Menu Print Heat Chapter 10 I Practice 10A, p. 363 Givens 1. TF = −128.6°F Solutions 5 5 5 TC = 9(TF − 32.0) = 9(−128.6 − 32.0)°C = 9(−160.6)°C TC = −89.22°C T = TC + 273.15 = (−89.22 + 273.15) K = 183.93 K 2. TF,1 = 105°F TF,2 = −25°F 5 5 5 TC,1 = 9(TF,1 − 32.0) = 9(105 − 32.0)°C = 9(73)°C TC,1 = 41°C T = (TC + 273)K T1 = (41 + 273)K = 314 K 5 5 5 TC,2 = 9(TF,2 − 32.0) = 9(−25 − 32.0)°C = 9(−57)°C TC,2 = −32°C T2 = (−32 + 273)K = 241 K 3. TF,1 = 98.6°F TF,2 = 102°F 5 5 5 TC,1 = 9(TF,1 − 32.0) = 9(98.6 − 32.0)°C = 9(66.6)°C TC,1 = 37.0°C 5 5 5 TC,2 = 9(TF,2 − 32.0) = 9(102° − 32.0)°C = 9(7.0 × 101)°C Copyright © by Holt, Rinehart and Winston. All rights reserved. TC,2 = 39°C 4. TC,i = 23°C TC,f = 78°C T = TC + 273.15 Ti = TC,i + 273.15 = (23 + 273.15) K = 296 K Tf = TC,f + 273.15 = (78 + 273.15) K = 351 K ∆T = Tf − Ti = 351 K − 296 K = 55 K Alternatively, because a degree Celsius equals a kelvin, ∆T = ∆T C = TC,f − TC,i = 78°C − 23°C ∆T = 55°C = 55 K 9 TF = 5TC + 32.0 9 9 TF,i = 5TC,i + 32.0 = 5(23)°F + 32.0° F = (41 + 32.0)°F = 73°F 9 9 TF,f = 5TC,f + 32.0 = 5(78)°F + 32.0° F = (140 + 32.0)°F = 172°F 9 9 ∆TF = TF,f − TF,i = 5 (78 − 23)°F = 5 (55)°F = 99°F 5. T = 77.34 K TC = T − 273.15 = (77.34 − 273.15)°C = −195.81°C 9 9 TF = 5TC + 32.0 = 5(−195.81)°F + 32.0°F = (−352.46 + 32.0)°F TF = −320.5°F Section One—Pupil’s Edition Solutions I Ch. 10–1 Menu Print Section Review, p. 364 Givens Solutions 3. T = 90.2 K TC = T − 273.15 = (90.2 − 273.15)°C = −183.0°C 9 9 TF = 5(TC) + 32.0 = 5(−183.0)°F + 32.0°F = (−329.4 + 32.0)°F I TF = −297.4°F 4. boiling point = 444.6°C 5 5 a. ∆TC = 9(∆TF) = 9(586.1)°C = 325.6°C melting point = 586.1°F below boiling point melting point = 444.6°C − 325.6°C = 119.0°C 9 9 b. TF,1 = 5(TC ,1) + 32.0 = 5(119.0)°F + 32.0°F = (214.2 + 32.0)°F TF,1 = 246.2°F 9 9 TF,2 = 5(TC ,2 ) + 32.0 = 5(444.6)°F + 32.0°F = (800.3 + 32.0)°F TF,2 = 832.3°F c. T1 = TC ,1 + 273.15 = (119.0 + 273.15) K = 392.2 K T2 = TC ,2 + 273.15 = (444.6 + 273.15) K = 717.8 K Practice 10B, p. 370 1. m = 11.5 kg ∆U = mgh = (11.5 kg)(9.81 m/s2)(6.69 m) = 755 J g = 9.81 m/s2 h = 6.69 m mh = 2.50 kg vh = 65.0 m/s 3. m = 3.0 × 10−3 kg h = 50.0 m 4. m = 2.5 kg vi = 5.7 m/s 5 3.3 × 10 J melts 1.0 kg of ice 5. ∆U = 209.3 J ∆U = 3(KEh ) = 3 2mh vh2 = 6 (2.50 kg)(65.0 m/s)2 1 1 ∆U = 1.76 × 103 J ∆U = (0.65)(PEi) = (0.65)(mgh) = (0.65)(3.0 × 10−3 kg)(9.81 m/s2)(50.0 m) ∆U = 0.96 J 1 1 ∆U = KEi = 2mvi2 = 2(2.5 kg)(5.7 m/s)2 = 41 J (41 J)(1.0 kg) ice melted = = 1.2 × 10−4 kg 3.3 × 105 J 1 ∆U = KE = 2mv 2 m = 0.25 kg v= I Ch. 10–2 1 1 9.3 J) 2∆mU = (2 )0(.2205 kg = 41 m/s Holt Physics Solution Manual Copyright © by Holt, Rinehart and Winston. All rights reserved. 2. ms = 0.500 kg Menu Print Section Review, p. 370 Givens Solutions 4. Ti = 10.0°C ∆U = PEi = mgh = (505 kg)(9.81 m/s2)(50.0 m) = 2.48 × 105 J m = 505 kg h = 50.0 m 2 g = 9.81 m/s 4186 J/kg increases water temperature by 1.0°C 2.48 × 105 J (1.0°C) 505 kg ∆T = = 0.12°C 4186 J/kg I Tf = Ti + ∆T = 10.0°C + 0.12°C = 10.1°C Practice 10C, p. 374 1. mg = 3.0 kg cp,wmw ∆Tw = cp,gmg ∆Tg Tg = 99°C cp,wmw(Tf − Tw) = cp,gmg(Tg − Tf) cp,g = 129 J/kg • °C mw = 0.22 kg Tw cp,wmw + Tg cp,g mg Tf = cp,wmw + cp,gmg Tw = 25°C cp,wmw = (4186 J/kg • °C)(0.22 kg) = 920 J/°C cp,w = 4186 J/kg • °C Tw cp,w mw = (25°C)(4186 J/kg • °C)(0.22 kg) = 2.3 × 104 J cp,gmg = (129 J/kg • °C)(3.0 kg) = 390 J/°C Tg cp,g mg = (99°C)(129 J/kg • °C)(3.0 kg) = 3.8 × 104 J (2.3 × 104 J)(3.8 × 104 J) + (99°C)(390 J/°C) 6.1 × 104 J Tf = = 1310 J/°C (920 J/°C + 390 J/°C) Tf = 47°C Copyright © by Holt, Rinehart and Winston. All rights reserved. 2. mt = 0.225 kg cp,wmw ∆Tw = cp,tmt ∆Tt Tt = 97.5°C cp,wmw(Tf − Tw) = cp,tmt(Tt − Tf) mw = 0.115 kg Tw = 10.0°C [Twcp,wmw + Ttcp,tmt] Tf = (cp,wmw + cp,tmt) cp,t = 230 J/kg • °C cp,wmw = (4186 J/kg • °C)(0.115 kg) = 481 J/°C cp,w = 4186 J/kg • °C Tw cp,wmw = (10.0°)(4186 J/kg • °C)(0.115 kg) = 4.81 × 103 J cp,tmt = (230 J/kg • °C)(0.225 kg) = 52 J/°C Tt cp,t mt = (97.5°C)(230 J/kg • °C)(0.225 kg) = 5.0 × 103 J 4.81 × 103 J + 5.0 × 103 J 9.8 × 103 J Tf = = 481 J/°C + 52 J/°C 533 J/°C Tf = 18.0° C 3. mm = 0.032 kg cp,mmm ∆Tm = cp,c mc ∆Tc Tm = 11°C Because cp,m = cp,c , mm ∆Tm = mc ∆Tc . mc = 0.16 kg (mm )(Tf − Tm ) = (mc )(Tc − Tf ) Tc = 91°C mmTf − m mTm = mcTc − mcTf cp,m = cp,c = cp,w mmTf + mcTf = mcTc + mmTm mcTc + mmTm (0.16 kg)(91°C) + (0.032 kg)(11°C) = Tf = mm + mc 0.032 kg + 0.16 kg 15 kg • °C + 0.35 kg • °C 15 kg • °C Tf = = = 79°C 0.19 kg 0.19 kg Section One—Pupil’s Edition Solutions I Ch. 10–3 Print Givens Solutions 4. mc = 0.75 kg I cp,c mc ∆Tc = cp,w mw ∆Tw Tc = 36.5°C ∆Tc = Tc − Tf = 36.5°C − 24.4°C = 12.1°C mw = 1.25 kg ∆Tw = Tf − Tw = 24.4°C − 20.0°C = 4.4°C Tw = 20.0°C Tf = 24.4°C cp,w mw ∆Tw (4186 J/kg • °C)(1.25 kg)(4.4°C) cp,c = = mc ∆Tc (0.75 kg)(12.1°C) cp,w = 4186 J/kg • °C cp,c = 2500 J/kg • °C 5. mb = 0.59 kg cp,b mc ∆Tb = cp,w mw ∆Tw Tb = 98.0°C ∆Tw = Tf − Tw = 6.8°C − 5.0°C = 1.8°C mw = 2.80 kg ∆Tb = Tb − Tf = 98.0°C − 6.8°C = 91.2°C Tw = 5.0°C Tf = 6.8°C cp,w mw ∆Tw (4186 J/kg • °C)(2.80 kg)(1.8°C) cp,b = = mb ∆Tb (0.59 kg)(91.2°C) cp,w = 4186 J/kg • °C cp,b = 390 J/kg • °C 6. ∆Ta = 1.0°C mw = 1.0 kg ∆Tw = 1.0°C cp,a ma ∆Ta = cp,w mw ∆Tw cp,w mw ∆Tw ma = cp,a ∆Ta r = 1.29 kg/m3 cp,w mw ∆Tw 1 1 m (4186 J/kg • °C)(1.0 kg)(1.0°C) V = a = = 3 cp,a ∆Ta r 1.29 kg/m r (1000.0 J/kg • °C)(1.0°C) cp,w = 4186 J/kg • °C V = 3.2 m3 cp,a = 1000.0 J/kg • °C 7. ∆Tv = 8.39°C mw = 101 g cp,w = 4186 J/kg • °C ∆Tc = 838°C cp,c = 387 J/kg • °C cp,c mc ∆Tc = cp,w mw ∆Tw cp,w mw ∆Tw mc = cp,c ∆Tc (4186 J/kg • °C)(0.101 kg)(8.39°C) mc = (387 J/kg • °C)(838°C) mc = 1.09 × 10−2 kg = 10.9 g Practice 10D, p. 381 1. m = 42 g ∆T1 = melting point − Ti = 0°C − (−11°C) = 11°C Ti = −11°C (ice) ∆T2 = boiling point − melting point = 100.0°C − 0°C = 100.0°C Tf = 111°C (steam) ∆T3 = Tf − boiling point = 111°C − 100.0°C = 11°C Lf = 3.33 × 105 J/kg Q1 = mcp,ice ∆T1 = (42 × 10−3 kg)(2.09 × 103 J/kg • °C)(11°C) = 970 J Lv = 2.26 × 106 J/kg Q2 = mLf = (42 × 10−3 kg)(3.33 × 105 J/kg) = 1.4 × 104 J cp,ice = 2.09 × 103 J/kg • °C Q3 = mcp,w ∆T2 = (42 × 10−3 kg)(4186 J/kg • °C)(100.0°C) = 1.8 × 104 J cp,steam = 2.01 × 103 J/kg • °C Q4 = mLv = (42 × 10−3 kg)(2.26 × 106 J/kg) = 9.5 × 104 J Q5 = mcp,steam ∆T3 = (42 × 10−3 kg)(2.01 × 103 J/kg • °C)(11°C) = 930 J Qtot = Q1 + Q2 + Q3 + Q4 + Q5 Qtot = 970 J + (1.4 × 104 J) + (1.8 × 104 J) + (9.5 × 104 J) + 930 J Qtot = 1.29 × 105 J I Ch. 10–4 Holt Physics Solution Manual Copyright © by Holt, Rinehart and Winston. All rights reserved. Menu Menu Print Givens Solutions 2. m = 1.0 kg Q = mLv = (1.0 kg)(2.01 × 105 J/kg) = 2.0 × 105 J T = 77 K Lv = 2.01 × 105 J/kg ∆T = melting point − Ti = 327.3°C − 27.3°C = 300.0°C 3. m = 0.225 kg Ti = 27.3°C Q1 = mcp,l ∆T = (0.225 kg)(1.28 × 102 J/kg • °C)(300.0°C) = 8640 J cp,l = 1.28 × 102 J/kg • °C Q2 = mLf = (0.225 kg)(2.45 × 104 J/kg) = 5510 J Lf = 2.45 × 104 J/kg Qtot = Q1 + Q2 = 8640 J + 5510 J = 1.415 × 104 J I melting point = 327.3°C 4. m = (14.0 g/can)(1000 cans) = 14.0 × 103 g = 14.0 kg ∆T = melting point − Ti = 660.4°C − 26.4°C = 634.0°C Q1 = mcp,a ∆T = (14.0 kg)(8.99 × 102 J/kg • °C)(634.0°C) = 7.98 × 106 J Q2 = mLf = (14.0 kg)(3.97 × 105 J/kg) = 5.56 × 106 J Ti = 26.4°C cp,a = 8.99 × 102 J/kg • °C Qtot = Q1 + Q2 = (7.98 × 106 J) + (5.56 × 106 J) = 1.354 × 107 J Lf = 3.97 × 105 J/kg melting point = 660.4°C Q1 = cp,s ms ∆Ts 5. mi = 0.011 kg Ti = 0°C Q2 = miLf ms = 0.450 kg Q3 = cp,w mi ∆Tw Ts = 80.0°C By the conservation of energy, Q1 = Q2 + Q3 . cp,s = cp,w = 4186 J/kg • °C 5 Lf = 3.33 × 10 J/kg cp,s ms ∆Ts = mi Lf + cp,w mi ∆Tw cp,s ms (Ts − Tf ) = mi Lf + cp,w mi (Tf − Ti ) cp,s ms Ts − cp,s msTf = mi Lf + cp,w mi Tf − cp,w miTi Copyright © by Holt, Rinehart and Winston. All rights reserved. Tf (cp,w mi + cp,s ms ) = cp,s msTs + cp,w m iTi − miLf cp,s msTs + cp,w m iTi − m i Lf Tf = , cp,w mi + cp,s ms where Ti = 0.0°C (4186 J/kg • °C)(0.450 kg)(80.0°C) + (0 J) − (0.011 kg)(3.33 × 105 J/kg) Tf = (4186 J/kg • °C)(0.011 kg) + (4186 J/kg • °C)(0.450 kg) (1.51 × 105 J) + (0 J) − (3.7 × 103 J) 1.47 × 105 J Tf = = = 76.2°C 1930 J/°C 46 J/°C + 1880 J/°C 6. mal = 25 kg Q = mal Lf = mair cp,air ∆T Tair = 25°C malLf (25 kg)(3.97 × 105 J/kg) ∆T = = = 76°C mair cp,air (130 kg)(1.0 × 103 J/kg • °C) cp,air = 1.0 × 103 J/kg • °C Tf = Tair + ∆T = 25°C + 76°C = 101°C mair = 130 kg cp,al = 8.99 × 102 J/kg • °C Lf = 3.97 × 105 J/kg Section One—Pupil’s Edition Solutions I Ch. 10–5 Menu Print Section Review, p. 382 Givens Solutions 1. mg = 47 g I cp,w mw ∆Tw = cp,g mg ∆Tg Tg = 99°C ∆Tg = Tg − Tf = 99°C − 38°C = 61°C Tw = 25°C ∆Tw = Tf − Tw = 38°C − 25°C = 13°C Tf = 38°C cp,g = 1.29 × 102 J/kg • °C cp,g mg ∆Tg (1.29 × 102 J/kg • °C)(47 × 10−3 kg)(61°C) mw = = cp,w ∆Tw (4186 J/kg • °C)(13°C) cp,w = 4186 J/kg • °C mw = 6.8 × 10−3 kg = 6.8 g 4. m = 15 g = 0.015 kg Q 7.4 × 103 J 15.8 kJ − 8.37 kJ a. cp,l = = = = 2 × 103 J/kg • °C m∆T (0.015 kg)(300°C − 80°C) (0.015 kg)(200°C) Q 8.37 kJ − 1.27 kJ 7.10 × 103 J b. Lf = = = = 4.7 × 105 J/kg m 0.015 kg 0.015 kg Q 1.27 × 103 J 1.27 kJ − 0 kJ c. cp,s = = = = 1 × 103 J/kg • °C m∆T (0.015 kg)(80°C − 0°C) (0.015 kg)(80°C) Q 1 × 103 J 796 kJ − 795 kJ d. cp,v = = = = 7 × 102 J/kg • °C m∆T (0.015 kg)(400°C − 300°C) (0.015 kg)(100°C) Q 795 kJ − 15.8 kJ 779 × 103 J e. Lv = = = = 5.2 × 107 J/kg 0.015 kg 0.015 kg m 5. Tf = 175°C ∆T = Tf − Tp = 175°C − 21°C = 154°C Tp = 21°C Q = mpcp,p ∆T = (0.105 × 10−3 kg/kernel)(125 kernels)(1650 J/kg • °C)(154°C) cp,p = 1650 J/kg • °C Q = 3340 J 6. mw = (0.14)(95.0 g) L v = (0.90)(2.26 × 106 J/kg) Q = mw Lv = (0.14)(95.0 × 10−3 kg)(0.90)(2.26 × 106 J/kg) Q = 2.7 × 104 J Chapter Review and Assess, pp. 387–391 9. TF = 136°F 5 5 5 TC = 9 (TF − 32.0) = 9(136 − 32.0)°C = 9(104)°C = 57.8°C T = (TC + 273.2)K = (57.8 + 273.2)K T = 3.31 × 102 K 10. TF = 1947°F 5 5 5 TC = 9(TF − 32.0) = 9(1947 − 32.0) = 9(1915)°C = 1064°C T = TC + 273.15 = (1064 + 273.15) K = 1337 K I Ch. 10–6 Holt Physics Solution Manual Copyright © by Holt, Rinehart and Winston. All rights reserved. mp = (0.105 g/kernel) (125 kernels) Menu Print Givens Solutions 19. F = 315 N W = (0.14)(Ui ) d = 35.0 m W = (0.14)(Ui ) 20. m = 0.75 kg vi = 3.0 m/s 29. m = 23 g W Fd (315 N)(35.0 m) Ui = = = = 7.9 × 104 J 0.14 0.14 0.14 I a. ∆U = (0.85)(KE) = (0.85)2mv 2 1 1 ∆U = 2(0.85)(0.75 kg)(3.0 m/s)2 = 2.9 J Q 16.6 kJ − 12.0 kJ 4.6 × 103 J a. cp,l = = = −3 m∆T (23 × 10 kg)(340°C − 160°C) (23 × 10−3 kg)(180°C) cp,l = 1.1 × 103 J/kg • °C Q 12.0 kJ − 1.85 kJ 10.2 × 103 J = 4.4 × 105 J/kg = b. Lf = = m 23 × 10−3 kg 23 × 10−3 kg Q 1.85 kJ − 0 kJ 1.85 × 103 J = c. cp,s = = −3 m∆T (23 × 10 kg)(160°C − 0°C) (23 × 10−3 kg)(160°C) cp,s = 5.0 × 102 J/kg • °C Q 857 kJ − 855 kJ 2.0 × 103 J = d. cp,v = = −3 −3 m∆T (23 × 10 kg)(540°C − 340°C) (23 × 10 kg)(2.0 × 102°C) cp,v = 4.0 × 102 J/kg • °C Q 855 kJ − 16.6 kJ 838 × 103 J = 3.6 × 107 J/kg = e. Lv = = m 23 × 10−3 kg 23 × 10−3 kg 30. mr = 25.5 g Tr = 84.0°C Copyright © by Holt, Rinehart and Winston. All rights reserved. mw = 5.00 × 10−2 kg Qw = Qr − 0.14 kJ cp,wmw(Tf − Tw) = cp,rmr(Tr − Tf) − 0.14 kJ Tw = 24.0°C [cp,r mrTr + cp,wmwTw − 0.14 kJ] Tf = (cp,wmw + cp,r mr) Qw = Qr − 0.14 kJ cp,rmr = (234 J/kg • °C)(2.55 × 10−2 kg) = 5.97 J/°C cp,r = 234 J/kg • °C cp,r mrTr = (234 J/kg • °C)(2.55 × 10−2 kg)(84.0°C) = 501 J cp,w = 4186 J/kg • °C cp,wmw = 4186 J/kg • °C)(5.00 × 10−2 kg) = 209 J/°C cp,w mwTw = (4186 J/kg • °C)(5.00 × 10−2 kg)(24.0°C) = 5.02 × 103 J 501 J + (5.02 × 103 J) − 140 J 5.38 × 103 J Tf = = 209 J/°C + 5.97 J/°C 215 J/°C Tf = 25.0° C 31. m1 = 1500 kg 1 ∆U = ∆KE = 2 m1(vf − vi )2 = (0.5)(1500 kg)(0 m/s − 32 m/s)2 = 7.7 × 105 J vi = 32 m/s Q = ∆U = 7.7 × 105 J vf = 0 m/s Q = m2 cp,iron ∆T cp,iron = 448 J/kg • °C Q 7.7 × 105 J ∆T = = = 120°C m2 cp,iron (4)(3.5 kg)(448 J/kg • °C) m2 = (4)(3.5 kg) 32. T = 0.0°C Q = mLf = (225 × 10−3 kg)(3.33 × 105 J/kg) = 7.49 × 104 J m = 225 g Lf = 3.33 × 105 J/kg Section One—Pupil’s Edition Solutions I Ch. 10–7 Menu I Print Givens Solutions 33. mw = 1.20 × 1016 kg Q1 = mw cp,w ∆Tw = mw cp,w(Tw − Tf ) Tw = 12.0°C Q2 = mw Lf Tf = 0°C Q1 = (1.20 × 1016 kg)(4186 J/kg • °C)(12.0°C − 0°C) cp,w = 4186 J/kg • °C Q1 = 6.03 × 1020 J Lf = 3.33 × 105 J/kg Q2 = (1.20 × 1016 kg)(3.33 × 105 J/kg) Q2 = 4.00 × 1021 J Qtot = Q1 + Q2 = 6.03 × 1020 J + 4.00 × 1021 J Qtot = 4.60 × 1021 J 41. TR = 0°R = absolute zero one Rankine degree = one Fahrenheit degree a. TR = TF − (absolute zero in TF) 9 TF = 5TC + 32.0 absolute zero in Tc = −273.15°C 9 absolute zero in TF = 5 (−273.15)°F + 32.0°F absolute zero in TF = (−491.67 + 32.0)°F = −459.7°F TR = TF − (−459.7)°F = TF + 459.7°F TR = TF + 459.7, or TF = TR − 459.7 b. T = TC + 273.15 5 TC = 9(TF − 32.0) 5 T = 9(TF − 32.0) + 273.15 TF = TR − 459.7 5 T = 9(TR − 459.7 − 32.0) + 273.15 5 T = 9(TR − 491.7) + 273.15 5 5 T = 9TR − 9(491.7) + 273.15 5 5 9 T = 9TR , or TR = 5 T 42. mr = 3.0 kg PEi = ∆U mw = 1.0 kg m r gh = cp,w m w ∆T ∆T = 0.10°C cp,w = 4186 J/kg • °C cp,w m w ∆T (4186 J/kg • °C)(1.0 kg)(0.10°C) h = = mr g (3.0 kg)(9.81 m/s2) g = 9.81 m/s2 h = 14 m 43. TC = −252.87°C 9 9 a. TF = 5TC + 32.0 = 5(−252.87)°F + 32.0°F TF = (−455.17 + 32.0)°F = −423.2°F T = TC + 273.15 = (−252.87 + 273.15) K = 20.28 K TC = 20.5°C 9 9 b. TF = 5TC + 32.0 = 5(20.5)°F + 32.0°F TF = (36.9 + 32.0)°F = 68.9°F T = TC + 273.15 = (20.5 + 273.15) K = 293.6 K I Ch. 10–8 Holt Physics Solution Manual Copyright © by Holt, Rinehart and Winston. All rights reserved. T = 9TR − 273.2 + 273.15 Menu Print Givens Solutions 44. freezing point = 50°TH (0°C) a. Set up a graph with Celsius on the x-axis and “Too Hot” on the y-axis. The equation relating the two scales can be found by graphing one scale versus the other scale and then finding the equation of the resulting line. In this case, the two known coordinates of the line are (0, 50) and (100, 200). boiling point = 200°TH (100°C) ∆y (200 − 50) 150 3 slope = a = = = = ∆x (100 − 0) 100 2 I y = ax + b b = y − ax = 50 − 2 0 = 50 3 3 The values y = TTH , a = 2, x = TC , and b = 50 can be substituted into the equation for a line to find the conversion equation. y = ax + b 3 TTH = 2TC + 50 y−b or x = a TTH − 50 TC = 3 2 2 TC = 3(TTH − 50) TC = absolute zero = −273.15°C 45. TC = −40°C 3 3 b. TTH = 2(TC ) + 50 = 2(−273.15)°TH + 50°TH = (−409.72 + 50)°TH = −360°TH 9 9 TF = 5TC + 32 = 5(−40)°F + 32°F = (−72 + 32)°F TF = −40°F Copyright © by Holt, Rinehart and Winston. All rights reserved. 46. A = 6.0 m2 ∆T = Tf − Ti = 61°C − 21°C = (4.0 × 101)°C P/A = 550 W/m2 mw = Vw rw = (1.0 m3)(1.00 × 103 kg/m3) = 1.0 × 103 kg Vw = 1.0 m3 Q mw c p,w ∆T (1.0 × 103 kg)(4186 J/kg • °C)(4.0 × 101°C) ∆t = = = (P/A)(A) P (550 W/m2)(6.0 m2) Ti = 21°C Tf = 61°C rw = 1.00 × 103 kg/m3 cp,w = 4186 J/kg • °C 47. mc = 253 g ∆t = 5.1 × 104 s or (5.1 × 104 s)(1 h/3600 s) = 14 h cp,a ma ∆Ta = cp,c mc ∆Tc Tc = 85°C ∆Tc = Tc − Tf = 85°C − 25°C = (6.0 × 101)°C Ta = 5°C ∆Ta = Tf − Ta = 25°C − 5°C = (2.0 × 101)°C Tf = 25°C mc ∆Tc cp,c (0.253 kg)(6.0 × 101°C)(3.87 × 102 J/kg • °C) ma = = ∆Ta cp,a (2.0 × 101°C)(8.99 × 102 J/kg • °C) cp,a = 8.99 × 102 J/kg • °C cp,c = 3.87 × 102 J/kg • °C ma = 0.33 kg = 330 g Section One—Pupil’s Edition Solutions I Ch. 10–9 Menu Print Givens Solutions 48. TF = 5TC + 32.0 9 TC = T − 273.15 9 TF − 32.0 = 5TC I 5 T 9 F − 9 (32.0) = TC 5 5 T 9 F − 9 (32.0) + 273.15 = T 5 T = TF 5 T 9 F − 9 (32.0) + 273.15 = TF 5 5 T 9 F − 17.8 + 273.15 = TF 5 T 9 F + 255.4 = TF 4 255.4 = 9TF 9 TF = 4 (255.4)°F = 574.6°F TF = T 574.6°F = 574.6 K 49. ma = 250 g mw = 850 g Q Qa + Qw macp,a∆T + mwcp,w ∆T ∆T = = = (macp,a + mw cp,w ) ∆t ∆t ∆t ∆t ∆T = 1.5°C/min ∆t Q = [(0.250 kg)(899 J/kg • °C) + (0.850 kg)(4186 J/kg • °)](1.5°C/min) ∆t cp,a = 899 J/kg • °C Q = (225 J/°C + 3.56 × 103 J/°C)(1.5°C/min) = (3.78 × 103 J/°C)(1.5°C/min) ∆t cp,w = 4186 J/kg • °C Q = 5.7 × 103 J/min ∆t or (5700 J/min)(1 min/60 s) = 95 J/s ∆Qtea = ∆Qmelted ice Tice = 0°C mtea cp,tea ∆Ttea = mice Lf + mice cp,w ∆Tice Tf = 15°C mtea = 180 g mtea cp,tea ∆Ttea mice = Lf + cp,w ∆Tice mice,tot = 112 g ∆Ttea = Ttea − Tf = 32°C − 15° C = 17°C cp,tea = cp,w = 4186 J/kg • °C ∆Tice = Tf − Tice = 15°C − 0° C = 15°C Lf = 3.33 × 105 J/kg (180 × 10−3 kg)(4186 J/kg • °C)(17°C) mice = 3.33 × 105 J/kg + (4186 J/kg • °C)(15°C) (180 × 10−3 kg)(4186 J/kg • °C)(17°C) mice = 3.33 × 105 J/kg + 6.3 × 104 J/kg (180 × 10−3 kg)(4186 J/kg • °C)(17°C) mice = = 3.2 × 10−2 kg = 32 g 3.96 × 105 kg mass of unmelted ice = mice,tot − mice = 112 g − 32 g = 8.0 × 101 g I Ch. 10–10 Holt Physics Solution Manual Copyright © by Holt, Rinehart and Winston. All rights reserved. 50. Ttea = 32°C
© Copyright 2026 Paperzz