148 Session No. 4 Associative and Adaptive Models THE EVOLUTIONARY PROCESS OF RANDOMLY t i o n (genotype) GROWING MUTATED DIGITAL STRUCTURES AS phenotype i n d e t a i l , A MODEL OF EVOLUTION OP L I V I N G OHGANISMS FIRST :) type. F u l l I n f o r m a t i o n t o guarantee s t a b i l i t y is cyclic Fialkowski U n i v e r s i t y o f Warsaw,Poland achievable from the environment. In real l i f e , Technical but only gives " f r a m e " i n f o r m a t i o n about the phenothe Konrad R. does n o t d e t e r m i n e t h e sufficient however, it i s not t o achieve s t a b i l i t y . Sta- b i l i t y must b e m a i n t a i n e d i n t h e p r e s ence o f t h e m u t a t i o n s . Under t h e s e c o n - A b s t r a c t The p a p e r p r e s e n t s the r e s u l t s of research concerning the s t a b i l i t y of an e v o l u t i o n a r y process f o r randomly growing d i g i t a l structures. p u t e r model f o r the mutated genotype case is considered. t h e models changes The com- The g e n o t y p e ( i n the s e t of r u l e s f o r growth) in a random e n v i r o n m e n t a l l y u n o r i e n t e d way, whereas t h e e n v i r o n m e n t assumed a s r a n d o m , f i n i t e a n d r e p e t i t i v e i n a c y c l i c way i s bed. Prom t h e e x p e r i m e n t s i t f o l l o w s that s t a b i l i t y could be a distur- achieved in h e u r i s t i c way a f t e r m u t a t i o n o f t h e genotype and d i s t u r b a n c e s i n t h e e n vironment without mation the b u i l t - in infor- t h e o r g a n Isms must s u r v i v e a n d divide. The c h a i n o f s u r v i v a l s a n d d i - visions gives organism i s r e s u l t s obtained from these r e s u l t s are presented. T h i s sequence c o u l d i n each g e n e r a t i o n b e ended b y t h e u n s u c c e s s f u l g r o w t h and d e a t h o f t h e c u r r e n t e l e m e n t o f sequence. F o r t h e case w i t h o u t spontaneous mu tations i t was shown i n a p r e v i o u s p a - per (1) t h a t w i t h the assumption o f random environment changing in a c y digital structures,which c o u l d be a model of v e r y s i m p l e o r g a n isms can grow, d i v i d e and achieve a (phenotype) That case i s c a l l e d t h e " d e - generation*1 of the sequence. Sometimes however t h e e v o l u t i o n a r y sequence and t h e e n v i r o n m e n t a r e i n dynamic b a l a n c e , a n d t h e n d e g e n e r a t i o n does n o t h a p p e n . The b a l a n c e ( i f it exists) could be broken by: 1. disturbance of (the the environment case d i s c u s s e d i n ( 1 ) ) t y p e ( t h e case d i s c u s s e d i n t h i s p a per). The s e c o n d c a s e i s i m p o r t a n t , ment, "shape" consideration). as t h e c h a n g a b l e g e n o t y p e means d e v e l o p - Introduction the taken i n t o 2 . m u t a t i o n , w h i c h changes t h e g e n o - t h e computer and a n i n t e r p r e t a t i o n o f c l i c way, the evolutionary se- quence ( i n e a c h g e n e r a t i o n o n l y one concerning s t a b i l i t y . The m o d e l , stabile ditions in spite o f the f a c t t h a t the b u i l t - i n informsx ) These computer e x p e r i m e n t s were s u p p o r t e d by a grant from the f o r d Found. increase of complexity, lutionary and e v o - progress. M o d e l 1. Phenotype g r o w t h and d i v i s i o n . The p h e n o t y p e i s c a l l e d i n t h e mo- del a D i g i t a l Structures Definition DI6TRUC.(1). 1. A D i g i t a l Structure,DISTRUC, sequence o f p o s i t i v e , (ci) , is a i n t e g e r numbers i»1,2,...,I Session No. 4 Associative and Adaptive Models The numer I i s 149 c a l l e d the l e n g t h of DISTRUC. Definition 2. The sequence o f DISTRUCs c r e a t e d in t h e r e c u r s i v e g r o w t h and d i v i s i o n process is c a l l e d an Evolutionary Sequence: SB. E a c h DISTRUC i n £ 8 has i t s g e n e r a t i o n number g , u s e d a s a n i n d e x . The I n i t i a l Basic S t r u c t u r e , g=o. IBSTRUCs IBSTRUC has a r e a l w a y s t h e same f o r a l l ES (as the r e s u l t of an ass u m p t i o n c o n c e r n i n g t h e common o r i g i n of life). Definition 3. The g r o w t h p r o c e s s i s the process o f n o n - d e c r e a s i n g change o f ci val- u e s p e r f o r m e d i n t h e d i s c r e t e moments of time t, t = 0 , 1 , . . . , T (measured i n d i s c r e t e time u n i t s : DUT), according to the following equation: 1 w h e r e : R is a random n u m b e r , a n d F has v a l u e 1 or 0 according to the s e t of r u l e s o f g r o w t h shown f u r t h e r . For a l l g, for t=o. the growth process s t a r t s F o r t = 0 DISTRUC i s c a l l e d Basic S t r u c t u r e : BASTRUC f o r g = 0 . BASTRUC. IBSTRUC i s IBSTRUC i s d e n o t e d 150 Session No. 4 Associative and Adaptive Models The g r o w t h c o u l d be f i n i s h e d in a one o f two w a y s : 1. If t h e g r o w i n g DISTRUC the rules of growth, satisfies the growth is s u c c e s s f u l l y f i n i s h e d a f t e r T DUTs. T h e n DISTRUC i s c a l l e d t h e Grown s t r u c ture: of GSTRUC. T is c a l l e d the l i f e time DISTRUC. 2. If t h e g r o w i n g DISTRUC does n o t s a t i s f y the rules of growth, TRUC " d i e s " a f t e r T d DUT. Definition the DIS- S t a b i l i t y T r e s h o l d : S T i s a sequence This is c a l - l e d " d e g e n e r a t i o n " and Td - t h e degeneration time. I n c a s e 1 . GSTRUC d i v i d e s into two paper taken i n t o The d i v i s i o n i s p e r - f o r m e d i n t h e f o l l o w i n g way: r e a l ( i n t h e ALGOL s e n s e ) numbers: For a l l t h e f u r t h e r g r o w t h p r o c e s s and i t s h i s t o r y recorded)• of p o s i t i v e , (Ai) BASTRUCs o f t h e n e x t g e n e r a t i o n ( b u t o n l y one o f t h e s e t w o i s 5. Ai i= 1,2,...,1,1+1 experiments presented i n (Ai) has c o n s t a n t v a l u e s : = 0.8 A10= 3.0 for i= 1,2,...,9 The L e n g t h o f S t r u c t u r e : f i n e d b e f o r e . F o r IBSTRUC, The v a l u e o f D i s for i = 1,2,3f..., I , where E is the the integral part of the number). med u p 2. on the fig.1. the S t a b i l i t y T r e s h o l d : ST I the I n t e r v a l of Regular Growth: positive, D 4. BG is a sequence of r e a l ( i n t h e ALGOL s e n s e ) numbers: (Gi) , i=1,2,...,I,I+1 E a c h BASTRUC of g ' s g e n e r a t i o n has BG determined as: growth process: V and F ( s e e e q . 1 )• are d e t e r - m i n e d f o r each t i n t h e f o l l o w i n g way: t h e B a s i c G e n o t y p e : BG B a s i c Genotype: two i n d i c a t o r s o f t h e The v a l u e s o f i n d i c a t o r s The g e n o t y p e c o n t a i n s : Definition t h i s paper, B o t h o f them h a v e v a l u e 0 o r 1 . G e n o t y p e and t h e r u l e s o f g r o w t h t h e L e n g t h of DISTRUC : 1 = 3. D = 0.5 There are The above g i v e n d e f i n i t i o n s a r e sum- I was d e - constant f o r a l l experiments presented in E n t i e r f u n c t i o n ( f o r p o s i t i v e numbers, this Session No. 4 Associative and Adaptive Models 151 l o w i n g f r o m t h e new v a l u e o f BG. This change i s p e r f o r m e d b y a d d i n g t o one r a n d o m l y choosen G i v a l u e t h e random number f r o m t h e random g e n e r a t o r . These random numbers are e q u a l l y d i s t r i b u t e d from the range: -1.0, 1.0. Sometimes t h e r a n d o m l y c h o o s e n G i ( e . g . G 8 f o r 1=5) does n o t e x i s t i n t h e g i v e n g e n o t y p e . Then t h e m u t a t i o n does n o t o c c u r . MS can occur d u r i n g each d i v i s i o n (see f i g . 1 ) . F o r each t, as l o n g as V = 1 , is zero t v a l u e V becomes (V = 0) s t o p p e d , and and o n l y i f : 1 d e t e r m i n e d as f o l l o w s : If f o r c e r t a i n to if, t h e growth process is continued according to eq. Then F I t occurs equal the growth process is it is the " d e g e n e r a t i o n " case. 3. Mutations I n t h e p r e s e n t e d m o d e l t h e r e a r e two kinds of mutations: 1 . BG's m u t a t i o n s : MG,which change the value of (Gi) 2 . E x p a n d i n g m u t a t i o n s : MB, w h i c h change the value I. B o t h o f them a c c o r d i n g t o t h e g e n e ral t h e o r y o f e v o l u t i o n are n e i t h e r environmentaly, o r DISTRUCtly o r i e n t e d . M G o c c u r s once f o r t h e d e t e r m i n e d period of time i n g i v e n experiment ( e . g . o n c e f o r 1 5 000 DUTs). I t changes one r a n d o m l y choosen v a l u e o f ( G i ) the growth process, during and t h e p r o c e s s i s continued according t o the r u l e s f o l - The b a s i c a s s u m p t i o n s c o n c e r n i n g t h e environment were g i v e n i n ( 1 ) . In a l l e x p e r i m e n t s t h e e n v i r o n m e n t has b e e n s i m u l a t e d a s a sequence o f 500 r a n dom numbers t a k e n f r o m t h e random number t a b l e u s e d i n t h e r e p e t i t i v e , c y c l i c way. The d i s t u r b a n c e s o f t h e e n v i r o n m e n t were s i m u l a t e d a s s k i p s o f s e v e r a l ( u s u a l y o n e ) numbers i n t h e sequence. In the model, ment, f o r the given e x p e r i - t h e d i s t u r b a n c e o c c u r s once f o r the determined p e r i o d of time, on the Session No. 4 Associative and Adaptive Models 152 same b a s i s as MGrs. Exeriments By analogy, is equivalent of 1 second, and R e s u l t s The e x p e r i m e n t s p r e s e n t e d h e r e w e r e the continuation of the research, which has been s t a r t e d f r o m s o c a l l e d " v e r s i o n zero" presented i n ( 1 ) . In contradistinction zero" to the "version a l l f u r t h e r v e r s i o n s were w r i t t e n i n FORTRAN I V f o r IBM 3 6 0 / 5 0 . 1 . " f i r s t v e r s i o n " was the m o d i f i c a - t i o n o f " v e r s i o n z e r o " f o r IBM 3 6 0 w i t h the extension of possible length of DISTRUC to I= 23. duction to " f i r s t v e r s i o n " of the timing automatic p e r t u r b a t i o n of the environment • which is a s a t i s f a c t o r y approximation f o r v e r y simple organisms. I n t h i s scale t h e s i n g l e experiment l a s t s app. 6 days and a l l experiments are e q u i v a l e n t t o o v e r one y e a r o f c o n s t a n t o b s e r v a t i o n . The r e s u l t s a r e p r e s e n t e d o n t h e three hierarchical 1 . Leve levels: one ( t h e l o w e s t ) The l e v e l one ( p r e s e n t e d o n f i g . 2 ) a n example o f d i r e c t g r a p h i c r e c o r d of an experiment. The e v o l u t i o n a r y s e - quence p r e s e n t e d o n f i g . 2 d e v e l o p s the s t a b i l e environment ( w i t h o u t disturbances) the i n t r o d u c - the "second v e r s i o n " of the mutations then the l i f e in the and under t h e i n f l u e n c e o f b o t h t y p e s o f m u t a t i o n s (MG a n d M S ) . 3 . " t h i r d v e r s i o n " was t i o n to t h a t 1DUT t i m e o f a v e r a g e DISTRUC i s 1 0 m i n u t e s , is 2 . " s e c o n d v e r s i o n " was t h e i n t r o and the i f one assumes The g e n e r a t i o n number g i s o n t h e a b s c i s s a ( g = 0 i n d i c a t e s IBSTRUC). subroutines. The arrows under the abscissa i n d i c a t e MG 4 . " f o u r t h v e r s i o n " was t h e i n t r o - m u t a t i o n s . For the experiment the d i s - d u c t i o n t o the " t h i r d v e r s i o n " o f l i m i - t a n c e b e t w e e n two s u c c e s s i v e MG m u t a - tations for t i o n s is the expansion o f s t r u c t u r e s ( t h e way o f s a v i n g CPU t i m e ) matic modification of and a u t o - the s t a b i l i t y 104 DUT. The p h e n o t y p e i s presented as a d o t t e d set of values f o r given g value. ( A l w a y s BASTRUC c i , o ( g ) t h r e s h o l d ( n o t used i n experiments p r e - is presented on the diagrams. sented here). e x p e r i m e n t s max 1 = 9). The s m o o t h l i n e For experiments presented here o n l y is T(g), (the l i f e time). For these The p h e n o t y p e v a l u e s and t h e l i f e t i m e v a l u e s a r e t h e " f o u r t h v e r s i o n " was u s e d . The " f o u r t h v e r s i o n " h a d two p r o g r a m r e a l i z a t i o n s : F o u r t h A and F o u r t h B. U s u a l y F o r t h A was u s e d a s a n e x p e r i m e n t a l g r o u p , w h e r e a s F o u r t h B was a c o n t r o l p r e s e n t e d o n t h e same s c a l e . The P ( g ) (expanding c o e f f i c i e n t , of the diagram) the upper p a r t is presented in another s c a l e and t h e s t a b i l i t y t r e e h o l d (dashed, constant value l i n e ) is drawn t h e r e . T h e g r o u p ( i n t h e same way a s i n t h e b i o l o - presented diagram is a p a r t of the g i c a l experiments) • p e r i m e n t named: The e s t i m a t e d number of observed generations is 50 000 . The a v e r a g e l i f e t i m e f o r one g e n e r a t i o n i s a p p . 6 0 0 DUTs. The s i n g l e e x p e r i m e n t l a s t s 0 . 5 x 1 0 6 o r 1 0 6 DUTs. d e t a i l e d data of level ex- 1106 F o u r t h B ( f o r t h e this e x p e r i m e n t see two). S t a r t i n g f r o m IBSTRUC, g l e expansion (MSs a f t e r the s i n - effect) a nonperi- 153 Session No. 4 Associative and Adaptive Models o d i c sequence e x i s t s r a t i o n. t i l l the 8 t h gene- I n t h e 9 t h and 1 0 t h t h e r e are t h e same, b u t t h e y h a v e d i f f e r e n t l i f e t i m e s . The M G m u t a t i o n o c c u r s a t t h e two M E s ( t h e e f f e c t s a r e v i s i b l e i n t h e end o f l i f e o f t h e 2 9 t h g e n e r a t i o n . v e r y n e x t g e n e r a t i o n a n d marked " x " o n According the diagram). G5 value of BG from 2,00 to 1.76. to 6. The I v a l u e becomes e q u a l The n e x t two MEs o c c u r i n 1 3 t h to t h e r e c o r d i t changes the It does n o t i n f l u e n c e BASTRUC o f t h e 3 0 t h a n d 1 4 t h g e n e r a t i o n s a n d one i n 1 6 t h • g e n e r a t i o n ( w h i c h has b e e n a l r e a d y d e - A f t e r t h a t I is equal t e r m i n e d b y GSTRUC n e a r l y c o m p l e t e l y to 9. From t h e 1 8 t h g e n e r a t i o n the p e r i o d i c sequence, f o r m e d a t t h e t i m e o f MG), b u t i n f l u - described in (1) ences t h e g r o w t h o f DISTRUC i n 3 0 t h starts, with a period equal t o 1 0 ( s e e p e r i o d i c changes o f g e n e r a t i o n . A s o n l y BASTRUCs a r e r e - T(18) to T ( 2 9 ) ) . corded the e f f e c t o f M G are v i s i b l e i n All the phenotypes are 154 Session No 4 Associative and Adaptive Models t h e BASTRUC o f 3 1 s t g e n e r a t i o n . most probable phenotype smaller, is The new, statisticaly CPU t i m e ) • The p a r t o f t h i s e x p e r i m e n t was p r e s e n t e d a s f i g . 2 f o r l e v e l o n e . than the previous one, b u t is O n f i g . 3 t h e numbers o f MG's muta- n o t e x a c t l y d e t e r m i n e d a n d one c a n see t i o n s a r e o n t h e a b s c i s s a . The number o t h e r values o f g e n e r a t i o n s o b s e r v e d b e t w e e n two "shapes") of the phenotype ( o t h e r in 33rd, rations (the last 4 3 r d and 4 9 t h g e n e two a r e l a r g e r t h e p h e n o t y p e s b e f o r e MG6). quence than The s e - successive mutations are on the o r d i nate. The e x p a n d i n g s e q u e n c e ( t h e e f - f e c t o f MEs is nonperiodic. mutations), the p e r i o d i c a n d t h e n o n p e r i o d i c sequences a r e d i s - MG7 does n o t change a n y t h i n g . changes G9 v a l u e f r o m 2 . 0 0 to It 1.99 tinguished. and In the experiments, d i a t e l y a f t e r the imme- d e g e n e r a t i o n o f one t h a t has n o v i s i b l e i n f l u e n c e o n t h e s e q u e n c e a new s e q u e n c e s t a r t s f r o m t h e growth process. IBSTRUC w h a t i s m a r k e d o n t h e d i a g r a m s MG8 changes ( a c c i d e n t a l l y t h e same a s MG6) This by " _ " . The t i m e b e t w e e n t h e two s u c m u t a t i o n s i s 1 0 4 DUTs ( t h e t h e G5 v a l u e f r o m 1.76 to 1 . 6 1 . ces causes a f u r t h e r s t a t i s t i c a l a b s c i s s a i s s c a l e d w i t h MGs o r w i t h t h e decrease of phenotype v a l u e s , exceptions in the 7 0 t h , w i t h some MG's 1 0 4 DUTs). 7 1 s t and 72nd The sequence o f MGs mutations in g e n e r a t i o n . From t h e 6 9 t h g e n e r a t i o n t h e b o t h cases ( p a r t A a n d B ) a p e r i o d i c sequence s t a r t s w i t h t h e a c t l y t h e same, p e r i o d e q u a l t o 1 0 . T h i s dynamic b a l a n c e conditions. is occurs broken in the 8 4 t h g e n e r a t i o n b y MG9. of it t i o n occurs 1.21. the G7 value from 2.00 to The DISTRUC o f 6 4 t h g e n e r a t i o n does n o t f i n i s h i t s g r o w t h . generates the sequence. From t h e r e c o r d o f follows The MG9 d e - the experiment it t h a t t h e DISTRUC o f t h e 8 4 t h "shape" pansions, From ( 1 ) it follows sequence, two h i s t o g r a m s , the which two d i f f e r e n t 6 0 . 5 x 1 0 D U T / 4 2 m i n . 3 7 s e c . o f IBM 3 6 0 / 5 0 ) CPU t i m e ) . B) lower p a r t (1106 F o u r t h B, l a s t e d D U T s / 3 7 m i n . 4 6 s e c o f I B M 360/50 not that a nonperi- a f t e r s u f f i c i e n t l y long can e a t h e r a c h i e v e p e r i o d i c i t y or degenerate. A) upper p a r t (1006 F o u r t h B, l a s t e d 0.5x10 the p e r i o d i c and n o n p e r i o d i c sequences d e s c r i b e d b e f o r e o n l e v e l time, experiments: 6 alone. MG5 a n d MG9 was p r e s e n t e d in a n o t h e r odic Level two. the records of I n case B t h e m u t a - one. w i t h c 1 0 = 171 a f t e r 299 DUTs. are the environment. The f r a g m e n t o f B r e c o r d b e t w e e n t h e ( c i ) = ( 2 , 4 , 9 , 19, 3 1 , 63,127,255,407) Fig.3 presents But i n case A t h e m u t a t i o n f o r m o n f i g . 2 . One c a n n o t i c e t h e e x - g e n e r a t i o n " d i e s " w i t h the 2. as w e l l as the o t h e r together w i t h the disturbance According to the experimental r e c o r d s , changes is ex- P e r i o d i c sequences a r e interesting for the n o t h i n g c o u l d happen experiments, as there till the nearest mutation or disturbance of env i r o n m e n t . On the o t h e r s i d e , under severe c o n d i t i o n s a n o n p e r i o d i c sequence lasts f o r a very short time. The c o n d i - t i o n s f o r the presented experiments were n o t too severe (see the l o n g n o n p e r i o d i c sequence a t p a r t A , fig. 3), Session No. 4 Associative and Adaptive Models 155 Session No. 4 Associative and Adaptive Models 156 a n d t h e f r e q u e n c e o f MGs repetition Z: 2705 F o u r t h B, l a s t e d can n o t i c e One P: 2905 F o u r t h B , t h a t the degenerations are more f r e q u e n t i n c a s e B . To determine the p r o b a b i l i t y of degeneration, generation coefficient DUTs ( 1 h o u r , 1 2 m i n . 5 8 s . o f GPU t i m e ) was c h o s e n h i g h enough f o r a p e r i o d i c sequence n o t to be t o o p r o b a b l e . 10 6 l a s t e d 0 . 5 x 1 0 6 DUTs ( 4 0 m i n . 2 7 s . o f CPU t i m e ) Q: 5005 F o u r t h A , the de- l a s t e d 0 . 5 x 1 0 6 DUTs ( 5 8 m i n . 2 5 s . o f CPU t i m e ) d w i l l be i n t r o duced. For the g i v e n experiment and the given p e r i o d of time the d value is c o u n t e d b y d i v i d i n g t h e number o f n o n s p o n t a n e o u s d e g e n e r a t i o n s b y t h e number o f MGs m u t a t i o n s . F o r t h e A and B case the d values are ; dA = 5 / 5 0 = 0 . 1 , dB=10/50 = 0.2 ( i n e a c h case one s p o n t a n e o u s d e g e n e r a t i o n was o b s e r v e d , f o r A b e t w e e n M C 4 8 a n d MG49, a n d f o r B b e t w e e n MG9 a n d MG10). The e x p e r i m e n t s p r e s e n t e d o n f i g . 3 are rather t y p i c a l . records e.g. There a r e o t h e r 306 F o u r t h A w i t h t h e p a r a - m e t e r s o f t h e p r o c e s s t h e same a s f o r 1006 F o u r t h B , where d = 0 . 0 7 4 . From t h e c o m p u t e r e x p e r i m e n t s p r e s e n t e d here and c o n s i d e r e d i t f o l l o w s that for the p r o b a b i l i t y o f e v o l u t i o n a r y sequences when the mutations the disturbance 3. degeneration of occur increases w i t h o u t the environment. Fig.4. Level three. Distribution of lethal i n f i v e experiments. cases O n t h e f i g . 4 t h e d e g e n e r a t i o n cases for the f i v e d i f f e r e n t experiments are p r e s e n t e d . The e x p e r i m e n t s named t X, Y, For a l l these experiments the time Z , P and Q have t h e f o l l o w i n g c h a r a c t e r - p e r i o d b e t w e e n t h e t w o s u c c e s s i v e MG's istic: mutations, x: 2805 F o u r t h A , lasted 106 DUTs ( 1 h o u r , 1 1 m i n . 4 5 s . o f CPU time) Y : 2905 F o u r t h B ' , lasted 106 DUTs ( 1 h o u r , 1 4 m i n . 5 6 s . o f CPU t i m e ) o r two s u c c e s s i v e d i s t u r b a n c e s o f t h e e n v i r o n m e n t was 1.5x104 DUTs • From t h e d e t a i l e d r e c o r d s o f t h e e x periments 1. it follows that: I f the mutation i s l e t h a l f o r se- quence i t is usualy l e t h a l in the very Session No. 4 Associative and Adaptive Models 157 n e x t g e n e r a t i o n ( s e e marks w i t h o u t d e lay on f i g . 4 ) 2. ment lethal for usualy lethal (see the e n v i r o n t h e sequence it is a f t e r several generations creases w i t h the shift. that it follows that the phase i n c r e a s e o f the phase The p r o b a b i l i t y o f t h e d e g e n e r a - t i o n is highest f o r the fig.4). From t h a t it follows the p r o b a b i l i t y o f degeneration i n - If the disturbance of is From t h e above t a b l e the disturbance of environment being d i r e c t l y preceded by the m u t a t i o n (Q e x p e r i m e n t ) . s h i f t b e t w e e n t h e m u t a t i o n and t h e d i s - The d e g e n e r a t i o n s c a u s e d b y m u t a t i o n turbance of the environment could be comparable f o r each e x p e r i m e n t . an important f a c t o r , p r o b a b i l i t y of degeneration which influences the p r o b a b i l i t y of degeneration. The phase s h i f t f a c t o r i s The is lowest when MG and a d i s t u r b a n c e of t h e e n - counted v i r o n m e n t o c c u r i n t h e same time ( t h e experiment is considered as n o n t y p i c a l a n d shown only a s a n example o f t h e e x i s t e n c e o f such r e c o r d s ) . interpretation. The p r e s e n t e d c o m p u t e r m o d e l i s a model of the e v o l u t i o n p r o c e s s . The DISTRUCs b e i n g t h e o b j e c t s o f s i m u l a t e d The d c o e f f i c i e n t c o u l d b e c o u n t e d f o r a l l degeneration cases, or for d e g e n e r a t i o n s c a u s e d by MGs o n l y . second w i l l be denoted as dMG. . fig.4 the k f a c t o r , the The From d c o e f f i c i e n t and d MG , c o e f f i c i e n t could be determine f o r the a l l f i v e presented experiments. These v a l u e s a r e p r e s e n t e d i n t h e t a b l e e v o l u t i o n a r e a b s t r a c t and a r e n o t t h e image o f s t r u c t u r e o f any l i v i n g o r ganisms. But t h e i r behavior simulates the behavior of organisms, i.e., they c a n g r o w , d i v i d e and m u t a t e . The p r o c e s s of e v o l u t i o n , t h e r e a l one a s w e l l a s t h e s i m u l a t e d , has a s a g o a l : chievement the a- o f dynamic s t a b i l i t y f o r a n e v o l u t i o n a r y sequence. s t a b i l i t y is I n t h e model a c h i e v e d when t h e p e r i o d i c sequence s t a r t s . A n o n p e r i o d i c sequence is t h e phase o f s e a r c h i n g f o r s t a b i l i t y . F o r t h e g i v e n g e n o t y p e and t h e e n v i r o n ment t h e r e a r e many p o s s i b l e s t a b i l e s t a t e s ( i . e . p e r i o d i c sequences). examples and the The o f d i f f e r e n t s t a b i l e sequences d i f f e r e n t ways o f f i n d i n g them one can see o n f i g . 3 . Not a l l o f p o s s i b l e as t h e m u t a t i o n and t h e d i s t u r b a n c e o f t h e e n v i r o n m e n t o c c u r i n t h e same time a n d t h e cause f o r d e g e n e r a t i o n i s u n detectable. quences a r e l o o k e d u p . any) stabile seO n l y one ( i f is found in the h e u r i s t i c search. From t h e e x p e r i m e n t s f o l l o w s that: 158 Session No. 4 Associative and Adaptive Models 1 . The s t a b i l e ( t h e same i n t h e d i f f e r e n t generations) phenotype c o u l d be achieved a f t e r mutation of and disturbances w i t h o u t in the the environment b u i l t - i n informa- t i o n concerning s t a b i l i t y . sion, the genotype In conclu- the r e l a t i v e l y simple which could only v i d e g r o w organisms, and d i - and had n o b u i l t - i n i n f o r m a t i o n about the f i n a l "shape" could be the f i r s t l i v i n g organisms, able to de- v e l o p and t o c o m p l i c a t e t h e s t r u c t u r e s . 2 . The d i s t u r b a n c e s o f t h e e n v i r o n ment were n o t n e c c e s s a r i l y t h e d e s tructive factors t i o n of the could b e e v o l u t i o n a r y sequences.T h e y h e l p f u l s t a b i l i t y if proper causing the degenera- t h e y have t o achieve occured i n the " phase s h i f t " w i t h t h e m u t a - tion. The r e s u l t s p r e s e n t e d i n t h i s p a p e r were o b t a i n e d f r o m a n a b s t r a c t model of the e v o l u t i o n process simulated on t h e c o m p u t e r . They may b e t r e a t e d a s i n d i c a t i o n s o f some p r o b l e m s , any e x t r a p o l a t i o n s but f o r towards b i o l o g y t h e y should be tested in biological experiments • References 1. K.R. F i a l k o w s k i , C y c l i c Behavior of Randomly G r o w i n g D i g i t a l S t r u c t u r e s i n F i n i t e Random E n v i r o n m e n t ( P r o c . of I n t . J o i n t Conf. Intelligence, on A r t i f i c i a l W a s h i n g t o n D.C. 1969, pp.347-359) 2. K.R. Fialkowski, F i n a l Report f o r the Ford Foundation 3. L . J . F o g e l , A . J . Owens, M . J . W a l s h , Artificial Intelligence through Simulated Evolution ( J . W i l e y , 1966)
© Copyright 2026 Paperzz