10/2/2015 When Ventilation Fails John Maher, MD How to Optimize Success of Ventilation Strategies Conflict of Interest Disclosure • The planners/committee members and speakers for this CME activity have no relevant financial relationships with commercial interests to disclose. 1 10/2/2015 • Recognizing Lung Pathology • Gas Exchange Derangements • Tools • Management Issues • When Strategies Fail Content Recognizing Lung Pathology • Types of lung disease in children • Restrictive lung disease • Obstructive lung disease • Time constant Types of Lung Disease in Children 2 10/2/2015 RDS • Restrictive Lung Disease? • Obstructive Lung Disease? RESTRICTIVE LUNG DISEASE • Abnormal Airway Resistance? • Abnormal Lung Compliance? 3 10/2/2015 DECREASED LUNG COMPLIANCE C=ΔV/ΔP P-V LOOPS Diagnosis? 4 10/2/2015 OBSTRUCTIVE LUNG DISEASE • High Airway Resistance • R = Δ P / Flow FLOWVOLUME LOOPS TIME CONSTANT T.C. = C X R 5 10/2/2015 Time Constant • T.C. = C X R = Δ V / Δ P X Δ P / Flow = ml / cm H20 X cm H20 / ml t -1 = 1 / t-1 =t Time Constants • Restrictive Lung Disease • Obstructive Lung Disease • T.C. = c X R = small # • T.C. = C X • Short time constant • Long time constant R = large # Time Constant vs. Air Exchange • Individual time constant for any lung unit • Takes 4 – 5 time constants to move about 96% of gas in & out of any lung unit • Restrictive lung disease = short respiratory cycles for gas exchange • Obstructive lung disease = long respiratory cycles for gas exchange 6 10/2/2015 Two Lung Functions 1) Ventilation 2) Oxygenation Where Does Gas Exchange Occur? LUNG VOLUME TRACING *→ 7 10/2/2015 AIR TRAPPING In Lung Pathology FRC = EEV E E V V/Q Matching 8 10/2/2015 INTERPRETING ABG Lung’s Role in Acid-Base Disburbances ABG ABG pH / PaCO2 / PaO2 / HCO3 7.25 / / /? 9 10/2/2015 ABG ABG ABG Acidemia 7.50 / / /? Alkalemia 10 10/2/2015 ABG 7.24 / 40 / 85 / 16 ? ABG Metabolic Acidosis ABG 7.24 / 58 / 80 / 24 11 10/2/2015 ABG Respiratory Acidosis ABG 7.55 / 25 / 80 / 24 ? ABG Respiratory Alkalosis (Hyperventilation) 12 10/2/2015 ABG ABG ABG 7.50 / 40 / 80 / 32 ? Metabolic Alkalosis (Usually iatrogenic) 7.30 / 58 / 80 / 32 ? 13 10/2/2015 ABG Acidemic Respiratory Acidosis Metabolic Alkalosis TOOLS Tools • Respiratory Mechanics • Non-invasive monitors • Supplemental Gas Therapies • CXR • Modes of Ventilation • Patient positioning • Sedation 14 10/2/2015 RESPIRATORY MECHANICS Ventilator Graphics • Dynamic lung compliance - Pressure / Volume Loop • Airway resistance - Flow / Volume Loop DYNAMIC LUNG COMPLIANCE • Compliance = D volume / D pressure • Pressure / Volume Loop: - vertical axis = tidal volume - horizontal axis = airway pressure PRESSURE/VOLUME LOOP 15 10/2/2015 ALVEOLAR COLLAPSE OVERDISTENSION SLOPE COMPLIANCE CURVE 16 10/2/2015 AIR LEAK VOLUME PRESSURE FLOW / VOLUME LOOP • Evaluate inspiratory and expiratory flow patterns • Detect increased inspiratory or expiratory resistance • Determine efficacy of intervention FLOW/VOLUME LOOP 17 10/2/2015 AIRWAY OBSTRUCTION AIR LEAK FLOW VOLUME Non-Invasive Monitors 18 10/2/2015 Non-Invasive Monitors • Pulse oximetry • Capnography • Transcutaneous C02 monitoring PULSE OXIMETRY HISTORY • Technology existed since 1930’s • Widely available clinically since mid 1980’s - microprocessor technology - light-emitting diodes - plethysmography - spectrophotometry 19 10/2/2015 LIMITATIONS • Dyshemoglobinemias • Dyes and pigments • Low perfusion • Optical interference and optical shunt • Motion artifact 20 10/2/2015 CAPNOGRAPHY End-Tidal CO2 SCIENCE • Mass spectrometry – impractical clinically • Infrared spectroscopy INFRARED SPECTROSCOPY • Infrared light source • Gas chamber • Detector • Each gas unique absorption characteristics 21 10/2/2015 ETCO2 MONITOR EtCO2 • Peak CO 2 during expiration • Dependent on pulmonary capillary flow • Need adequate right and left heart function • Normal ETCO 2 < 5mm Hg lower than PaCO 2 • Delta between EtC02 : PaC02 will not change significantly in 24 hrs from fluctuating alveolar function! • Only one clinical scenario where delta changes dramatically CASE SCENARIO • Infant s/p cardiac surgery • Unable to ventilate despite hand-bagging • “ETC02 is broken” “It does not correlate” • SITUATION CRITICAL • Patient will arrest unless immediate change in management occurs 22 10/2/2015 CASE DATA • Initial: PaCO2 45, ETCO 2 40, BP 70/35 • ½ hr.: PaCO2 55, ETCO 2 35, BP 62/30 • 1 hr. : PaCO2 70, ETCO 2 32, BP 55/28 • Patient taken off ventilator, hand-bagged INTERVENTION • Increase ventilatory support - WRONG • Volume expander / inotrope - CORRECT DIAGNOSIS • Increase shunt perfusion - WRONG • Increase deadspace ventilation - CORRECT 23 10/2/2015 V/Q MATCHING Shunt Perfusion Zero Low V/Q Normal Deadspace Ventilation V/Q ~ 0.8 High V/Q Infinity PRACTICAL USES OF ETCO2 • Adequacy of alveolar ventilation • Monitor spontaneous respirations • Help assess patient-ventilator synchrony • ETT patency • ETT placement • Adequacy of CPR CPR and ETCO2 • Constant relationship between ETCO 2 and coronary perfusion2 • Must maintain coronary PP at 30 mm Hg • If ETCO 2 does not rise > 10 mm Hg, not likely CPR successful3 2Gudipati C, Weil M, Bisera J, et al. Expired carbon dioxide: a noninvasive monitor of cardiopulmonary resuscitation. Circulation 1988;77:237 3Weil M, Bisera J, Trevino R, Rackow E. Cardiac output and ETCO 2. Crit Care Med 1985;13:907. 24 10/2/2015 Transcutaneous C02 Monitoring Transcutaneous C02 C02 Transcutaneous C02 • Very close correlation to PaC02 • Correlation close in in adults as well. A. Nicolini, M. Ferrari; Ann Thorac Med. 2011 Oct-Dec; 6(4): 217–220 • Advantage continuous estimate adequacy of ventilation 25 10/2/2015 Supplemental Gas Therapies Supplemental Gas • N2 / C02 • Oxygen • Helium • iNO N2 / 02 • Cardiac patients – increase PVR 26 10/2/2015 Oxygen • Aerobic support Helium Helium • Mostly in conjunction with NIV • Decreases WOB in UAO • Only effective if < 30% Fi02 requirement 27 10/2/2015 iNO Balanced V/Q Dead Space Ventilation iNO Target CXR • ETT position • Early warning • Lung volumes!! Modes of Ventilation • NIV / negative pressure ventilation • Conventional positive pressure ventilation • High frequency ventilation 28 10/2/2015 Prone Positioning SEDATION • WORK OF BREATHING • Metabolic cost of labored breathing in child much more significant in child vs. adult • Therefore, sedation a/o paralysis more often indicated in pediatric patient on the ventilator Bedside Lung Recruitment RespCare. Oct 2014; vol 59 Issue 10, poF18, 59(10): pOF 18 29 10/2/2015 Lung Lavage 1 Lung Lavage 2 Lung Lavage 3 30 10/2/2015 Lung Lavage 4 Albuterol Toxicity • Pediatric Critical Care Medicine: • November 2014 - Volume 15 - Issue 9 - p e389–e392 • Online Brief Report • Increase in Oxygen Consumption After Albuterol Inhalation in Ventilated Infants and Children • Ross, Patrick A. MD; Newth, Christopher J. L. MD, FRCPC; Hugen, Cindy A. C. MD; Maher, John K. MD; Deakers, Timothy W. MD, PhD • Abstract • Objective: To determine if inhaled albuterol (salbutamol) increases oxygen consumption (V′O 2) in children and, if so, the duration of this effect. • Conclusion: There is a large increase in V′O2 after albuterol inhalation. This effect lasts up to 3 hours. • ©2014The Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies Respiratory Failure Management • Strategies • Obstructive lung disease • Restrictive lung disease • Pulmonary hypertension • High frequency ventilation 31 10/2/2015 Goals on Ventilator • Ventilation • Oxygenation Ventilation • Increase ventilator rate • Increase PIP – delta P • Lengthen IT • Increase Vt Oxygenation • Increase Fi02 • MawP • Optimal PEEP • Longer IT 32 10/2/2015 Obstructive Lung Disease • Avoid intubation • Attempt NIV • If intubate – deflate chest • Higher pressures, low rate, long ET (long time constant) • Pure obstructive lung disease – never HFV! STRATEGIES IN RLD MANAGEMENT • Low Vt – 4 – 6 ml /kg • Limit plateau pressure • Minimize Fi02 (Pa02 60 – 80 mmHg) • Optimal PEEP • Permissive hypercapnea • HFV – short time constant • Longer I time; inverse I : E ratio STRATEGIES IN RLD MANAGEMENT • PC SIMV (PRVC will switch to same mode – optimal flow pattern delivery) 33 10/2/2015 Pulmonary Hypertension • iNO • HFV • PPHN – exogenous surfactant ARDS / iNO • Not indicated • Small percentage responders • Minimal response – short duration • Responders – heterogeneous disease • Tachyphylaxis! • Desperate use to avoid ECMO Actual Case – Tracheomalacia / Bronchiolitis 34 10/2/2015 Flow-Volume Loop Adjusted Distending Pressure F/U CXR with Recruitment - Hyperinflation 35 10/2/2015 When Strategies Fail • What is failure? • ECMO What is Failure? • Permissive hypercarbia • Permissive hypoxia • Non-viable hypoxia – OI, P/F ECMO • V-V if adequate hemodynamic status • V-A cardiac insufficiency • Reversible lung injury! • Optimal transition within 10 days of aggressive ventilator support • Newborn concerns – obstructed TAPVR, ACD • Poor outcomes pertussis, adenovirus 36 10/2/2015 ECMO Circuit Infantile Pertussis Pneumonia Pertussis Pneumonia Normal Lung ELSO Registry • 1992 – 2009; Case fatality rate infant pertussis = 69.8%; < 6 wks age = 83.6% 37 10/2/2015 PEDIATRICS® • Impact of Rapid Leukodepletion on the Outcome of Severe Clinical Pertussis in Young Infants. (H. E. Rowlands, MBBSa, A.P. Goldman,MBBChBa , et al. Pediatrics. October 1, 2010; 126(4): 816 -827). Decision Algorithm from Study Study Results • 2001–2004 predicted survival (4.4 [49%] of 9.0); equivalent to observed mortality (4.0 [44%] of 9.0). • 2005 - 2009 observed mortality (1.0 [10%] of 10.0); significantly better than predicted (4.7 [47%] of 10.0). • Flaws – single center, low numbers, not randomized 38 10/2/2015 CONCLUSION • Practice makes perfect – Use your skills • Freedom of thought, not action – Challenge the team with your thoughts • Thought leads to discourse; • Discourse leads to attention to detail; • Attention to Detail always leads to BETTER OUTCOME! • Vigilance in monitoring / observation (not complacency) is “doing something for your child!” 39
© Copyright 2026 Paperzz