File No.26/18/30/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD ANDHRA PRADESH - TELANGANA 2014-2015 PROGRAM M E 5TH - CHAPTER - SOLUTIONS 5. TRIGONOMETRY 1. 3cos 2sin 3 2tan 4cos 3 sin 4 3 tan 2. sin 1, sin 4 3 2 5 23 4 32 4 3 5 1 2 , , 2 6 3 6 tan 2 tan 2 1 2 5 tan 1 tan 3 3 6 3 3. L.H.S sin2 cos ec2 2 cos2 sec2 2 2014 - 2015 7 cot 2 tan2 k 7 4. Put A 90 0 in the given expression, we get: 3 0 G.E 1 2 3 1 2 30 3 3 3 1 1 0 3 3 5. G.E sin4 2sin2 cos2 cos 4 sin2 cos 2 www.eabhyasacademy.com 6. 2 1 Given that cos 2 A sin A.tan A cos 3 A sin3 A cos 6 A cos 2 A sin6 A sin2 A sin4 A cos 2 A 1 cos 2 A 1 sin6 A sin2 A sin2 A cot 6 A cot 2 A PATHFINDER 1 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 7. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD sec tan sec sec2 1 2 1 1 a a 1 4a 4a 1 1 a a 2a 4a 4a 8. G.E cos2 1000 sec1000 cos1000.sec100 0 1 9. x 2 y2 2 2 x y x y 2 16cot 2 cos 2 16cot 2 1 sin2 16 cot 2 cos 2 16 cot cos cot cos 16xy 10. G.E cos A B 4 4 cos B A sin B A 2 1 0 tan20 G.E 1 1 tan 200 0 tan20 tan 200 11. 1 p 1 p2 1 1 2p p 12. tan 2B tan A B A B cot 2B 13. pq 1 pq 2014 - 2015 1 pq pq tan A B tan A tanB 1 tan A tanB www.eabhyasacademy.com 4 1 28 3 3 7 21 1 4 1 21 4 1 . 3 7 21 tan 4 A B 4 14. 0 A B 3150 then tan A B tan45 tan A tanB 1 tan A tanB 1 tan A tanB 1 tan A tanB tan A tanB 1 tan A tanB adding 1 on both sides we get 1 tan A 1 tanB 2 PATHFINDER 2 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 15. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD tan 80 0 10 0 tan70 0 tan800 tan100 tan700 1 tan800 tan100 tan800 tan100 tan700 1 tan800 tan100 0 0 0 tan80 tan10 tan70 1 1 tan800 tan100 1 tan800 tan100 2tan700 2cot 200 16. We, have cos 450 A cos 450 B cos 45 A 45 cos 90 A B B sin 450 A sin 450 B 0 0 0 sin A B 2 17. 18. 1 2 5 G.E 1 sin2 cos 12 2 12 3 5 5 cos cos 2 12 12 12 12 3 3 cos cos 2 2 3 2 x y z 1 2 2 xy yz zx 1 2 2 2 21 2014 - 2015 2 4 2 4 4 0 19. sin x sin2 x 1 sin x 1 sin2 x cos 2 x cos 8 x 2cos 6 x cos 4 x sin 4 x 2sin3 x sin2 x sin2 x sin x 2 12 1 20. 5cos 7 1 sin 5cos 1 sin 7 cos 2 7 cos 5 sin 5 21. 1 sin 1 sin 22. www.eabhyasacademy.com 0 4 4 180 4 360 1440 5 5 1 sin cos 2 1 sin 1 sin 1 sin 1 sin 2 1 sin cos 1 sin 1 sin cos 1 sin cos 2 Q2 cos 1 sin cos 1 1 1 sin 1 sin tan sec cos cos PATHFINDER 3 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD O 23. cot 24 7 25 X sin 24. A X -7 B 7 25 cos ecx 2cos ecy 3cos ecz sin x 2sin y 3 sin z 12 900 2 90 90 180 tan 5tan 2sec 2 2 2 3 0 0 2 tan 45 5tan 45 2sec 600 xyz 1 5 1 2 2 2 1 5 8 14 25. 0 0 0 Let A 2x ,B 3x , C 4x and we know that A B C 180 0 2x 0 0 0 3x 4x 1800 9x 180 x 0 200 angles are 400 ,600 , 800 26. No. of sides = 8 No. of exterior angles = 8 Sum of all exterior angles 3600 Each exterior angle 3600 450 8 2014 - 2015 0 Each interior angle 180 45 135 135 G.E cos 2 1o cos 2 89o cos 2 2o cos 2 88o 27. 2 o 2 o .......... cos 3 cos 46 cos 2 3c 180 4 o 45 ) 0 2 1 cos 2 1o sin2 1o cos 2 2o sin2 2o ...... cos 2 44 sin2 44 2 44 28. 2 1 89 2 2 1800 sin2 cos 2 sin2 cos 2 180 www.eabhyasacademy.com sin2 cos 2 1 3 G.E 2 sin2 x cos 2 x 3 sin x cos 2 x sin2 x cos 2 x 2 3 sin2 x cos 2 x 2sin2 x cos 2 x 1 29. 2 1 3 sin2 x cos 2 x 3 1 2 sin2 x cos 2 x 1 0 PATHFINDER 4 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 30. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD Given that sin 1 sin 2 sin cos 2 cos 2 cos 4 sin sin2 1 1. sin 1 sin 2 sin 3 3 sin 1 sin 2 sin 3 1 1 2 3 900 cos 1 cos 2 cos 3 0 Correct Option : 4 2. Given that cos 2 A sin A.tan A co s 3 A sin 2 A co s 6 A co s 2 A sin 6 A sin 2 A 4 2 2 sin A co s A 1 co s A 1 sin 6 A sin 2 A sin 2 A co t 6 A co t 2 A 3. k 2 k.k 1 sin A 1 sinB 1 sinC . 1 sin A 1 sinB 1 sinC cos2 A.cos 2 B.cos2 C k cos A cosBcosC 4. sin x cos x tan x sec2 x sec 2 x cos 3 x tan x 1 tan2 x 1 tan2 x 3 2014 - 2015 2 tan x tan x tan x 1 a 1,b 1,c 1,d 1 abcd 4 5. Correct Option : 1 Given that a sinx = b cosx tan x b cos x a 2c tan x b cos x 1 tan2 x ab 2 a b a www.eabhyasacademy.com 2 2 b2 a2 b 2 6. a 2 a b2 and b a 2 a2 b2 1 b a2 b.a 2c. 2abc a2 b2 2 4c2 2 a2 b2 x sec y tan x tan y sec x 2 sec2 tan2 y 2 sec2 tan2 2 x y 2 2 PATHFINDER 5 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 7. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD G.E cos n 1 n 1 cos n n cos 2 1 0 tan20 G.E 1 1 tan 200 0 tan20 tan200 8. 1 p 1 p2 1 1 2p p 9. 1 tan20 tan 280 1 0 0 tan28 tan2 tan30 0 cot 300 3 k 3 3 k 1 10. sin cos 1 sin cos cos sin 1 cos cos sin sin divided by cos cos we get tan tan 1 1 tan tan tan tan 1 tan tan tan 11. 1 tan 1 tan tan A B tan A tanB 1 tan A tanB 1 1 3 2 2 3 6 1 1 1 6 1 1 6 2 3 12. 2014 - 2015 0 A B 3150 then tan A B tan45 tan A tanB 1 1 tan A tanB tan A tanB 1 tan A tanB 1 tan A tanB tan A tanB adding 1 on both sides we get 1 tan A 1 tanB 2 www.eabhyasacademy.com 13. sin A 4 3 , cos A and 5 5 tanB 5 5 12 sinB ,cosB 12 13 13 sin A B sin A cosB cos A sinB 4 12 3 5 48 45 63 . . 5 13 5 13 65 65 PATHFINDER 6 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 14. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD A B A B G.E cos A B C cos 2 2 A B A B cos cos 2 2 A B A B cos cos 0 2 2 Correct Option : 3 15. G.E log tan10 tan 20 tan30......tan890 log tan 450 log1 0 16. 2 G.E 3 1 2sin x cos x 6 1 2sin x cos x 4 1 3sin2 x cos 2 x 3 1 4 sin2 x cos 2 x 4 sin x cos x 6 1 2sin x cos x 4 1 3sin2 x cos 2 x 3 6 4 13 17. co sec cot 1 cos and sin 1 cos 1 cos sin 0 ve 1 cos sin lies in I or II quadrants Y B 18. cos ec 5 5 4 4 X cos 19. A -3 O 2014 - 2015 3 5 Let A 3x 0 ,B 4x 0 and C 5x 0 . We know that A B C 180 0 3x 0 4x 0 5x 0 180 0 x 150 smallest angle 3x 450 5 0 radians Greatest angle 5x 75 180 12 20. G.E sin2 1o sin2 2o sin2 3o ....... sin2 900 sin2 89o sin 2 88o ....sin2 10 0 2 sin2 1o sin2 2o .... sin2 890 1 www.eabhyasacademy.com 2 sin2 10 sin2 890 sin2 20 sin2 88o .... sin2 440 sin2 46o sin2 45o 1 2 1 2 0 2 0 2 o 2 o 2 0 2 o 2 sin 1 cos 1 sin 2 cos 2 .... sin 44 cos 44 1 2 1 2 44 1 89 1 90 2 PATHFINDER 7 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 21. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD Q 3 ;cot 7 cos ec 8; sec 8 7 8 8 7 3 G.E 8 4 8 7 22. G.E sec 4 1 sin2 1 sin2 tan2 sec 4 cos 2 1 sin2 tan2 sec 2 tan2 tan2 sec2 23. G.E cot cosec cos ec2 cot 2 cot cos ec 1 cos ec cot 1 cos ec cot cot cos ec 1 1 cos cos ec cot sin 24. G.E 25. cot 2 sec2 1 sec2 sin2 1 1 sin 1 sec cot 2 .tan2 sec2 cos 1 sin 1 sec G.E 1 0 2 2 1 cos 2 y 1 cos y sin y 1 cos y sin y 1 cos y 2014 - 2015 1 1 cos y 0 cos y 26. cos sin 2 2 cos sin 2 2 cos sin 2 sin2 2 cos sin 2 cos 27. Given that cos x sin2 x; 3 G.E sin4 x sin2 x 1 www.eabhyasacademy.com 28. cos2 sin tan cos3 sin2 1 cos 2 cos3 cos 2 1 Taking cube of the both the sides cos9 cos6 3cos5 1 PATHFINDER 8 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 29. 2 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD a2 cos sin cos2 sin2 2sin cos 1 2sin cos a2 1 2sin cos a2 1 sin cos ........ 1 2 sin2 cos 2 1 b tan cot sin cos sin cos 1 sin cos ............. 2 b a2 1 1 from 1 & 2 ; b a2 1 2 2 b 30. tan 1 tan 290 1 tan290 tan tan 450 290 740 BRAIN TWISTERS : 1. cos 2A cos 2 A sin2 A 2cos 2 A 11 2sin2 A 2. 2 tan use formula 2 1 tan 2 3. 2cos 2 A 3 3sin2 B 1 tan2 A 1 tan2 A 2tan 2014 - 2015 2sin2 A 3sin A 1 0 2sin A 1 sin A 1 0 sin A 1 sin A 1 2 A 300 , B 450 4. x a cos y sin x a cos y sin a 1 and tan tan 2b then tan y bx 2 2 2 x www.eabhyasacademy.com and tan 5. tan 1 y bx and y 2 2ax 1 b 2 x 2 2 x sin cos tan 1 tan sin cos tan 1 4 PATHFINDER 9 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD : 6. cos 360 5 1 , cos720 sin180 4 3 1 sin150 sin 450 30 0 2 2 5 1 4 6 2 4 7. Statement - I does not follow from Statement - II Both A and R are true R is the correct explanation of A. 8. 2cos 9 3 5 cos cos cos 13 13 13 13 3 5 9 9 = cos cos 13 13 cos 13 cos 13 13 13 3 5 8 cos = cos 10 cos cos 13 13 13 13 3 5 3 5 = cos cos 13 cos 13 cos 13 13 = cos 3 5 3 5 cos cos cos 0 13 13 13 13 : 9. a) sin2 2sin cos tan 1 cos 2 2cos 2 b) sin2 2sin cos cot 1 cos 2 2sin2 c) 2014 - 2015 1 cos 2 sin2 2cos2 2sin cos 2cos cos sin cot 1 cos 2 sin 2 2sin2 2sin cos 2sin sin cos 2 d) 10. 2 2 2sin sin cos 2 2 2 tan 2 2cos cos sin 2 2 2 2 1 cos sin 2sin 2 2sin 2 cos 2 1 cos sin 2cos 2 2sin cos a) sin 48sin12 1 2sin 48.sin12 2 2 sin A.sinB cos A B cos A B 1 1 5 1 1 5 1 = 2 cos 36 ccos60 2 4 2 8 www.eabhyasacademy.com b) cos 48.cos12 1 2cos 48.cos12 2 2cos A.cosB cos A B cos A B 1 1 1 5 1 5 3 = 2 cos60 cos 36 2 2 4 8 75 15 75 15 c) sin75 sin15 2sin cos 2 2 PATHFINDER 10 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD 1 3 3 CD C D . sinC sinD 2sin 2 cos 2 2sin 45.cos 30 2 2 2 2 sin84 cos6 d) sin 24 cos6 sin 24 sin84 11. 108 60 = 2sin .cos 2 5 CD C D sinC sinD 2sin 2 .cos 2 5 1 3 = 2sin 54 .cos30 2 2 2 5 1 15 3 sin 54 cos 36 4 4 sin 5A sin3A 2cos 4A.sin A sin A tan A cos 5A cos 3A 2cos 4A.cos A cos A similarly we get remaining answers. : 12. 4 2 2 tan A 24 3 4 Given tan A ; use the formula tan 2A 1 tan 2 A tan 2A 16 7 3 1 9 13. 4 3 tan A tan3 A Given tan A ; use the formula tan3A 3 1 3 tan2 A 14. cos 2A 10 10 2cos 2 7 1 1 cos150 1 3 1 2 2 2 2 cot7 2 10 10 10 sin150 3 1 2 2 sin7 2sin7 cos7 2 2 2 0 15. 1 tan2 A 1 tan2 A cos7 2014 - 2015 = = = 16. 2 2 3 1 3 1 2 2 3 1 2 3 1 3 1 6 2 2 3 3 3 1 2 2 62 32 24 6 3 2 2 2 3 4 6 2 3 2 1 2 10 45 tan11 tan 4 4 2 1 3 2 2 1 45 4 45 cos 4 sin 45 45 45 1 cos sin sin 22 4 4 2 2 45 1 2 45 2cos 1 cos 1 cos 22 4 2 2 2sin www.eabhyasacademy.com 1 By using sin 22 2 2 1 2 2 We can get the value is PATHFINDER 1 and cos 22 2 42 2 2 1 2 2 2 1 11 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 17. 10 285 tan142 tan 2 2 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD 285 2 285 cos 2 sin 285 285 0 0 cos 2 2 sin 285 sin 360 75 285 1 cos 285 1 cos 3600 750 2cos 2 2 2sin = sin 90 150 sin750 = 1 cos750 1 cos 900 150 3 1 0 cos15 = 1 sin150 2 2 3 1 1 2 2 2 2 2 2 2 3 1 = 3 1 2 3 1 3 1 = 3 1 2 8 3 1 2 3 = 2 6 2 2 2 6 2 1 42 3 2 3 = 3 1 2 2 6 2 1 2 3 2 3 2 3 2 6 3 3 2 2 3 1 42 3 6 2 2 2 18 6 3 2 22014 3 2 - 2015 = 6 2 32 18. Since A B C 2700 cos 2A cos 2B cos 2C 2cos A B cos A B cos 2C C D C D cos C cosD 2cos cos 2 2 = 2cos 270 C cos A B cos 2C 2sinC.cos A B 1 2sin2C = 1 2 sinC cos A B sinC 1 2 sinC cos A B cos A B = 1 2sinC 2sin A.sinB 1 4 sin A.sinB.sinC www.eabhyasacademy.com 19. sin2A sin2B sin2C 2sin A C .cos A C sin2B = 2 sin 270 B ,cos A C 2sinB.cos B 2cos cos A C sinB = 2cosB cos A C sin 270 A C = 2cosB cos A C cos A C 4 sin A.cosB.sinC PATHFINDER 12 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 20. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD sin2 A sin2 B sin2 C = sin A B .sin A B sin2 C sin2 A sin2 B sin A B , sin A B = sin 270 C , sin A B 1 cos2 C cos C.sin A B 1 cos 2 C = 1 cos C sin A B cos C 1 cos C sin A B cos 270 A B = 1 cos C sin A B sin A B 1 cos C 2cos A.sinB 1 2cos A.sinB.cos C 21. tan2A tan A We have 3A 2A A tan3A 1 tan 2A tan A tan3A tan 2A tan A tan3A tan2A tan A tan3A tan 2A tan A tan3A tan 2A tan A 22. We have 5x 3x 2x tan 5x 23. tan3x tan 2x tan 5x tan3x tan 2x tan 5x tan3x tan2x 1 tan3x.tan 2x Given A + C = B tan A C tanB tan A tanC tanB 1 tan A tanC tan A tanC tanB tan A tanB tanC tan A tanB tanC tanB tan A tanC : 24. tan b 1 tan2 2tan cos 2 b sin 2b b 2 2 1 tan 1 tan 2014 - 2015 1 b2 2b = 1 b2 b 1 b2 www.eabhyasacademy.com = 1 b 2 2b 2 1 b2 1 1 b2 1 b2 25. 1 120 50 sin85 sin35 cos65 2cos .sin cos65 2. .sin 25 sin 25 0 2 2 2 1. If sec mand tan n then 1 1 m n m m n PATHFINDER 13 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 = VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD 1 1 sec tan sec sec tan 2 1 1 sec tan = sec sec tan 1 1 sec 2 tan 2 2 sec tan = sec sec tan 1 2sec2 2sec tan = sec sec tan = 2. sec 2 tan2 1 1 sec tan .2sec 2 sec sec tan Since cos 2 1 sec2 4xy x y 2 [ x, y R ] It is possible only when x = y 3. 2 1 4xy x y x y 0 2 The equation is, cos 2 sin 1 0 1 sin2 sin 1 0 sin2 sin 2 0 sin 1 sin 2 0 sin 1 0 ( sin 1 ) sin 1 sin 4. 3 2 3 5 7 , 2 4 4 1 1 1 2014 Given that, cos x x 2cos 2 x x - 2015 2 2 We know that x 1 1 x 2 x 2 x 2 = 2cos 2 4 cos 2 2 2cos 2 1 1 1 x 2 2 2cos 2 cos 2 2 x 2 5. Given that 2y cos x sin .... (1) and 2x sec y cos ec 3 .... (2) .... (3) 2x y 3 cos sin www.eabhyasacademy.com 2x sin y cos 3 sin cos 0 Solving (1) and (3), we get y sin and x 2cos Now, x 2 4y 2 4 cos 2 4 sin2 2 2 = 4 cos sin 4 6. sin 2 3 cos 2 1 PATHFINDER 3 14 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD sin6 cos6 3cos 2 sin2 sin2 cos 2 1 sin6 cos 6 3cos 2 sin2 1 2 Similarly, sin2 cos 2 1 .... (1) .... (2) 2 sin4 cos 4 2sin2 cos 2 1 From (1) and (2), we get sin6 cos 6 1 3sin3 cos 2 and sin4 cos 4 1 2sin2 cos 2 Now put these values in given equation 2 1 3 sin2 cos 2 3 1 2 sin2 cos 2 1 = 2 6 sin2 cos 2 3 6 sin2 cos 2 1 0 7. x sin y cos 2z tan 1 tan2 sin 2z cos 2 2z tan cos Taking x sin x sin 1 tan 2 cos 2 sin 2 x sin z 2z sin cos 2z cos x 2 2 cos sin cos 2 sin2 x cos2 sin2 2cos Similarly, y y cos2 sin2 2z sin z cos 2 sin2 2sin Compare (1) and (2), we get tan y x .... (1) .... (2) 2014 - 2015 zy x 2xyz sin 2yz x sin y2 x2 y2 x2 y2 1 2 x 2 2xz Similarly, cos x 2 y 2 8. 4z 2 x 2 y 2 x 2 y 2 1 2 [ sin2 cos 2 1] 3 sin A 5cos A 5 3cos A 5 sin A www.eabhyasacademy.com 4z 2 x 2 y 2 x 2 y 2 2 9cos 2 A 25sin2 A 30 sin A cos A 9 9sin2 A 25 25cos 2 A 30 sin A cos A 34 9 sin2 A 25cos 2 A 30 sin A cos A 34 3 sin A 5cos A PATHFINDER 2 15 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD 34 25 9 9. tan A tanB 2tan A B 2 1 tan A tanB 2 10. 2tanB cotB tanB 1 2tanB cotB tanB 2 tanB cotB 2 1 tan2 B cot B cotB tan2 B 1 1 tan B 2 sin 500 sin 700 sin10 0 2cos 600 sin10 0 sin10 0 sin10 0 1 2cos 600 0 11. We have, tan m 1 and tan m 1 2m 1 We know tan tan tan 1 tan tan m 1 2m2 m m 1 m 1 2m 1 m 1 2m2 m 2m 1 m 1 m 1 2m 1 2m2 2m 1 1 tan tan 4 2m2 2m 1 Hence, 12. 4 2014 - 2015 sin 47 0 sin610 sin110 sin 250 2sin 540 cos70 2 sin 180 cos7 0 2cos7 0 sin540 sin180 2cos70 . 2cos 360 . sin180 4.cos70 . 13. 5 1 . 4 5 1 cos70 4 cos 520 cos 680 cos1720 cos 520 cos1720 cos 680 www.eabhyasacademy.com 2cos 1120 cos 600 cos 680 cos 1120 cos 680 2 cos 900 cos 220 0 14. cos 2 5 cos 2 cos 2 12 4 12 2 1 2 5 1 sin2 cos 12 2 12 PATHFINDER 16 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 1 15. 16. 17. www.eabhyasacademy.com 1 5 cos2 sin2 2 12 12 3 5 cos cos 2 12 12 3 1 3 0. 2 2 2 5 3 12 12 2 cos 2 cos 3 0 0 Now, cot 70 4cos70 cos 700 4 sin700 cos 700 sin 700 0 0 0 cos700 2sin1400 cos 70 2sin 180 40 sin 700 sin 700 sin 200 sin 40 0 sin 40 0 2sin30 0 cos100 sin 400 sin700 sin700 sin 800 sin 400 2sin600 cos 20 0 sin 700 sin 700 3 x cos100 cos 20 0 cos 40 0 1 2 sin 100 cos100 cos 200 cos 400 2sin100 1 2 sin 200 cos 200 cos 400 2.2sin100 1 1 2sin 400 cos 400 sin800 0 2.4 sin10 8sin10 0 1 1 cos 100 cot 100 0 8sin10 8 2014 - 2015 sin3 sin5 sin7 sin9 cos 3 cos 5 cos 7 cos 9 sin3 sin9 sin 5 sin7 cos 3 cos 9 cos 5 cos7 2 sin6 cos 3 2 sin6 cos 2cos 6 cos 3 2cos 6 cos 18. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD 2sin6 cos 3 cos 2cos 6 cos 3 cos sin x y sin x y tan 6 ab ab sin x y sin x y a b a b sin x y sin x y a b a b 2sin x cos y 2a tan x a 2cos x sin y 2b tan y b PATHFINDER 17 MATHEMATICS-CHAPTERSOLUTIONS File No.26/18/30/12/2014 19. sin 2A cos A 1 cos 2A 1 cos A 20. 2sin A cos A cos A sin A A tan 2 2 2cos A 1 cos A 1 cos A sin sin 2 1 cos cos 2 21. VIII CLASS - IIT/N.T.S.E FOUNDATION - OLYMPIAD sin 2sin cos sin 1 2cos tan cos 1 2cos 2cos 2 cos cos 2 A 3 4cos 2 A 2 sin2 A 3 4sin2 A 2 3cos A 4cos 3 A 3sin A 4 sin3 A 2 2 2 2 cos 3A sin3A 1 22. cos 2cos 2 2 cos cos sin sin 2cos cos 2sin sin 2 2 2 2 2 2 2 2 3sin 1 sin cos cos tan tan 2 2 2 2 2 2 3 23. 1 sin 2A sin 2B sin2C 2 L.H.S = 2 sin A sinB sinC 24. L.H.S = 2cos A B cos A B 2cos 2 C 1 1 2cos Ccos A B 2cos 2 C 2014 - 2015 1 2cos C cos A B cos A B 1 4cos A cosBcosC 25. A B C 1800 A B C 900 2 2 2 C A B cot cot 900 2 2 2 A B . cot 1 C 1 2 2 tan B A C 2 cot cot cot 2 2 2 cot or A B C B A or cot cot 1 cot cot cot 2 2 2 2 2 www.eabhyasacademy.com cot A B C C B A . cot . cot cot cot cot 0 2 2 2 2 2 2 PATHFINDER 18 MATHEMATICS-CHAPTERSOLUTIONS
© Copyright 2026 Paperzz