084 ( 1.4x10 30 0.00076 (1.3xl0" 2 M) 40 0.00054 (9.0xl0" 3 M) 45 0.00039 50 0.00018 55 0.00008 higher temperatures. and e t h o x i d e (moles of The e q u i l i b r i u m M) (10) b e t w e e n in the p r e s e n c e of p o t a s s i u m ethanol fluoride appears to be F~ + EtOH j v EtO~ + HF (10) 41 negligible. Yasuda found p r i m a r y and acted e a s i l y w i t h a c r y l o n i t r i l e in the p r e s e n c e of c a t a l y s t s to form the c o r r e s p o n d i n g ever, when ethanol was used secondary alcohols trile w a s o b t a i n e d . t i v e s in their in the p r e s e n c e of p o t a s s i u m Kanbe and A o y a m a studies. alkaline alkoxypropionitriles o r i d e w i t h a c r y l o n i t r i l e , n e g l i g i b l e or no re How flu ethoxypropropioni- found no a l k o x y deriva 55 Knoevenagel Condensations The K n o e v e n a g e l c o n d e n s a t i o n s w e r e c a r r i e d out benzaldehyde and in one case c y c l o h e x a n o n e ethylcyanoacetate, actants. as s u b s t r a t e s d i e t h y l m a l o n a t e , and m a l o n o n i t r i l e The R/S r a t i o w a s m a i n t a i n e d at one to one The r e s u l t s of these r e a c t i o n s are t a b u l a t e d Examination of T a b l e 4 indicated out in the p r e s e n c e of 18-crown-6 case of d i e t h y l m a l o n a t e In the The low yield only any p r o d u c t e v e n w i t h and h a r s h e r r e a c t i o n for d i e t h y l m a l o n a t e may be related ,) 4. have s h o r t e r t i m e s . fluxing b e n z e n e . n in T a b l e carried 18-crown-6 y i e l d e d (t as r e - (1:1). condensing with benzaldehyde, c a r b o n y l or a slower s u b s e q u e n t with the r e a c t i o n s the r e a c t i o n w i t h The half-times using conditions to slow attack on the step, the d e h y d r a t i o n for the c o n d e n s a t i o n s w i t h re- step. malononitrile 1/2 and e t h y l c y a n o a c e t a t e crown-6 as r e a c t a n t s in the p r e s e n c e of 1 8 - are all of the same o r d e r , o n e - h a l f m i n u t e . v a l u e of h a l f - t i m e for e t h y l c y a n o a c e t a t e w i t h the h a l f - t i m e (1.5 m i n . ) cyanoacetate oride under for the c o n d e n s a t i o n and b e n z a l d e h y d e w i t h a c e t i c acid as c a t a l y s t compares e-aminocaproic in r e f l u x i n g b e n z e n e . This favorable of ethyl acid and Potassium s i m i l a r c o n d i t i o n s , as a b o v e , y i e l d e d flu half-times for the same r e a c t i o n of 10 m i n u t e s w i t h a c e t i c acid p r e s e n t 149 and 16 m i n u t e s w i t h no a c e t i c acid. The expected product form the c o n d e n s a t i o n of e t h y l c y a n o a c e t a t e and b e n z a l d e h y d e w a s the trans p r o d u c t w i t h r e s p e c t 150 groups.• L D U to the a r y l and carbethoxy Table 4. Knoevenagel Absence Product Condensations of initiated by Potassium Fluoride in the Presence Substrate Reactant Crown Cone. Cone. Cone. (M) (M) benzylidene- Temperature °C (M) 0.2 ambient 0 25° malononitrile Time (hr) 0.17 16.8 ^1/2* (min.) % Y i e l d isolated 0.5 77 9.1 84 cyclohexylidene- 2 0.2 ambient 0.17 0.5 71 malononitrile 2 0 ambient 1.0 7.5 68 0.2 ambient 0.2 0.5 0 25° 144 46 reflux 96 reflux 96 33 0 ethyl benzylidene- 81 cyanoacetate ethyl 0.2 0 benzylmalonate a : benzaldehyde b : cyclohexanone c : benzaldehyde as substrate with ethyl d : benzaldehyde as substrate with diethyl * : time for and 18-Crown-6 as as i n i t i a l substrate substrate base peak with malononitrile as with malononitrile area t o reactant as reactant cyanoacetate malonate decrease by as 50% as reactant reactant 57 Rand conducted similar r e a c t i o n s using p o t a s s i u m oride as the b a s i c c a t a l y s t tions r e q u i r e d heating four h o u r s e x c e p t at 2 5 ° C. in b e n z e n e . H o w e v e r , the condensed with The r e a c t i o n of d i e t h y l m a l o n a t e w i t h times for the r e a c t i o n s benzaldehyde The y i e l d s , t h o u g h , w h e n comparable 18-crown-6 were was 18-crown-6 w a s p r e s e n t to the y e i l d s o b t a i n e d by Rand, s y n t h e t i c routes except products. carried out by Rand longer than the r a c t i o n times r e q u i r e d w h e n present. twenty- benzaldehyde at 6 0 ° C for t w e n t y - f o u r h o u r s y i e l d e d no i s o l a t e d The r e a c t i o n reac at 6 0 % C for p e r i o d s of six to for m a l o n o n i t r i l e flu are as w e l l a s , by for the d i e t h y l m a l o n a t e other condensation. 30 Aoyama yield obtained from c o n d e n s i n g e t h y l c y a n o a c e t a t e (R/S r a t i o 1:1) sium ethyl b e n z y l i d e n e c y a n o a c e t a t e in r e f l u x i n g f l u o r i d e as c a t a l y s t . ethanol Pratt ing b e n z y l i d e n e m a l o n o n i t r i l e , ethyl x and Pratt carried r a t i o of one to one has obtained nonitrile Cope similarly the i n c r e a s e and 89%, re obtained piperidine from cyclohexylidenemalo- (R/S r a t i o 1:1) w i t h p i p e r i d i n e and cy as the b a s e . in the K n o e v e n a g e l 18-crown-6 w a s u n d o u b t l y in the s o l u b i l i t y R/S removing water from c o n d e n s i n g m a l o n o n i t r i l e in the p r e s e n c e of follow out these r e a c t i o n s w i t h an The s h o r t e r r e a c t i o n times noted actions 72%, (1:1) in r e f l u x i n g b e n z e n e w i t h in 8 0 % y i e l d clohexanone the benzylidenecyanoacetate, and c a p r o i c acid p r e s e n t and c o n t i n u a l l y ] 39 the system. benzaldehyde for one h o u r w i t h p o t a s - and e t h y l b e n z a l m a l o n a t e w i t h y i e l d s of 74%, spectively. 75% in of p o t a s s i u m fluoride re related and ion to 58 pair d i s s o c i a t i o n . potassium "naked" With an increase in the c o n c e n t r a t i o n fluoride in s o l u t i o n , an increased fluoride ions w a s e x p e c t e d ion pair d i s s o c i a t i o n . concentration since c o n c e n t r a t i o n of 18-crown-6 This i n c r e a s e in "naked" can be expected to i n c r e a s e the should increases fluoride ion concentration of the c a r b a n i o n of the active m e t h y l e n e c o m p o u n d . c r e a s e of the c a r b a n i o n c o n c e n t r a t i o n of This i n shift the e q u i l i b r i u m toward a d d i t i o n across the c a r b o n y l followed by d e h y d r a tion to the d o u b l e bond adduct. Alkylations The a l k y l a t i o n s w e r e carried out in a c e t o n i t r i l e using b e n z y l b r o m i d e , b e n z y l c h l o r i d e , and m e t h y l iodide as s u b strates w i t h d i e t h y l m a l o n a t e was maintained in T a b l e at o n e to one as the r e a c t a n t . (1:1). T h e R/S r a t i o T h e r e s u l t s are t a b u l a t e d 5. E x a m i n a t i o n of T a b l e 5 reveals ried out in the p r e s e n c e of 1 8 - c r o w n - 6 the r e a c t i o n s w i t h o u t 18-crown-6. that the r e a c t i o n s car has b e t t e r y i e l d s than The r e a c t i o n s involving the b e n z y l h a l i d e s y i e l d e d no isolated p r o d u c t s w h e n w a s not p r e s e n t . The h a l f - t i m e s tions show the b r o m i d e b a n i o n m o r e readily o r d e r of leaving (t.^^^) f ° r these two r e a c w a s d i s p l a c e d by d i e t h y l m a l o n a t e than the c h l o r i d e . group abilities. the r e a c t i o n . car T h i s w a s the e x p e c t e d H o w e v e r , the d i s p l a c e m e n t of iodide from m e t h y l iodide by the d i e t h y l m a l o n a t e was extremely 18-crown-6 carbanion slow as noted by the length of time r e q u i r e d for T h e r e is n o e x p e r i m e n t a l e v i d e n c e a v a i l a b l e , as Table 5. Alkylations Iniated by Potassium Fluoride in the Presence and Absence of 18-Crown-6 Product Substrate Cone. (M) Reactant Cone. (M) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.12 0 0.12 0 25 25 25 25 41 41 186 186 diethyl dibenzylmalonate 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.12 0 0.12 0 25 25 25 25 41 41 186 186 diethyl methylmalonate 2.5 2.5 2.6 2.6 0.26 0 25 25 1392 1392 diethyl benzylmalonate a b c Crown Cone. (M) Temperature °C Time (hr) benzyl bromide as substrate and diethyl malonate as reactant benzyl chloride as substrate and diethyl malonate as reactant methyl iodide as substrate and diethyl malonate as reactant t * (min.) % Yield isolated 7.4 63 0 56 0 1 / 2 49.5 7.4 49.5 12 0 10 0 53 26 60 yet, to e x p l a i n this a n o m a l y . halide, monoalkylated in similar y i e l d s . monoalkylated In both cases w i t h the and d i a l k y l a t e d products were In the case of m e t h y l benzyl isolated i o d i d e , only the p r o d u c t w a s isolated w i t h no e v i d e n c e of d i a l kylated product. p r o d u c t s compare O v e r a l l , t h o u g h , the y i e l d s of the favorably to other s y n t h e t i c alkylated routes. 141 Sen chloride found d i e t h y l m a l o n a t e reacted w i t h (R/S r a t i o n sium c a r b o n a t e product 1:1) in dry e t h a n o l w i t h a n h y d r o u s and p o t a s s i u m isolated to r e f l u x c a r b o n a t e used f l u o r i d e as the b a s e . potas The only from the r e a c t i o n w a s the m o n o s u b s t i t u t e d duct, diethyl benzylmalonate heated benzyl (64%). for e i g h t h o u r s . The reaction mixture The need in the r e a c t i o n w a s not m a d e for the pro was potassium clear. 152 Leucks isolated d i e t h y l b e n z y l m a l o n a t e diethyl dibenzylmalonate and b e n z y l c h l o r i d e presence of sodium. benzylmalonate (12%) from r e a c t i n g d i e t h y l (R/S r a t i o 2:1) Similarly, Marvel in r e f l u x i n g malonate isolated in a b s o l u t e e t h a n o l w i t h sodium. diethyl malonate and m e t h y l iodide absolute ethanol with 18-Crown-6 (R/S r a t i o . . 154 Olivier (80%) and some d i e t h y l the diethyl (51-57%) and some d i e t h y l d i b e n z y l m a l o n a t e diethyl methylmalonate by r e a c t i n g and in a b s o l u t e e t h a n o l 153 r e a c t i n g d i e t h y l m a l o n a t e and b e n z y l c h l o r i d e in r e f l u x i n g (85%) by 1:1) isolated dimethylmalonate (R/S r a t i o 1:1) sodium. Complexes In the c o u r s e of this r e s e a r c h three n o v e l non-metallic 51 18-crown-6 complexes were plexes were formed with succinonitrile. isolated, see T a b l e The c y a n o g e n b r o m i d e complex for a two to one c o m p l e x 18-crown-6 m o l a r r a t i o ) . trile and s u c c i n o n i t r i l e point complexes the to calculated (nitrile to 18-crown-6 point bro molar melting for each constituent complexes. Single c r y s t a l x-ray analysis 1 8 - c r o w n - 6 has shown the c o m p l e x as as for the m a l o n i - Each c o m p l e x , h o w e v e r , did h a v e a h i g h e r composing decom (cyanogen b r o m i d e agreed w i t h the than the c o r r e s p o n d i n g m e l t i n g complex slowly and low n i t r o g e n and The analytical data for a two to one complex ratio). com the loss of c y a n o g e n b r o m i d e , noted b y the a n a l y t i c a l d a t a indicating values Those cyanogen b r o m i d e , m a l o n o n i t r i l e , posed out of s o l u t i o n w i t h mide content 6. depicted in F i g u r e s of the c y a n o g e n to d e f i n i t e l y 1 and 2. be a two to one F r o m the x-ray t u r e , the c y a n o g e n b r o m i d e m o l e c u l e s w e r e above and b e l o w the 18-crown-6 bromide/ found to be struc located ring w h i c h w a s p l a n a r . The c y a n o g e n b r o m i d e m o l e c u l e s w e r e o r i e n t e d w i t h the b r o m i d e m o i ety aligned toward the center of the 18-crown-6 bromide moiety was directly crown-6 inserted ring u n l i k e the c o m p l e x e s toluene-diazonium ring. in the h o l e of the 1 8 1 formed by C r a m ^ tetrafluoroborate Neither and 1 18-crown-6. with p- Cram + postulated the c o m p l e x e s g r o u p into the hole of involved i n s e r t i o n of the linear 18-crown-6 based on PMR Differential thermal analysis metric analysis (TGA) w a s carried (DTA) and out on the -N=N shifts. thermogravimalononitrile Table 6. Elemental Analysis of 18-Crown-6 Complexes Complex Complex Formula Cyanogen bromide C H 0 (CNBr) Malononitrile C 12 24°6 3 2 2 2 Succinonitrile C l2 24°6 4V2 2 a b : : calculated experimental l 2 2 g H 6 ( C H ( C H N 2 ) ) MP(C°) %C Elemental Analysis %H %0 %N %Br 64. 5~ 68.0 35.61 38.45 5.08 5.81 5.89 5.02 20.15 22.33 33.57 28.39 127.0129.0 54.43 54.47 7.12 7.14 14.14 14.16 24.21 24.23 - 56.55 57.06 7.60 7.68 22.62 21.98 13.20 13.28 - 8384 Figure 1. Overview Oxygen : of Cyanogen Bromide/18-Crown-6 Compl Figure 2. Sideview Oxygen : of Cyanogen Bromide/18-Crown-6 Complex 6 5 and s u c c i n o n i t r i l e or e x o t h e r m i c complexes. endothermic t r a n s i t i o n s w e r e found b e f o r e the e n d o t h e r m a s sociated with melting. weight In both cases no The D T A / T G A d a t a s h o w e d negligible losses over the t e m p e r a t u r e r a n g e to m e l t i n g . The t e m p e r a t u r e w h e r e m e l t i n g o c c u r r e d , o b t a i n e d by DTA for malonitrile and s u c c i n o n i t r i l e complexes was respectively, agreeing with capillary 1 3 0 ° C and 8 7 ° C , tube m e l t i n g p o i n t s . T h e n i t r i l e a b s o r p t i o n in the i n f r a r e d 2250 c m - 1 the region 2200- showed a shift to lower v a l u e s w h e n the n i t r i l e s w e r e complexed. Malononitrile tion and s u c c i n o n i t r i l e on c o m p l e x a t i o n . shifted shifted from 2 2 5 1 c m - 1 from 2226 c m Such shifts i n d i c a t e - 1 on complexa to 2 2 2 1 some w e a k e n i n g cm - 1 in bond s t r e n g t h of the n i t r i l e t r i p l e b o n d , a l t h o u g h the s h i f t s are 1 o small. S m a l l s h i f t s w e r e a l s o noted in the complexes compared for the 1 8 - c r o w n - 6 C-NMR the al for the c o m p l e x e s . H o w e v e r , t h e s e c o m p l e x e s can be r e c r y s t a l l i z e d . a s t r o n g a f f i n i t y b e t w e e n the 1 8 - c r o w n - 6 solvents. The obtained. No bonding scheme has been established in n o n - p o l a r when of the c o m p l e x e s . some d e g r e e of a s s o c i a t i o n in s o l u t i o n though no quantitive results were tionality for c a r b o n s and n i t r i l e c a r b o n to the i n d i v i d u a l c o n s t i t u e n t s shifts i n d i c a t e d X J This indicates and the n i t r i l e func 66 CHAPTER IV CONCLUSIONS When potassium fluoride w a s s o l u b i l i z e d in the p o l a r and n o n p o l a r a p p r o t i c b e n z e n e , the "naked" fluoride by 18-crown-6 solvents, acetonitrile ions p r o v e d to be e f f e c t i v e a b a s e c a p a b l e of c a t a l y z i n g M i c h a e l , K n o e v e n a g e l , and tion r e a c t i o n s . quantities. The 18-crown-6 w a s p r e s e n t only The r e a c t i o n times a t w o to one m o l a r complex w i t h C and 8 3 - 8 4 ° C, 18- to the yields methods. Cyanogen bromide, malononitrile, and s u c c i n o n i t r i l e alkyla- 18-crown-6 w a s not p r e The y i e l d s of p r o d u c t s w e r e c o m p a r a b l e o b t a i n e d by o t h e r s t a n d a r d as catalytic for the r e a c t i o n s w i t h c r o w n - 6 p r e s e n t w e r e s h o r t e r than w h e n sent. in and and s u c c i n o n i t r i l e 18-crown-6. The c o m p l e x e s w e r e stable m e l t i n g respectively. form malononitrile at 127-129° 67 CHAPTER V RECOMMENDATIONS Further base in the field of w e a k - b a s e - p r o m o t e d interesting. aprotic studies in the use of the fluoride In a s s o c i a t i o n w i t h solvents should be anion as a reactions should these s t u d i e s , other studied as p o s s i b l e are DMF, D M S O , or HMPA. 18-crown-6 m a y the fluoride X-ray solubility sideration plexes with and d e c r e a s e r e a c t i o n crystallography crown-6/nitrile vide insight These s o l v e n t s w i t h complexes into the r e a s o n should be g i v e n to attempts the h a l i d e d e r i v a t i v e s crystallographic analysis fails time. on the 1 8 and p r o formation. at forming the of the n i t r i l e s for the increase their s t r u c t u r e for such c o m p l e x Such N-methylpyrrolidine, should be c o n d u c t e d to d e t e r m i n e polar solvents. s o l v e n t s w h i c h w o u l d be of interest prove light atom if Con com x-ray complexes. 68 BIBLIOGRAPHY 1. E . K n o e v e n a g e l , B e r . , 2 7 , 2345 (1894). 2. E . K n o e v e n a g e l , ibid., (1896) 3. G. C h a r l e s , B u l l . Soc. Chim. F r a n c e . , 1559 4. G. C h a r l e s , ibid., 1566 (1963). 5. G. C h a r l e s , ibid., 1573 (1963). 6. G. C h a r l e s , ibid., 1576 (1963). 7. S. P a t a i l and Y. I s r a e l i , J. Chem. 8. S. P a t a i l and Y. I s r a e l i , ibid., 9. S. P a t a i l and Y. I s r a e l i , ibid, 29, 172 Soc, 2025 2030 (1963). 2020 (1960). (1960). (1960). 10. S. P a t a i l and Y. I s r a e l i , ibid., 11. A . C o p e , J. A m e r . Chem. 12. A . C o p e , C. H o f m a n n , C. W y c h o f f , (1941). 63,, 3452 13. H.O. H o u s e , "Modern S y n t h e t i c R e a c t i o n s , " W . A . B e n j a m i n , Inc., M e n l o P a r k , C a l i f o r n i a , 1 9 7 2 , p p . 6 4 6 - 6 5 3 . 14. G. J o n e s , O r g a n i c 15. E. Berqmann, (1959) . 16. H. B r u s o n , 17. S. P a t a i and Z. R a p p o r t , J. Chem. 18. S. P a t a i and Z. R a p p o r t , 19. S. P a t a i and Soc, Reactions, D. Ginsburg, ibid., 5, 79 2038 (1960). 5 9 , 2327 (1937). and E . H e r d e n b e r g h , 1 5 , 204 ibid., (1967). and R. P a p p o , ibid., 10, 179 (1949). Soc, 377 ibid., 383 (1962). Z. R a p p o r t , ibid., 392 (1962). 20. S. P a t a i and Z. R a p p o r t , ibid., 396 (1962). 21. S. P a t a i , S. W e i n s t e i n , and Z. R a p p o r t , (1962). ibid., 1741 (1962). 69 22. H.O. H o u s e , "Modern S y n t h e t i c O r g a n i c R e a c t i o n s , " B e n j a m i n , Inc., M e m l o P a r k , C a l i f o r n i a , 1 9 7 2 , p p . 23. W. Sheppard and C. S h a r t s , "Organic F l u o r i n e C h e m i s t r y , " W . A . B e n j a m i n , Inc., New Y o r k , 1969, p p . 1 5 - 1 7 . 24. L. P a u l i n g , "The N a t u r e of the C h e m i c a l B o n d , " 3rd Ed., Cornell University Press, New York, 1960, pp. 459-464. 25. W . Sheppard and C. S h a r t s , "Organic F l u o r i n e C h e m i s t r y , " W . A . B e n j a m i n , Inc., New Y o r k , 1969, p p . 9 8 - 1 0 8 . 26. A . N e s m e y a n o v , K. P e c h e r s h a y a , and G. V r e t s h a y a , N a u k . S.S.S.R., O t d e l Khim. N a u k , I z v e s t i y a , 240 Chem. A b s t . , 4 2 , 4924g (1948) Akad. (1948) 27. L. Rand. W. W a g n e r , P. W a r n e r , L. K o v a r , J. O r g . 27^, 1034 (1962) . Chem., 28. L. Rand and M . A l b i n a h , 29. L. Rand and R. D o l i n s k i , ibid., 30. II. B a b a , II. M i d o r i k a w a , and S. A o y a m a , J. Inst., ( T o k y o ) , 52, 99 ( 1 9 5 8 ) . Sci. 31. A. S a k u r a i , H. M i d o r i k a w a , (1958). ibid., 32. M. I g a r a s k i , H. M i d o r i k a w a , (1958) . 33. M. I g a r a s k i , H. M i d o r i k a w a , and S. A o y a m a , i b i d . , (1958). 34. A. Sakurai, Sci, Paper S3, 250 ( 1 9 5 9 ) . 35. L. Rand, J. S w i s h e r , and C. C r o n i n , J. O r g . Chem., 3505 ( 1 9 6 2 ) . 36. L. Rand, D . H a i d e r k e w y c h , (1966) . 37. H. Y a s u d a , H. M i d o r k a w a , S. A o y a m a , S c i . P a p e r C h e m . R e s e a r c h , (Tokyo) , 53, 19 (19597^ Inst. P h y s . 38. S. K a n b e , H. Y a s u d a , and H. M i d o r i k a w a , (1964) . 58, 118 39. S. K a n b e and H. Y a s u d a , ibid., ibid., 2 5 , 1837 3 0 , 48 W.A. 595-623. (1960). (1965). and S. A o y a m a , Research 5 2 , 112 and S. A o y a m a , ibid., _52, 105 Inst. P h y s . Chem. Research, and R. D o l i n s k i , ibid., 5 8 , 148 ibid., (1964). 5 2 , 151 (Tokyo) , 27, 3_1, 1272 7 0 4 0 . A . O s t a s z y a n s k i S e r . 4 1 . S . C h e m . K a n b e , a n d . 1 1 , a n d J 5 6 1 H . . W i e l g a t , B u l l . A c a d . P o l n . S c i . ( 1 9 6 3 ) . Y a s u d a , B u l l . C h e m . S o c . J a p . , 3 9 , 2 5 4 9 ( 1 9 6 6 ) . 4 2 . J . 4 3 . A . P a t t e r s o n S . 1 9 2 9 a n d E . L e G o f f , 4 6 . J A p s i m o n , . R . . i b i d . , W i e l g a t , a n d 4 0 , T . 2 7 1 5 ( 1 9 6 7 ) . V r b a n s k i , T e t r a h e d r o n , H . Y a s u d a , B u l l . C h e m . S o c . J a p . , 4 1 , 1 4 4 4 . 4 5 . 4 8 , J B a r n e s , ( 1 9 6 9 ) . K a n b e ( 1 9 6 8 ) 4 7 . M . O s t a s z y a n s k i , 2 5 , 4 4 . a n d 3 0 6 4 J . A m e r . J . C h e m . H a r p e r , S o c . , a n d B . 8 4 , 3 9 7 5 T a i s h e s , ( 1 9 6 2 ) . C a n a d i a n J . C h e m . , ( 1 9 7 0 ) . C h a m b e r s , R . S t o r e y , a n d W . M u s g r o v e , C h e m . C o m m . , 3 8 4 ( 1 9 6 6 ) . 4 8 . J . H a y a m i , N . O n o , a n d N . O n o n , A . K a j i , T e t r a h e d r o n L e t t . , 1 3 8 5 ( 1 9 6 8 ) . 4 9 . J 5 0 . R . 5 1 . J . H a y a m i , B a r t s c h , . H a y a m i , 1 6 2 8 . N . O r g . O n o , N . O n o , 5 3 . W . M i l l e r , 3 0 9 1 i b i d . , K a j i , C h e m . , a n d J 4 4 , 3 5 , A . i b i d . , 1 0 2 3 K a j i , 2 7 2 7 ( 1 9 6 8 ) . ( 1 9 7 0 ) . B u l l . C h e m . S o c . J a p . , 4 4 , . 1 3 6 9 F r i e d , ( 1 9 7 1 ) . a n d H . G o l d w h i t e , J . A m e r . C h e m . S o c , ( 1 9 6 0 ) . 5 4 . F . N a s a 5 5 . C . P e d e r s e n , J 5 6 . C . P e d e r s e n , i b i d . , 5 7 . C . P e d e r s e n , F e d . 1 3 0 5 A . ( 1 9 7 1 ) . 5 2 . 8 2 , J a n d a n d L . R o n z i n i , . A m e r . J . C h e m . C h e m . 8 9 , S o 7 0 1 7 P r o c . , c S o c . , 8 9 , P e r k i n 2 4 9 5 I , 3 4 0 ( 1 9 6 7 ) . ( 1 9 6 7 ) . F e d . A m e r . S o c . E x p . B i o l . , ( 1 9 6 8 ) . 5 8 . C . P e d e r s e n , C h e m i c a l a n d 5 9 . C . P e d e r s e n , J C h e m . 6 0 . C . P e d e r s e n , i b i d . . A m e r . , 9 2 ^ , E n g . 3 9 1 ( 1 9 7 4 ) . N e w s , S o c . , 9 _ 2 , ( 1 9 7 0 ) . 4 6 , 3 8 6 2 6 ( 1 9 7 0 ) . ( 1 9 7 0 ) . 2 7 , 71 61. C. P e d e r s e n , J. O r g . C h e m . , 3 6 , 1960 62. J. Dale and P. K r i s t i a n s e n , C h e m . C o m m . , 670 63. R. G r e e n e , T e t r a h e d r o n 64. G. G o e k e l , D. C r a m , C. L i o t t a , H. H a r r i s , and F. C o o k , Org. C h e m . , 39., 2445 ( 1 9 7 4 ) . J. 65. F. C o o k , T. C a r u s o , M . B y r n e , C. B o w e r s , D. S p e c k , and L i o t t a , T e t r a h e d r o n L e t t . , 4029 ( 1 9 7 4 ) . C. 66. C. P e d e r s e n , J. O r g . C h e m . , 3 6 , 254 67. J. L o c k h a r t , A. R o b s o n , M. T h o m p s o n , S i s t e r D. F u t a d o , C. K a u r a , and A. A l l a n , J. C h e m . S o c . P e r k i n I, 577 ( 1 9 7 3 ) . 68. J. B r a d s h a w , J. H u i , B . H a y m o r e , J. C h r i s t e n s e n , and I z a t t . J. of H e t e r o c y c l . C h e m . , 1 0 , 1 ( 1 9 7 3 ) . 69. G. N e w k o m e and J. R o b i n s o n , C h e m . C o m m . , 831 70. J. R i c h m a n and T. A t k i n s , J. A m e r . C h e m . S o c , (1974) . 71. J. C h r i s t e n s e n , D. E a t o u q h , and R. I z a t t , C h e m i c a l 7 £ , 351 (1974) . 72. S. K o p o l o w , T. H o g e n E s c h , and J. S m i d , M a c r o m o l e c u l e s , 4_, 359 ( 1 9 7 1 ) . 73. S. K o p o l o w , T. H o g e n E s c h , and J. S m i d , ibid. , <6, 133 (1973) . 74. S. K o p o l o w , Z. M a c h a c e k , K. W o n g , T. H o g e n E s c h , and J. Smid, Polym. Prep. , Amer. Chem. S o c , Div. Polym. Chem. , 1 3 , 259 (1972) . 75. K. W o n g , S. S h a h , S. K o p o l o w , and J. S m i d , P o l y m . P r e p r i n t s , A m e r . C h e m . S o c . , D i v . P o l y m . C h e m . , 1 5 , 285 (T97 4 ) . 76. D. B r i g h t and M. T r u t e r , J. C h e m . S o c . 77. M . B u s h and M . T r u t e r , C h e m . C o m m . , 1439 78. D. B r i g h t and M . T r u t e r , N a t u r e , 2 2 5 , 176 79. M . B u s h and M. T r u t e r , J. C h e m . S o c . 80. P. M a l l i n s o n and M . T r u t e r , J. C h e m . S o c (1972) . L e t t . , 1793 (1971). (1971). (1972). (1971). R. (1973). 9 6 , 2268 ( B ) , 1544 Reviews, (1970). (1970). (1907). ( B ) , 1440 (1971). P e r k i n I I , 1818 72 81. D . F e n t o n , M. M e r c e r , and M. T r u t e r , B i o c h e m . R e s . Comm., 48, 10 ( 1 9 7 2 ) . 82. M. Bush and M. T r u t e r , J. Chem. 83. M. Bush and M. T r u t e r , ibid., 84. N . D a l l e y , D . Smith, R. Izatt, and J. C h r i s t e n s e n , Comm., 90 ( 1 9 7 2 ) . 85. D. F e n t o n , M. M e r c e r , N . P o o n i a , and M . T r u t e r , Comm., 66 ( 1 9 7 2 ) . 86. M. M e r c e r and M. T r u t e r , J. Chem. 87. M. M e r c e r and M. T r u t e r , ibid., 88. A . L a y t o n , P. M a l l i n s o n , D . P a r s o n s , and M. T r u t e r , Comm., 694 (1973) . 89. R. Izatt, J. R y t t i n g , D . N e l s o n , B . H a y m o r e , and C h r i s t e n s e n , S c i e n c e , 1 6 4 , 443 ( 1 9 6 9 ) . 90. R. Izatt, D . N e l s o n , J. R y t t i n g , B . H a y m o r e , and J. C h r i s t e n s e n , J. A m e r . Chem. S o c , 9 3 , 1619 ( 1 9 7 1 ) . 91. E . A r n e t t and T. M o r i a r i t y , 92. H. F r e n s d o r f f , ibid., 93. H. F r e n s d o r f f , ibid. , 93^, 4684 94. A . C . Su and J. W e i h e r , 95. P. B i r k b e c k , D . G r a c e , and T. S h e p p a r d , L e t t . , 7, 801 ( 1 9 7 1 ) . 96. B . T a b n e r and T. W a l k e r , J. Chem. S o c . P e r k i n (1973). 97. M. W a t t s , M . Lu, and M. E a s t m a n , J. P h y s . Chem., (1973) . 98. N . P o o n i a , J. A m e r . Chem. S o c , 99. E . Schori and J. J a g u r - G r o d z i n s k i , 935 ( 1 9 7 2 ) . Soc. Perkin 345 9 3 , 600 Biophys. I I , 341 (1972). (1972). Soc. Dalton, 2469 ibid., and Chem. Chem. 2215 (1973). (1973). 9 3 , 4908 Chem. J. (1971). (1971). (1971). Inorg. Chem., 7, 176 (1968). Inorg. N u c l . 96, 1012 II, 1201 7 7 , 625 (1974). Israel J. Chem., 100. E . Schori and J. J a g u r - G r o d z i n s k i , J. A m e r . C h e m . 9£, 7957 (1972) . 101. G. G o k e l and D . Cram, Chem. Comm., 481 Chem. (1973). 10, Soc, 73 102. T. Hogen Esch and J. Smid. J. A m e r . Chem. S o c , (1969). 103. K. W o n g , G. K o n i z e r , and J. Smid, ibid., 9 2 , 666 104. S. Staley and J. E r d m a n , ibid., 9 2 , 3832 105. J. A l m y , D . G a r w o o d , and D . Cram, 106. J. R o i t m a n and D . Cram, ibid., 9 3 , 2231 107. U. T a k a k i , T. H o g e n E s c h , and J. Smid, ibid., 9 3 , 6760 (1971). 108. T. T h o m a s s e n , T. E l l i n g s e n , and J. V g e l s t a d , A c t a . Scand., 2 5 , 3024 ( 1 9 7 1 ) . 109. S. Smith and M . H a n s o n , J. O r g . C h e m . , 3 6 , 1931 110. A. T s a t s a s , R. S t e a r n s , and W . R i s e n , J. A m e r . Chem. 9 4 , 5247 ( 1 9 7 2 ) . Soc, 111. H. Zaugy, J. R a t a j c z y k , J. L e o n a r d , and A. S c h a e f e r , O r g . Chem. , 3_7, 2249 ( 1 9 7 2 ) . J. 112. U. T a k a k i , T. H o g e n E s c h , and J. Smid, J. P h y s . C h e m . , 2152 ( 1 9 7 2 ) . 113. J. Smid, A n g e w . Chem. 114. M . S z w a r c , ed., "Ions and Ion P a i r s in O r g a n i c R e a c t i o n , " V o l . 1, W i l e y - I n t e r s c i e n c e , N e w Y o r k , 1 9 7 2 , p p . 1 2 6 - 1 3 6 . 115. J. Z a v a d a , M . S v o v o d a , and M . P a n k o v a , T e t r a h e d r o n 711 ( 1 9 7 2 ) . 116. M . M a s k o r n i c h , ibid., 117. R. B a r t s c h , G. P r u s s , D . C o o k , R. B u s w e l l , B . B u s h a w , K. W i e g e r s , J. A m e r . C h e m . S o c , 9 5 , 6745 ( 1 9 7 3 ) . 118. R. B a r t s c h , E . M i n t z , and R. P a r l m a n , ibid., 9 6 , 4249 (1974). 119. R. B a r t s c h and R. K a y s e r , ibid., 9 6 , 4346 120. D . Sam and H. S i m m o n s , ibid., 9 4 , 4024 (1972). 121. D . Sam and H. S i m m o n s , ibid., 9 6 , 2252 (1974). 122. C. L i o t t a and H. H a r r i s , ibid., 9 6 , 2250 ibid., (1970). (1970). 9 2 , 4321 (1970). (1971). Int. Ed. E n g l . , 1 1 , 112 1797 9 1 , 4580 Chem. (1971). 76, (1972). Lett. (1972). (1974). (1974). and 74 123. C. L i o t t a and H. H a r r i s , T e t r a h e d r o n L e t t . , (1974). 124. F. C o o k , C. B o w e r s , and C. L i o t t a , J. O r g . Chem., 39, (1974). 125. L. F i e s e r and M . F i e s e r , "Reagents for O r g a n i c S y n t h e s i s , " J o h n W i l e y and S o n s , I n c . , N e w Y o r k , 1 9 6 7 , p . 1 4 . 126. N . L a n g e , "Lange's H a n d b o o k of C h e m i s t r y , " Book C o m p a n y , N e w Y o r k , 1 9 6 7 , p . 4 4 0 . 127. N . L a n g e , ibid., p . 6 1 4 . 128. G. C l e m o and C. T e n n i s w o o d , 129. H. B r u s o n and T. R i e n e r , J. A m e r . Chem. S o c , (1943). 130. A. T e r e n t y e v . A. K o s t , and S. G u r v i c h , J. of G e n . USSR, 2 2 , 2027 ( 1 9 5 2 ) . 131. L. M i k e s h a , U . S . P a t e n t 132. C. K o e l s c h , J. A m e r . Chem. 133. N . A l b e r t s o n and J. F i l l m a n , ibid., 134. W . P e r k i n , J. Chem. S o c , 135. L. R u z i c k a , A. B o r g e s , A . B r a c k , H e l v . C h e m i e A c t a . 1 7 , 183 ( 1 9 3 4 ) . 136. S. M c E l v a i n (1959) . 137. H. T h o m p s o n , J. O r g . Chem., 138. B . C o r s o n and R. S t o u g h t o n , J. A m e r . C h e m . (1928). 139. A . C o p e and K. H o y l e , ibid., 140. E . G o r n i n g , ed., O r g . S y n . C o l l . , V o l . 3, p . 3 7 7 . 141. A. San and S. S a r m a , J. 142. R. W e a s t , ed., "Handbook of C h e m i s t r y and P h y s i c s , " The Chemical Rubber Co., Cleveland, Ohio, 1971, p. c-361. 143. D e t e r m i n e d by G. E l l e r from c y r s t a l s t r u c t u r e p a r a m e t e r s . E x p e r i m e n t a l in d i e t h y l e t h e r / a c e t o n i t r i l e s o l u t i o n . Soc, 416 2549 (Feb. 8, 65, 2458 2818 2417 3416 McGraw-Hill J. C h e m . S o c , 2,416,336, 28, (1931). 65, 23 Chem. 1949). (1943). (1949). (1904). and R. C l a m p i t t , J. A m e r . Chem. S o c , 3 2 , 1222 6 3 , 733 8 1 , 5590 (1967). Soc, 50, 2825 (1941). Indian C h e m . S o c , 45, 16 (1968). 75 144. H. H a r r i s , P h . D . T h e s i s , G e o r g i a Atlanta, Georgia, 1974. I n s t i t u t e of Technology, 145. J. C o e t z e e , P r o g r . P h y s . O r g . Chem., 4, 45 146. R. B a n k e r t , U . S . P a t e n t 2,705,243 147. F. G e r m u t h , J. F r a n k l i n 148. A . P a r k e r , Q u a r t e r l y R e v i e w s , 16, 163 149. F. P r o u t , A . A b d e l - L a t i f , D a t a , 8, 597 ( 1 9 6 3 ) . 150. Z. R a p p o p o r t and S. P a t a i , B u l l . R e s . C o u n c i l of 10A, 149 ( 1 9 6 1 ) . Israel, 151. E . Pratt and E . W e r b l e , J. A m e r . C h e m . S o c , (1950). 4638 152. H. L e u c h s . B e r . , 4 4 , 1507 153. C. M a r v e l , O r g . S y n . , 2 1 , 99 154. S. O l i v i e r , R e c . T r a v . Chim., 155. F. C o o k , S c h o o l of C h e m i s t r y , G e o r g i a nology, Private Communication. (1967). (March 29, I n s t i t u t e , 2 1 2 , 343 1955). (1931). (1962). and M . K a m a l , J. C h e m , and 72, Eng. (1911). (1941). 55, 1027 (1936). I n s t i t u t e of Tech
© Copyright 2024 Paperzz